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The electropermeome: cellular response to electroporation
Elektropermeom: celični odgovor na elektroporacijo

Angelika Vižintin, Damijan Miklavčič

Abstract
The increased permeability of a cell membrane due to exposure of cells/tissues to an electric field is called electropora-
tion. Electroporation induces a range of changes in the cell - from structural and chemical changes in the cell membrane, 
structural changes in proteins or protein complexes, transport of substances in and out of the cell, activation of signalling 
pathways, and repair mechanisms; it also triggers cell death under certain conditions. The term electropermeome is used 
to describe both the permeabilised cell during or immediately after the delivery of electrical pulses and all subsequent 
processes that remain active for some time after the increased transmembrane transport of substances for which the cell 
membrane is normally impermeable has ceased, i.e. even after the membrane has resealed. Electroporation is used in ma-
ny areas, including tissue ablation, gene electrotransfer for plasmid delivery into cells and electrochemotherapy. Medical 
applications of electroporation are effective and safe, but the action of the electrical pulses can cause certain adverse side 
effects, notably muscle contractions and acute pain. Further elucidation of the underlying mechanisms of electroporation 
and the effects of individual electric field parameters on the electropermeome is crucial to optimise the parameters of 
electroporation and consequently the results of electroporation-based therapies. The aim of the present paper is to pro-
vide a comprehensive overview of the mechanisms of electroporation and the electropermeome, i.e. the cellular response 
to electroporation.

Izvleček
Povečano prepustnost celične membrane zaradi izpostavitve celic oz. tkiv električnemu polju imenujemo elektroporacija. 
Povzroči vrsto sprememb v celici, od strukturnih in kemijskih sprememb v celični membrani, strukturnih sprememb protei-
nov oz. proteinskih kompleksov, prenosa snovi v celice in iz njih do aktiviranja signalnih poti in popravljalnih mehanizmov; 
ob določenih pogojih sproži tudi celično smrt. S pojmom elektropermeom označujemo tako permeabilizirano celico med 
ali tik po dovajanju električnih pulzov kot tudi vse poznejše procese, ki ostanejo aktivni še nekaj časa potem, ko ni več mo-
goče opaziti povečanega transmembranskega transporta snovi, za katere je celična ovojnica običajno neprepustna, torej 
tudi po času, ko že ugotavljamo, da je zaceljena. Elektroporacija se uporablja na številnih področjih, vključno z ablacijo 
tkiv, gensko elektrotransfekcijo za vnos plazmidov v celice ter elektrokemoterapijo. Aplikacije elektroporacije v medicini 

Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

Correspondence / Korespondenca: Damijan Miklavčič, e: Damijan.Miklavcic@fe.uni-lj.si

Key words: electropermeabilization; electrical pulses; transmembrane transport; lipid peroxidation; cell death

Ključne besede: elektropermeabilizacija; električni pulzi; transmembranski transport; peroksidacija lipidov; celična smrt

Received / Prispelo: 10. 5. 2021 | Accepted / Sprejeto: 5. 4. 2022

Cite as / Citirajte kot: Vižintin A, Miklavčič D.. The electropermeome: cellular response to electroporation. Zdrav Vestn. 2022;91(Epub 
ahead of print):1–13. DOI: https://doi.org/10.6016/ZdravVestn.3267

eng slo element

en article-lang

10.6016/ZdravVestn.3267 doi

10.5.2021 date-received

5.4.2022 date-accepted

Physiology Fiziologija discipline

Review article Pregledni znanstveni članek article-type

The electropermeome: cellular response to 
electroporation

Elektropermeom: celični odgovor na elektropo-
racijo article-title

The electropermeome Elektropermeom alt-title

electropermeabilization, electrical pulses, 
transmembrane transport, lipid peroxidation, 
cell death

elektropermeabilizacija, električni pulzi, trans-
membranski transport, peroksidacija lipidov, 
celična smrt

kwd-group

The authors declare that there are no conflicts 
of interest present.

Avtorji so izjavili, da ne obstajajo nobeni 
konkurenčni interesi. conflict

year volume first month last month first page last page

2022 91 11 12 1 13

name surname aff email

Damijan Miklavčič 1 Damijan.Miklavcic@fe.uni-lj.si

name surname aff

Angelika Vižintin 1

eng slo aff-id

Laboratory of Biocybernetics, 
Faculty of Electrical 
Engineering, University of 
Ljubljana, Ljubljana, Slovenia

Laboratorij za biokibernetiko, 
Fakulteta za elektrotehniko, 
Univerza v Ljubljani, Ljubljana, 
Slovenija

1

Slovenian Medical JournalSlovenian Medical Journal

https://creativecommons.org/licenses/by-nc/4.0/
mailto:Damijan.Miklavcic%40fe.uni-lj.si?subject=
https://doi.org/10.6016/ZdravVestn.3267


