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Exposing cells to an electric field leads to electroporation of the cell membrane which has already been explored
and used in a number of applications in medicine and food biotechnology (e.g. electrochemotherapy, gene
electrotransfer, extraction of biomolecules). The extent of electroporation depends on several conditions, includ-
ing pulse parameters, types of cells and tissues, surrounding media, temperature etc. Each application requires a

specific level of electroporation, so it must be explored in advance by employing methods for detecting electro-
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poration. Electroporation detection is most often done by measuring increased transport of molecules across the
membrane, into or out of the cell. We review here various methods of electroporation detection, together with
their advantages and disadvantages. Electroporation detection can be carried out by using dyes (fluorophores
or colour stains) or functional molecules, by measuring the efflux of biomolecules, by impedance measurements

and voltage clamp techniques as well as by monitoring cell swelling. This review describes methods of detecting
cell membrane electroporation in order to help researchers choose the most suitable ones for their specific exper-
iments, considering available equipment and experimental conditions.

© 2017 Published by Elsevier B.V.

Contents

1. Introduction . . . . . . . L L e e e e e e e e e e e 166
Methods of detection of plasma membrane electroporation . . . . . . . . . . . .. o e e e e e e e e e e e 167

2.1.  Transport of non-permeant €X0genous SUbStANCeS . . . . . . . . . . . . .t e e e e e e e e e e e e e e e e e e e e e 167
20100 DYES . . e e e e e e e e e e e e e e e e e e e s e 168

2.1.2.  Magneticnanoparticles . . . . . . . . L L L e e e e e e e e e e 171

2.1.3.  Functional molecules . . . . . . . . . L. e e e e e e e e e e 172

214, DNAQndRNA . . . . . e e e 172

2.2. Cell'sownions/molecules: leaking outof the cell . . . . . . . . . . . . . . . . e e e e e e 172
22.1. Extraction of biomolecules . . . . . . . . . L L e e e e e e e e e e e e e 172

2.3. Physicaland chemical methods . . . . . . . . . . . L L e e e e e e e e e e e e e 173
23.1. Conductivity and impedance measurements . . . . . . . . . . . . e e e e e e e e e e e e e e e e e e e e 173

23.2.  Voltage clamp techniques. . . . . . . . . . . . L e e e e e e e e e e 174

233, Cellswelling. . . . . . . . o e e e e e e 174

24, Othermethods. . . . . . . . . . e e e e e e e e e e 175

300 ConclUSION . . . . . o o e e e e e e e e e e e e e e e 176
Acknowledgment and funding. . . . . . . . L L L L L e e e e e e e e e e e 176
References. . . . . . . o o e e e e e e e e e 176
1. Introduction During this increased membrane permeability, molecules that other-

When biologic cells are exposed to a pulsed electric field of suffi-
cient amplitude, their plasma membrane permeability increases.
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wise cannot enter cells can be introduced to the cell interior or, on
the other hand, cellular components can leak out of the cells. This
phenomenon is termed electroporation. Electroporation can be re-
versible or irreversible (if the electric field is too intense for the
cells to recover their membrane and cell functions) [1]. From its dis-
covery in the late fifties of the past century [2], electroporation has
been the subject of decades of extensive research and investigations,
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which has led to numerous applications in medicine (such as
electrochemotherapy, gene electrotransfer, cell fusion and tissue ab-
lation) [1] and food biotechnology (such as microbial inactivation
and extraction of biomolecules) [3-5].

Although electric pulses act on all the membranes in the same way -
making them more permeable - the extent of electroporation is very
different. This depends on various conditions: pulse parameters (ampli-
tude, duration, pulse number and repetition rate), membrane composi-
tion, surrounding media, the orientation of cells in the tissue,
temperature etc. [6]. Each application requires a specific level of electro-
poration (e.g., for gene transfer: enough to introduce an active com-
pound but, at the same time, without cell death) to be fully applicable
[4]. For this purpose, the extent of electroporation must be explored
in advance by using at least one of the methods for detecting electropo-
ration. Moreover, these methods enable exploration of the basics of
electroporation: the spatial and temporal dynamics of membrane per-
meabilization [7,8], the effects of electric pulse parameters and condi-
tions (bathing media, temperature etc.) [9], species, cell type and
tissue variations [10], to estimate membrane permeabilization [11,12]
and determine thresholds for reversible and irreversible electropora-
tion [13].

Electroporation and its extent is most often determined by detecting/
measuring the increased transport of molecules across the membrane
[14], either import of exogenous substances into the cell [15] or leaking
of cellular components out of the cell [16]. Exogenous substances must
fulfil two conditions to become successful detectors of plasma membrane
permeabilization: 1. they must be non-permeant for an intact cell
membrane and can enter the cells only after the plasma membrane is
electroporated and 2. they have to possess an intrinsic characteristic
that, in combination with a specific detection method, can give informa-
tion about a molecule's transport into the cell. There are numerous sub-
stances that serve as electroporation indicators: from fluorescent dyes,
which are most frequently used [17-22], colour stains [23], magnetic
nanoparticles [24], functional molecules such as cytotoxic bleomycin
[25,26], to the largest, nucleic acids [27]. In addition to exogenous mole-
cules and cell leakage, electroporation can also be detected by physical
and chemical methods, such as conductivity and impedance measure-
ments [28], voltage clamp methods [29] or cell swelling [30].

We review here and briefly describe different methods of electropo-
ration detection (Fig. 1) in order to help researchers choose the most
suitable ones for their particular experiments. We also highlight the

advantages and disadvantages of specific method and provide refer-
ences to original reports.

2. Methods of detection of plasma membrane electroporation
2.1. Transport of non-permeant exogenous substances

A plasma membrane functions as a selective barrier between the cell
interior and the environment and enables a cell to maintain concentra-
tions of solutes in the cell different from those in its environment,
i.e., extracellular media. Small non-polar and uncharged polar
molecules can diffuse across a lipid bilayer. On the other hand, due to
the hydrophobic interior of the lipid bilayer, a plasma membrane is
non-permeable for most large uncharged polar molecules and charged
molecules, including ions. Transfer of these molecules across the mem-
brane is achieved with various transport mechanisms using membrane
transport proteins (carriers and channels) [31]. Some molecules enter
cells by different ways of endocytosis: they are internalized by invagina-
tions of the plasma membrane, whereby a portion of the extracellular
medium containing these molecules is enclosed in endocytotic vesicles.
However, for further use of these molecules, a cell has to be able to
process them into a form that can escape endocytotic vesicles or be
transferred to other cellular compartments [32].

Most exogenous molecules, however, lack such transport mech-
anisms and thus cannot cross a plasma membrane: they are either
too hydrophilic or too large for simple diffusion through the lipid
bilayer and are also not transported via any membrane transport
proteins [33]. Such non-permeant molecules are good candidates
for the detection of plasma membrane electroporation, since the
application of an electric field creates hydrophilic pores in the
lipid bilayer and, during electroporation, membrane permeability
for these molecules is at least temporarily increased [34]. In fact,
quite a number of these molecules (e.g., propidium iodide, trypan
blue), which were originally widely used to determine viability
(to test whether the plasma membrane has been compromised) later
served as a tool for detecting membrane electroporation. However, in
the case of membrane electroporation, it must be taken into account
that the plasma membrane is only temporarily permeabilized and can
reseal [35].

Some of these non-permeant exogenous molecules have special
properties that lead to the development of detection methods that
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Fig. 1. Graphic outline of methods used for plasma membrane electroporation detection. Abbreviations: TIRF - total internal reflection fluorescence microscopy, DEP - dielectrophoresis,

SHG - second harmonic generation, FTIR - Fourier transform infrared spectroscopy.
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give us information about the location of molecules (intracellular, extra-
cellular), hence the term “reporter molecules”. Some molecules are dyes
that are detected by microscopic and spectroscopic methods. Some dyes
are introduced into cells in order to become visible indicators of non-
permeant ions or molecules entering the cells (e.g. fura-2 for Ca?*),
while magnetic nanoparticles can be detected by magnetic resonance
imaging (MRI).