2

PHYSIOLOGY

Zdrav Vestn | On-line first: 08. 09. 2022 | Volume 91 | https://doi.org/10.6016/ZdravVestn.3267

1 Introduction

Through a system of ion channels and pumps, cells 
maintain a difference in electrical potential between the 
inside and outside of the cell membrane, which is called 
transmembrane potential. In eukaryotic cells, this usu-
ally ranges between -40 and -70 mV. The induced trans-
membrane potential present during the cell’s exposure to 
the electric field is added to the transmembrane poten-
tial. Exposing cells to a sufficiently strong electric field 
can impose a significantly higher transmembrane po-
tential than the resting transmembrane potential. Such a 
high transmembrane potential and, as a result, a strong 
electric field in the membrane, leads to a series of chang-
es, including structural membrane changes and modifi-
cations of membrane molecules. Therefore, molecules to 
which the membrane is normally impermeable can pass 
through. Increased permeability of the cell membrane, 
i.e. permeabilization of the membrane, due to the expo-
sure of cells/tissues to an electric field, is called electro-
poration or also electropermeabilization (1). The electric 
field during electroporation is established by applying 
electrical pulses through electrodes that are in contact 
with the sample or tissue.

Electroporation is used in many areas including 
tissue ablation, gene electrotransfer for plasmid deliv-
ery into cells, and electrochemotherapy, which is a lo-
cal method of cancer treatment using a combination of 
standard chemotherapy and short electrical pulses (2). 
Medical applications of electroporation are effective and 
safe. In electrochemotherapy and electroporation abla-
tion, cell death is not mainly caused by thermal injury 
but by increased permeability of the cell membrane. 
Therefore, the healthy surrounding tissue is not injured 
by treatment (3,4). However, due to electrical pulses, 
some unwanted side effects can occur, particularly mus-
cle contractions, which can cause unpleasant sensations 
and even pain; in some cases, it is necessary to coordi-
nate the delivery of pulses with the electrocardiogram 
to prevent arrhythmias (e.g. ventricular fibrillation). To 
improve results of electroporation-based applications, 
it is crucial to evaluate the influence of individual pa-
rameters – from electrical pulse parameters (e.g. voltage, 

so učinkovite in varne, vendar so zaradi delovanja električnih pulzov lahko prisotni tudi določeni neželeni stranski učinki, 
predvsem mišično krčenje in akutna bolečina. Za optimiziranje parametrov elektroporacije in s tem rezultatov na elektro-
poraciji temelječih terapij je ključnega pomena nadaljnja razjasnitev osnovnih mehanizmov elektroporacije in vplivov po-
sameznih parametrov električnega polja na elektropermeom. Namen prispevka je predstaviti celovit pregled mehanizmov 
elektroporacije ter elektropermeoma, tj. celičnega odgovora na elektroporacijo.

duration and number of pulses) to electrode geometry 
and position – on success of treatment (2). Tradition-
ally, electroporation procedures use monophasic pulses 
with a duration in the order of micro- and milliseconds, 
but in recent years the possibility of using nanosecond 
pulses and high-frequency biphasic pulses lasting only 
a few microseconds has been studied, as there it is pos-
sible to overcome certain limitations that appear in con-
ventional electroporation with monophasic milli- and 
microsecond pulses. Nanosecond pulses reduce muscle 
contraction (5) and cause less tissue heating due to less 
energy being delivered (6). This reduces the possibility 
of thermal injury while the use of biphasic pulses reduc-
es muscle contractions (7,8) and arrhythmia risk (7,9).

The comprehensive optimization of electrical pulse 
parameters for individual applications is limited by an 
incomplete understanding of the basic mechanisms of 
electroporation. The purpose of this paper is to provide 
a comprehensive overview of the cell membrane perme-
ability increase mechanisms due to the action of elec-
trical pulses and all subsequent changes and processes 
triggered by electroporation – from chemical changes in 
membrane lipids and modulation of protein function to 
changes in gene expression and protein synthesis, as well 
as the activation of cell death and the immune response.