Functional molecules, on the other hand, act differently: they have a
certain biological effect on cells when they reach the cell interior and/or
specific intracellular component. The extent of electroporation is thus
estimated indirectly: the greater the electroporation, the more function-
al molecules enter the cell and the more pronounced is the observed
biological effect, e.g., bleomycin, which causes cell death [25]. Among
functional molecules, DNA is the most complex (and therefore
discussed separately): electroporation can be determined by detecting
the expression of a gene encoding a reporting protein. In this process,
DNA has to be transported through the plasma membrane and reach
the cell nucleus in order to gain access to transcriptional and transla-
tional mechanisms [36].

Depending on the method of pulse application and uptake detection
method, electroporation of a single cell or a bulk of cells in suspension
can be analysed. Some of the methods require long observations of
cells (e.g. DNA expression) so sterile conditions must be sustained.

The transport of charged exogenous molecules through the
electroporated plasma membrane is diffusion along a concentration
gradient, as well as dragging by electrophoretic force. It can be described
by a one-dimensional Nernst-Planck equation [37]. The amount of
molecules passing the plasma membrane is therefore an indicator of
the extent of electroporation [38,39]. The transport, however, is not
just simple diffusion based on an electrochemical gradient; it is
influenced by a number of factors, such as temporal changes of the elec-
tric field and pores, the shape of the pores, interactions between
transported molecules and pore walls and solute compositions [40]. A
number of models have been proposed to describe the transport of
molecules through electropores, reviewed in [41].

With the use of reporting and functional molecules, we can therefore
determine the role of pulse parameters and the influence of other ex-
perimental conditions on the extent of electroporation, thresholds of re-
versible and irreversible electroporation, observe spatial and temporal
dynamics of membrane permeabilisation, estimate pore size (diameter)
and detect susceptibility differences to electroporation between species,
cell types and physiological states.

However, the general behaviour of molecules used for membrane
electroporation detection may be modified or changed due to a high
local electric field [42-44] or membrane properties — which can affect
electroporation - can be modified on their binding/interaction with
the membrane [45,46].

2.1.1. Dyes

The most common way of investigating electroporation in vitro is to
study the cell uptake of dyes: either fluorescent molecules (fluorophores)
or colour stains (such as trypan blue).

2.1.1.1. Fluorophores. Fluorophores (or fluorescent probes) are mole-
cules that absorb light at a certain wavelength and then re-emit it at a
longer wavelength. The use of fluorescent molecules is far more preva-
lent than the use of colour stains. There are several advantages in the
use of fluorescent probes over colour stains: fluorescent probes provide
high contrast over a dark background, high sensitivity and specificity,
only a small number of molecules are required for detection and,
moreover, fluorophores are mostly minimally invasive compounds
that can be present in living cells to provide real-time imaging without
cell fixation [47]. There is a vast variety of different fluorophores, which
can be used in two ways.

The first is to observe single cells under a fluorescence microscope
mounted with a camera. Fast changes in the spatial and temporal

distribution of molecules during and after pulse application can there-
fore be observed, so the plasma membrane regions in which electropo-
ration occurred can thus be determined [48-50]. With the use of a
confocal microscope the position of fluorophores can be determined
very precisely [9]. In recent decades, several new techniques for fluores-
cence imaging (such as multiphoton excitation, total internal reflection
fluorescence or TIRF, and super-resolution imaging techniques) have
been developed to improve sensitivity and resolution [51]. The trans-
port of fluorophores can be monitored by image processing and com-
puter analysis programs such as Image] (Java based open source
program by the National Institutes of Health NIH).