2 Mechanisms of permeabilization of the 
cell membrane

Experimental results show that an increase in mem-
brane permeability can occur in less than 10 ns, suggest-
ing a direct rearrangement of membrane components 
(10). The currently established explanation of electropo-
ration is based on the formation of water pores in the 
lipid bilayer. Molecular dynamics simulations indicate 
that (with a sufficiently high potential on the bilay-
er or a sufficiently high electric field) the pore forma-
tion begins with the orientation of water molecules in 
the direction of the electric field and their penetration 
into the lipid bilayer from both (intra- and extracellu-
lar) sides (Figure 1A). Water molecules, oriented in the 
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direction of the electric field, are connected by hydrogen 
bonds into small clusters. These clusters, called water 
fingers, grow in size and increasingly protrude into the 
hydrophobic core of the lipid bilayer (Figure 1B) until 
they connect both sides (intra- and extracellular) and 
form a water channel (Figure 1C). Such a structure is 
called a hydrophobic pore. Phospholipids reorient in the 
presence of water channels by turning their polar head 
groups toward the resulting water channel to “shield” the 

nonpolar tails from water molecules. The reorientation 
of phospholipids stabilizes the pore, which at this stage 
is called a hydrophilic pore (Figure 1D). Stabilization of 
the pore allows even more water and other polar mole-
cules to enter the water channel (1).

In the absence of an electric field, the pores begin 
to close. Pore closing occurs in the reverse order of the 
analogous stages of pore formation. While the time re-
quired for pore formation decreases exponentially with 

Figure 1: Pore formation in the lipid (phosphatidylcholine) bilayer.
(A) orientation of water molecules in the direction of the electric field and penetration into the lipid bilayer, (B) the appearance 
of water fingers, hydrogen-bonded clusters of water molecules that protrude into the core of the lipid bilayer, (C) the joining 
of water fingers into a water channel called a hydrophobic pore that connects the intra- and extracellular side of the lipid 
bilayer, (D) reorientation of phospholipids by turning their polar heads towards the water channel, which at this stage is called 
a hydrophilic pore. The polar phosphatidylcholine heads are shown as green and white circles, but the lipid tails are not shown 
for clarity.
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increasing electric field strength (11), the time required 
for the pores to close is practically independent of the 
strength of the electric field that triggered their forma-
tion; the closing of pores in lipid bilayers in molecular 
dynamics simulations always takes from a few tens to 
a few hundred nanoseconds, which suggests that the 
pores are not stable. In simulations, the estimated time 
required for pore closure is several orders of magni-
tude shorter than the experimentally determined time 
required for membrane closing (i.e. the time during 
which increased transmembrane transport is observed) 
(1). The increased permeability of the cell membrane is 
observed for a few minutes after the electric field is no 
longer present, even when using pulses with a duration 
of only a few nanoseconds. However, the duration of the 
increased permeability of the cell membrane depends 
on the temperature (12-15), which suggests that elec-
troporation of cell membranes is a more complex pro-
cess than the mere formation of short-lived pores in the 
lipid bilayer. Several studies indicate the importance of 
chemical changes in membrane lipids and modulation 
of protein function in increasing membrane permeabili-
ty during electroporation (1).

Electroporation causes a series of changes in the cell 
membrane (formation of lipid and protein pores, oxida-
tion of membrane lipids), depolarization, formation of 
reactive oxygen species (ROS), release of ATP and K+ 
from the cell, influx of Ca2+ into the cytoplasm, entry of 
extracellular molecules into the cell, osmotic imbalance, 
protein reorganization or protein structural changes, 
including opening of ion channels, cytoskeleton disrup-
tion, activation of various signalling pathways, changes 
in gene expression and protein synthesis, as well as acti-
vation of several cellular repair mechanisms (Figure 2). 
Changes in the permeabilized cell membrane, as well 
as all subsequent processes that are active even when 
increased transmembrane transport of substances to 
which the cell membrane is normally impermeable is 
no longer observed, are denoted by the term electroper-
meome (16).

2.1 Chemical changes of membrane lipids

Electroporation pulses trigger the formation of ex-
tra- and intracellular ROS (17-22). Lipid oxidation due 
to exposure to electrical pulses such as those used in 
electroporation alters the composition and properties 
of both lipid bilayers and cell membranes. Chemical 
changes in membrane lipids, particularly peroxidation, 
could explain the longer-lasting permeabilization of cell 
membranes after electroporation. Lipid peroxidation is 

the oxidative degradation of lipids. It involves the for-
mation and breakdown of dioxygen adducts of unsatu-
rated lipids called lipid hydroperoxides (Figure 3). The 
reaction is initiated by a strong oxidizing agent (e.g. hy-
droxyl radical), which removes the weakly bound allylic 
hydrogen from the lipid. Further degradation of hydrop-
eroxides, the primary products of lipid peroxidation, is a 
complex process in which many secondary products are 
formed, e.g. aldehydes, ketones, alcohols, hydrocarbons, 
esters, furans, lactones, and peroxides. Hydroperoxides 
and some of their decomposition products, e.g. muta-
genic malondialdehyde (MDA), react with amino acids, 
DNA and membranes (23).

It has been demonstrated that ROS concentration 
and the extent of lipid peroxidation increase with elec-
tric field intensity, pulse duration and pulse number in 
bacterial, plant and animal cells as well as in liposomes, 
and that lipid peroxidation is associated with increased 
cell membrane permeability, time required for membra-
neresealing, and cell damage (17-20,22,24).

2.1.1 Peroxidation of membrane phospholipids

Cell membranes consist of a bilayer of phospholipids 
and sterols, in which proteins and other molecules are 
placed. The presence of oxidized lipids in lipid mem-
branes disrupts the lipid order, leads to lateral expansion 
and thinning of the bilayer, lowers the temperature of the 
phase transition, changes the hydration of the bilayer, 
increases lipid mobility and the frequency of flip-flops, 
affects the lateral membrane organization and promotes 
the formation of membrane defects. Therefore, bilayers 
with oxidized lipids are significantly more permeable 
and conductive than unoxidized bilayers (25-29). Ex-
periments showed the presence of conjugated dienes in 
the membranes of electroporated cells or vesicles, which 
indicates the presence of hydroperoxides, the prima-
ry products of lipid peroxidation (17,22,24), as well as 
MDA, indicating the presence of secondary peroxida-
tion products (24).

Hydroperoxides are stable enough to be present in 
the lipid bilayer for some time after oxidation. Using 
molecular dynamics simulations, Rems et al (26) quan-
tified the permeability and conductivity of a lipid bilayer 
with a different proportion of hydroperoxides, i.e. of pri-
mary products of lipid peroxidation. They showed that 
even a small proportion (around 1%) of hydroperoxides 
affects the conductivity of the bilayer. However, they al-
so found that the increase in the conductivity and ion 
permeability of the lipid bilayer due to the presence of 
hydroperoxides alone is too small to fully explain the 

https://doi.org/10.6016/ZdravVestn.3267
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experimentally determined values. Spontaneous pore 
formation was not observed in lipid bilayers with hy-
droperoxides (26,30,31).

Phospholipids with aldehyde groups on acyl tails (sec-
ondary products of phospholipid peroxidation) disrupt 

the lipid bilayer more than hydroperoxides. In experi-
ments (27,32) and molecular dynamics simulations 
(28,30-33), a significant increase in membrane permea-
bility with a certain proportion of phospholipids with al-
dehyde groups was observed, as well as the spontaneous 

Figure 3: Scheme of lipid peroxidation reactions.
The reaction is initiated by a strong oxidant, which removes a weakly bonded allylic hydrogen from the unsaturated fatty acid - 
this is how the alkyl fatty acid radical is formed. The addition of molecular oxygen to an alkyl radical can lead to the formation 
of a conjugated peroxyl radical. The latter abstracts the allylic hydrogen from another unsaturated fatty acid, leading to the 
formation of hydroperoxide, the primary product of lipid peroxidation, and a new alkyl radical. With a sufficient amount of 
molecular oxygen and non-oxidized unsaturated lipids, this step can be repeated many times, but it also competes with several 
termination reactions at the same time. Termination involves a reaction between two alkyl radicals, between two peroxyl 
radicals, between an alkyl and a peroxyl radical, or the reaction of an alkyl/peroxyl radical with a non-lipid substrate (e.g. 
phenolic antioxidants, ascorbate, glutathione, or amino acid residues). Further degradation of hydroperoxides, the primary 
products of lipid peroxidation, is a very complex process in which many secondary products are formed, some of which have 
important biological effects.

https://doi.org/10.6016/ZdravVestn.3267
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organization of aldehydes into pores (27,30-34). The 
pores formed as a result of the presence of lipid perox-
idation products are not the same as the pores formed 
in a non-oxidized lipid bilayer under the influence of an 
electric field. In molecular dynamics simulations, pores 
from lipid peroxidation products with aldehyde groups 
were opened for a few microseconds, and in the pres-
ence of cholesterol for the entire duration of the simula-
tion (5 µs) (33).

2.1.2 Oxidation of membrane sterols

Sterols influence the conformational order of acyl lip-
id chains, the thickness of the hydrophobic part of the 
membrane, and the lateral membrane organization and 
permeability. Cholesterol greatly reduces the membrane’s 
permeability for water, oxygen, ions, and other small mol-
ecules. Most biological membranes are dominated by a 
single sterol. In mammalian cells, this is cholesterol (35).