The second way of using fluorophores is to measure a large number
of affected cells to get an average response of the cell population.
Namely, observing a small number of individual cells under a micro-
scope can sometimes be misleading, since the effects of the electric
field can vary from cell to cell. Fluorescence changes can be measured
with spectrofluorometry or microplate readers with fluorescence detec-
tion; however, large background effects must be taken into account. In
contrast, the use of flow cytometry allows the determination of fluores-
cence individually in a large number of cells (10* or more) to obtain the
distribution of a population response [52,53]. The disadvantage of this
method, however, is the inability to track rapid molecular transport.
The use of different detection methods can sometimes lead to different
results, as in the case of the detection of gene electrotransfection with
fluorescence microscopy and flow cytometry [54].

2.1.1.1.1. Nucleic acid binding fluorophores. Among the most frequent-
ly used nucleic acid binding fluorophores are propidium iodide (PI),
ethidium bromide (EtBr), ethidium homodimer 1 (EtH) and YO-
PRO®-1 lodide (Thermo Fisher Scientific Inc., Waltham, MA, USA).
There are three reasons why phenanthridinium and cyanine dyes are
the most popular fluorophore family in electroporation studies:
(1) they are non-permeant molecules that enter cells through an
electroporated membrane, (2) after penetrating the cell they have a
high affinity for binding to nucleic acids and (3) they exhibit large fluo-
rescence enhancement when bound to nucleic acids (DNA, RNA) [55].
Electroporation detection is therefore very sensitive and cell washing
is not necessary which enables a real-time monitoring of electropora-
tion. The members of the phenanthridinium (PI, EtBr, EtH) and cyanine
families (YO-PRO®-1 lodide) are all used in a similar way: they are
simply added to the medium in which cells are electroporated and
analysed by microscopy, spectrofluorometry or flow cytometry soon
after pulsing.

Propidium iodide (PI) is the most widely used hydrophilic
phenanthridinium fluorescent molecule (molecular mass: 668 Da, the
peaks of fluorescence excitation and emission are at 535 and 617 nm,
respectively: EX535/EM617) and dissociates in water to a double
positive charged propidium ion (which is subjected to detection) of a
molecular radius of 1.5 nm (molecular mass: 542 Da), and iodide anions,
although the term “PI uptake” is still nevertheless traditionally used in
publications [17,56]. PI is cell impermeant and thus excluded from
viable cells, so it is widely used for detecting cells with compromised
membranes (i.e., determining viability) [55,57,58]. When bound to
DNA, its fluorescence enhances 20- to 30-fold [59].

In electroporation studies, PI can be used in microscopic studies
[7-9,11,60-63], flow cytometry [9,25,52,53,64-71], spectrofluorometry
[9,72,73] or can be detected by a photomultiplier tube [8]. PI has been
used to evaluate cell type variations in electroporation [53], quantifica-
tion of molecule uptake [11,52], observing asymmetric transport into
cells [7,9,11,61,63] and transport kinetics [8,74]. PI can be used for cell
suspensions as well as for attached cells. Because of weak fluorescence
when unbound to nucleic acids, Pl is less suitable for erythrocyte ghosts
and vesicles studies. PI has also been used in studies using multiple
nanosecond (nsEP) pulses [17,56,66,75-78] and Fig. 2, although the
“nanopores” that emerge after a single nsEP application are usually
too small to allow PI to pass through them and so special care has to
be taken in interpreting the results of electroporation by ns pulses.
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Fig. 2. Detection of electroporation with multiple nanosecond electric pulses using propidium iodide (PI). B16 F1 mouse melanoma cells were pulsed with 20 x 60 ns, 45 kV/cm, 1 Hz. Light
(A) and fluorescence (B-D) microscopy were used for image acquisition. Excitation was with EX540 nm and fluorescence was collected at EM605/54 nm. A) and B): cells before pulse
application, C) 5 s and D) 2 min after pulse application. In C), PI enters cells at the poles and in D), the fluorescence is markedly increased due to the binding of PI to nucleic acids. The
scale bar in A) represents a 100 um gap between the electrodes. The direction of the E field is marked in D).