Oxidation of membrane cholesterol changes the 
structure of the membrane. Cholesterol can be oxidized 
enzymatically or non-enzymatically due to direct ROS 
action. Oxidized cholesterol derivatives with one or 
more additional oxygen functional groups are called ox-
ysterols. Oxysterols can be divided into two groups: those 
in which the short nonpolar tail is oxidized, and those in 
which the tetracycline ring is oxidized. Oxysterols with 
an oxidized tail have a similar effect on membranes as 
cholesterol, but they cause the phospholipid tails to be 
less ordered and do not condense the lipid bilayer as 
much as cholesterol does. Rapid turnovers of oxysterols 
with oxidized tails increase membrane permeability (e.g. 
25-hydroxycholesterol is known to increase membrane 
permeability to calcium ions and glucose). Oxysterols 
with an oxidized tetracycline ring, which can adopt a 
different conformation, disrupt the membrane structure 
more than oxysterols with oxidized tails, as they increase 
the mobility of phospholipid tails (35).

There are few studies investigating sterol oxidation 
by electroporation. Kazmierska et al (36) observed a rel-
atively low increase in the concentration of oxysterols 
(both those with an oxidized tail and those with an ox-
idized tetracycline ring) in yolks exposed to electrical 
pulses. By increasing the number of electrical pulses, 
they measured a higher concentration of oxysterols.

2.2 Modulation of protein function

Evidence of electroporation’s effect on proteins and 
their role in increasing membrane permeability can al-
so be found in the literature. Both experiments on lipid 

bilayers and molecular dynamics simulations indicated 
that the presence of a protein channel in the lipid bilayer 
stabilizes the membrane, requiring a higher electric field 
strength for electroporation to occur. In simulations, the 
formation of larger pores near the channel was not ob-
served (37,38). However, Azan et al (39,40) using con-
focal Raman microspectroscopy demonstrated protein 
modifications in living cells exposed to electroporation 
pulses. Unfortunately, the method used does not allow 
for differentiation between the modification of mem-
brane and cytoplasmic proteins.

2.2.1 Membrane proteins

Submicrosecond pulses cause voltage-gated calcium 
channels to open via a mechanism that does not involve 
lipid bilayer pore formation, heating, or membrane de-
polarization via voltage-gated sodium channels (41-43). 
Microsecond electroporation pulses, however, cause the 
Na+/K+-ATPase to open (44). Due to electroporation, 
cadherin in cell junctions is also lost (45,46). Cadherins 
are transmembrane proteins that play an important role 
in the formation of adherens junctions, a type of inter-
cellular junction in epithelial and endothelial tissues. 

Using electric fields that induce electroporation, 
Rems et al. (47,48) observed pore formation in the volt-
age-sensing domains of various voltage-gated channels 
in molecular dynamics simulations. In the simulations, 
the formation of the pore was followed by the unwinding 
of the voltage-sensing domain and the stabilization of 
the pore by membrane lipid heads. Such pores remained 
stable even until the end of the simulation (one micro-
second after the electric field was no longer present), 
which is significantly longer than the pores in the lipid 
bilayer. Rems et al (47) concluded that in the case of ma-
jor disruption of the protein channel structure, it cannot 
spontaneously fold back into its native conformation, 
but the cell repairs the damage through the mechanism 
of endocytic recycling.

2.2.2 Cytoskeleton

Cytoskeleton proteins (actin filaments, intermediate 
filaments and microtubules) and related proteins affect 
membrane permeability – the formation and expansion 
of membrane pores and membrane closing after elec-
troporation. Disruption of the actin filament network 
lowers the energy barrier for membrane pore forma-
tion (15). Electroporation of cells or giant unilamel-
lar vesicles with encapsulated actin did not cause large 
micrometre-diameter pores that were observed when 
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electroporation of empty vesicles (49). In cells and ves-
icles with encapsulated actin, however, a longer lasting 
permeabilization of the lipid bilayer was observed than 
in cells incubated with a toxin that destabilizes actin fil-
aments or in empty vesicles (15,50).

Electroporation results in reversible disruption of the 
three-dimensional filamentous structures of actin, tubu-
lin, and intermediate filaments, but not degradation of 
monomeric cytoskeletal proteins. The cytoskeleton reas-
sembles within hours after electroporation (45,46,51,52). 
However, it is not yet entirely clear whether the destruc-
tion of the cytoskeleton is a direct consequence of the ac-
tion of electrical pulses or fields on cytoskeleton proteins 
or the result of ATP release from cells, increased con-
centration of calcium ions in the cytoplasm, hydrolysis 
of phosphatidylinositol-4-5-bisphosphate (PIP2) and/or 
cell swelling due to electroporation (49).

Pakhomov et al (53) showed that the disruption of 
actin filaments after electroporation with nanosecond 
pulses is the result of cell swelling. Contrarily, research in 
which pulses with different parameters were used indi-
cated that actin filaments can collapse even without cell 
swelling or vesicle formation, which indicates the direct 
effects of electric pulses or fields on actin (45,50). Using 
atomic force microscopy, Louise et al (54) showed that 
cell swelling is mainly due to the destabilization of the 
interaction between cortical actin and the membrane 
due to electroporation pulses, but not to the depolymer-
ization of actin filaments. This confirmed the findings on 
the membrane’s separation from the cytoskeleton under 
the influence of electrical pulses or fields (55).

Using molecular dynamics simulations, Marracino et 
al (56) showed that high-voltage nanosecond electrical 
pulses cause changes in the conformation of the C-ter-
minal end of β-tubulin and changes in the local electro-
static properties of the GTPase domain and the bind-
ing site for most molecules that bind to β-tubulin. Their 
findings suggest that nanosecond electrical pulses can 
physically affect microtubule dynamics. Chafai et al (57) 
also showed experimentally that nanosecond electrical 
pulses change the conformation of the C-terminal part 
of tubulin, which polymerizes into different structures; 
whether the modulation of tubulin self-organization is 
reversible or irreversible depends on the parameters of 
the electrical pulses. Modulation of tubulin-associated 
proteins (e.g. kinesin) could also alter the microtubule 
network dynamics. Using molecular dynamics simula-
tions, Průša et al (58) showed that a 30 ns electrical pulse 
changes the contact surface between kinesin and tubulin 
as well as tubulin binding sites and nucleotide hydrolysis 
sites on kinesin.

3 Changes in gene expression and protein 
synthesis after electroporation

Electroporation initiates a series of physiological cell 
responses, which is also reflected in gene expression and 
protein synthesis changes. Since electroporation puls-
es induce ROS formation, it is expected that cells will 
respond to oxidative stress. In the yeast Saccharomyces 
cerevisiae, exposure to electrical pulses increased the ex-
pression of genes for proteins involved in the response 
to oxidative stress (GLR1, SOD1, SOD2 and GSH1) (59). 
Michel et al (60), however, observed increased immuno-
cytochemical staining with antibodies against superox-
ide dismutase SOD-2 after electroporation, incubation 
with cisplatin, and a combination of electroporation and 
cisplatin (electrochemotherapy) in metastatic pancreatic 
cancer cells. An increase in SOD-2 gene expression after 
electroporation was also measured by Dovgan et al (61) 
in mesenchymal adipose-derived stromal cells and um-
bilical-cord-derived stromal cells.

By monitoring the expression of various genes after 
electroporation, Morotomi-Yano et al (62) showed that 
nanosecond electrical pulses present a different type of 
stress to cells than endoplasmic reticulum injury, ultra-
violet light, or heat shock. Cells respond to physiological 
stress by activating various mechanisms. Since protein 
synthesis consumes a significant proportion of cellular 
building blocks and energy, it is highly regulated during 
stress responses. Electroporation causes phosphoryla-
tion of the eukaryotic translation initiation factor eIF2a 
and dephosphorylation of the 4EBP1 protein, which 
indicates suppression of protein translation or protein 
synthesis in general (62), and to the reduced expression 
of genes involved in protein synthesis (63). Hojman et 
al (64) detected a reduced expression of genes involved 
in metabolism (e.g. genes for phosphoenolpyruvate car-
boxykinase and dipeptidase) in murine muscles after 
electroporation, which suggests a reduction in catabo-
lism. Electroporation also causes other changes: reduced 
expression of histones H2A and H4, which are crucial 
for chromatin organization (63,65), reduced expression 
of cytoskeletal protein genes (64), and changes in genes 
and proteins associated with cell death and immune re-
sponse (66).

3.1 Cell death and immune response

Cell death can be approximately divided into patho-
logical (necrosis) and programmed. Until recently, apop-
tosis was considered synonymous with programmed cell 
death, but in recent years other types of programmed 
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cell death have been discovered, e.g. pyroptosis and 
necroptosis. Apoptosis can be triggered by several path-
ways, which are mainly divided into extrinsic and intrin-
sic pathways. The extrinsic pathway is mediated through 
receptors on the surface of the cell membrane (death re-
ceptors). In the extrinsic pathway, caspase-8 is activated 
at the cell membrane and then directly activates effector 
caspases (caspase-3, -6 and -7). The intrinsic pathway, 
on the other hand, is mediated via mitochondria and is 
particularly fast, as all the factors are already present and 
only need activation. In the intrinsic pathway, disrup-
tion of the balance between proapoptotic (e.g. Bid, Bax 
and Bak) and antiapoptotic (e.g. Bcl-2) proteins releas-
es apoptosis-inducing proteins (e.g. cytochrome c and 
apoptosis-inducing factor, AIF) from the mitochondria, 
which activates caspases. Unlike apoptosis, activation of 
caspase-1, -4, 5- or -11 is key in pyroptosis, which then 
initiate the process of programmed cell death by cleav-
ing the pore-forming protein gasdermin D. Key mark-
ers of pyroptosis are caspase-1 activation and caspase-3 
non-activation (the latter is associated with apoptosis). 
The activation of necroptosis is influenced by the activa-
tion of the kinases RIPK3 and MLKL (67).

Triggering of apoptosis after electroporation is main-
ly mentioned in association with nanosecond pulses 
(68-70), but it has also been observed with electropo-
ration with longer pulses. Ford et al (69) detected an 
electric field-dependent increase in the amount of acti-
vated caspases-3, -6, -7, -8 and -9 in murine melanoma 
cells after electroporation with 3 ns pulses. However, no 
release of cytochrome c, AIF, or Smac/DIABLO from 
mitochondria was observed. Their findings suggest that 
nanosecond pulses trigger apoptosis through a pathway 
similar to the extrinsic activation pathway. In contrast, 
Beebe et al (68) observed in electroporation with 60 ns 
pulses that the initiation of apoptosis depends on the ac-
tivation of caspases as well as on mitochondria, as they 
detected the release of cytochrome c into the cytoplasm 
in a T lymphocyte cell line. Zhang et al (71) monitored 
the expression of 17 genes related to apoptosis. After on-
ly two hours after electroporation of breast cancer cells 
with microsecond pulses, changes in the expression of 
caspases and genes associated with death receptors were 
observed. The expression of caspase-3 was increased, 
while the expression of caspase-6, -7 and -9 and Bc1-2, 
Bid and FASLG were decreased. They concluded that the 
activation of apoptosis after electroporation was mainly 
through the intrinsic pathway.

Since caspase-3 is involved in both the intrinsic and 
extrinsic pathways of apoptosis initiation, the increased 
expression of caspase-3 may indicate that the process of 

apoptosis has been initiated in the cells, but the pathway 
itself could not be determined. Zhang et al (72) detect-
ed more caspase-3 in pancreatic cancer cells exposed to 
electroporation pulses, O’Brien et al (73) observed im-
munohistochemical staining of cleaved caspase-3 only 
at the edge of the pancreatic ablation zone after electro-
poration, Siddiqui et al (74) detected cleaved caspase-3 
in the entire zone of liver ablation, and Mercadal et al 
(75) recorded increased expression of caspase-3 or -7 
in pancreatic adenocarcinoma cells. All three studies 
indicated that apoptosis was initiated. Michel et al (60) 
observed increased immunocytochemical staining with 
anti-caspase-3 antibodies after incubation with cisplatin, 
microsecond pulse electroporation, and a combination 
of electroporation and cisplatin (electrochemotherapy) 
in metastatic pancreatic cancer cells.

An electric current flowing through a conductor 
(e.g. cell suspension, tissue, and so on) causes it to be 
heated (i.e. Joule heating). With properly selected elec-
trical pulse parameters, it is possible to achieve a small 
enough increase in temperature to prevent thermal 
injury to cells/tissue. Faroja et al (76) wanted to deter-
mine whether high-energy pulses (i.e. a large number 
of pulses and/or a high electric field strength) can cause 
thermal injury to liver tissue. When the electropora-
tion temperature did not exceed 39 °C, apoptotic cells 
with cleaved caspase-3 were observed and virtually no 
HSP70 heat shock proteins were detected (character-
ized by their expression being greatly increased by heat 
stress or toxic chemicals). In contrast, in cells subject-
ed to electroporation where the temperature exceeded 
60°C, distinct expression of HSP70 and only minimal 
expression of caspase-3 was observed. Ben-David et al 
(77), however, observed differences in the immunohis-
tochemical staining of cleaved caspase-3 and HSP70 in 
different tissues after electroporation: strong staining for 
cleaved caspase-3 and limited expression of HSP70 was 
detected in the liver, no staining was detected in muscle 
cells, while minimal staining for cleaved caspase-3 and a 
significant increase in HSP70 in the tissue surrounding 
the area where the electrical pulses were delivered were 
observed in the kidneys. Kanthou et al (45) did not de-
tect an increased accumulation of HSP70 after electro-
poration of umbilical cord endothelial cells, while Mla-
kar et al (63) and Dovgan et al (61) after electroporation 
of melanoma cells and mesenchymal adipose-derived 
stromal cells and umbilical-cord-derived stromal cells 
observed increased expression of proteins from the heat 
shock protein family HSP70.

Contrary to most of the literature, in the re-
search carried out by Mercadal et al (75), pancreatic 
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adenocarcinoma cells died after electroporation via a 
pathway independent of caspase-3 or -7; however, Zhang 
et al (67) observed increased expression of cleaved 
caspase-1, gasdermin D, RIPK3, and MLKL and de-
creased expression of cleaved caspase-3 six hours after 
liver electroporation. They concluded that the results in-
dicate the activation of pyroptosis and necroptosis, but 
not apoptosis. Ringel-Scaia et al (78) observed changes 
in gene expression consistent with apoptosis immediate-
ly after electroporation of breast cancer cells. Over time, 
however, they observed a change in gene expression to-
wards inflammatory types of cell death and necrosis – 
after 24 hours, increased expression of genes associated 
with necrosis and pyroptosis was recorded. Pyroptosis 
is also associated with the regulation of pattern recog-
nition receptors (PRR), so it is not surprising that they 
also observed increased expression of three networks 
associated with damage associated molecular patterns 
(DAMPs): ROS, ATP and HMGB1 signalling. However, 
they detected a decreased expression of genes related to 
immune system suppression, and an increased expres-
sion of genes related to the inflammatory response. The 
authors also observed decreased expression of genes as-
sociated with cell damage and increased expression of 
genes associated with regeneration.

Peng et al (79) detected increased expression of genes 
related to apoptosis/necrosis (caspase-8, bcl-w, Mt2 and 
seven genes from the cytochrome P450 family) and in-
creased expression of several chemokine genes, includ-
ing MIP-1α, MIP-1β, MIP-1γ, IP-10 and MCP-2, four 
hours after electroporation in murine skeletal muscle. 
Heller et al (80) measured elevated mRNA levels for sev-
eral inflammatory chemokines and cytokines (MIP-1α, 
MIP-1β, IP-10, IL-6, and inducible nitric oxide synthase) 
after electroporation of murine melanomas. They also 
detected increased levels of IL-1β and IL-6 proteins after 
electroporation. Goswami et al (81) studied the effect of 
microsecond electroporation pulses on triple negative 
4T1 breast cancer cells. They measured increased mR-
NA concentrations for IL-6 and tumour necrosis factor 
(TNF) and decreased mRNA concentrations for TSLP 
after electroporation. Lower expression of TSLP, which 
plays an important role in cancer progression, was also 
confirmed at the protein level. Zhang et al (71) observed 
a decreased expression of Ki-67 and TGF-β proteins af-
ter electroporation of breast cancer cells. Ki-67 is used as 
a marker for dividing cells and is associated with tumour 
growth and invasion, and TGF-β expression correlates 
with tumour invasiveness. Mlakar et al (63), however, 
showed that electroporation of melanoma cells did not 
change the expression of the main tumour suppressor 

genes and oncogenes. All of these studies indicate that 
electroporation is a safe and non-carcinogenic method.

4 Conclusion

Electroporation is a phenomenon that causes in-
creased cell membrane permeability due to exposure 
of cells/tissues to an electric field. It causes a series of 
changes in the cell, including structural changes in the 
cell membrane, peroxidation of membrane lipids, influx 
of Ca2+ into the cytoplasm, ATP and K+ release from the 
cell, osmotic imbalance, cytoskeleton disruption, chang-
es in gene expression and protein synthesis, formation of 
reactive oxygen species, activation of signalling pathways 
and repair mechanisms; it also triggers cell death under 
certain conditions. The term electropermeome refers 
to both a permeabilized cell and what happens during 
or immediately after the delivery of electrical pulses, as 
well as all subsequent processes that remain active for 
some time after increased transmembrane transport of 
substances to which the cell membrane is normally im-
permeable is no longer observed, i.e. even after the time 
when we can already see that the membrane has resealed.

Electroporation is used in many fields, including 
electrochemotherapy, tissue ablation, and gene electro-
transfer. Electrochemotherapy has been used in clini-
cal practice for more than 15 years and is included in 
guidelines and standard clinical practice in many Euro-
pean countries for the treatment of various superficial 
tumours, including melanoma, squamous carcinoma 
and metastases of all histological types. Clinical studies 
have shown that electrochemotherapy is feasible, safe, 
and effective even for deep-seated tumours (2,3). While 
thermal techniques (radiofrequency and microwave ab-
lation, cryoablation) are routinely used for soft tissue 
ablation, interest in irreversible electroporation ablation 
is growing. The latter is particularly interesting for use 
on anatomical sites where surgery and thermal ablation 
methods are not possible, e.g. due to the proximity of 
vital structures such as large blood vessels, intestine, 
and biliary or urinary tracts. Due to the predominantly 
non-thermal mechanism of action, ablation with irre-
versible electroporation does not damage the surround-
ing tissue. The efficacy and safety of irreversible electro-
poration ablation have been demonstrated in numerous 
clinical studies for ablation of deep-seated liver, kidney, 
pancreas and prostate tumours, as well as for pulmonary 
vein isolation in the treatment of atrial fibrillation (4,82). 
Clinical studies are also investigating the possibility of 
using electroporation as a method of introducing nu-
cleic acids for gene therapy: for the treatment of cancer, 
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