Pl is simply added to the electroporation buffer with cells prior to
electroporation in concentrations ranging from 5.1 pM [53] to 1.5 mM
[64], but it is mostly used between 30 and 100 M. The concentration
is adjusted to the threshold of the detection system. The uptake of PI
can be monitored in real time using a fluorescence microscope. For
flow cytometry, cells must be incubated for a certain period of time,
usually 5-15 min, for PI uptake and the emergence of PI fluorescence,
although cells cannot be incubated with PI for longer periods of time
since Pl itself is toxic. On the other hand, pore resealing dynamics can
be studied if PI is added at different periods of time after the exposure
of cells to electric pulses [67,68,73].

PI has also been used as a tool for fast recording study of the direct
interaction of fluorophore with the plasma membrane during transport
through the lipid bilayer because of the enhancement of PI fluorescence
when bound to membrane loci [79-81]. More precise spatial and
temporal resolution of pore detection can be achieved in this way. PI
has also been used in vivo for evaluation of muscle cell electroporation
in mouse muscles [82].

Ethidium bromide (EtBr) is a phenanthridinium intercalator
similar to PI; however, it is smaller (molecular weight: 394 Da,
EX300 or EX520/EM610) and amphiphilic [83]. It also dissociates to
an ethidium cation (1%, 314 Da) and a bromide anion. Similar to PI,
it exhibits >20-fold enhancement of fluorescence when bound to
DNA [84]. It is a conventional dye used for nucleic acid staining,
e.g., in gel electrophoresis.

EtBr is usually added to the solution in a 25 pM-1 mM concentration
prior to electroporation and is mostly used for microscopic studies of
temporal and spatial detection of electroporation [50,62,63,85,86].
EtBr fluorescence can also be measured spectrofluorometrically for
cells in suspension [71]. It has also been used in studies with a fast cam-
era to detect direct interaction with the plasma membrane (as in studies
with PI) [79,80,87].

Ethidium homodimer 1 (EtH) is a larger dimeric molecule (molecu-
lar mass: 857 Da, EX528/EM617) from the same family as Pl and EtBr. It
binds strongly to DNA and it is thus used for gel electrophoresis [88]. Its
fluorescence enhances 40-fold when bound to DNA [89]. EtH is used in
similar protocols as Pl and EtBr, for microscopic studies [63,90] and flow
cytometry [90-93].

YO-PRO®-1 lodide is a carbocyanine nucleic acid stain by Thermo
Fisher Scientific Inc. (629 Da, EX495/EM509). It forms divalent cations
in aqueous solution (similar to PI). When used in nsEP [15,94-96] and
pulsed electromagnetic field (PEMF) [97] experiments together with
PI, it has been shown that YO-PRO®-1 lodide detects electroporation
at lower electric fields than PI. Since it is somewhat smaller than PI
[17], YO-PRO®-1 lodide shows greater sensitivity in detecting electro-
poration of a plasma membrane, although the size of the two molecules
may not be solely responsible for the difference in uptake [15,17,78,96].
Nevertheless, YO-PRO®-1 lodide (usually used in concentrations
ranging from 0.5-5 M) has mostly been used for studying the transport

of molecules after a single or multiple nsEP [39,46,98]. YO-PRO®-1
lodide is also an indicator of the early apoptosis [99]: it can enter the
cell through P2X; receptors that are related to early apoptotic phase
[100,101]. In nsEP electroporation studies, this is clearly not the case
since P2X; receptor inhibitors had no effect on YO-PRO®-1 lodide
uptake [96].

SYTOX® Green is another cell-impermeable cyanine dye by Thermo
Fisher Scientific Inc. (600 Da, EX504/EM523) which has been used in the
same way as other nucleic acid binding probes. According to the manu-
facturer, SYTOX® Green fluorescence enhances 500- fold on binding to
nucleic acids which makes it excellent for electroporation detection.
SYTOX® Green has been added to cells prior to electroporation in con-
centrations ranging from 23 nM to 1 uM [102-105] and detected using
a plate reader [102,106] or a microscope [103-105]. Using SYTOX®
Green, electroporation has been detected in microfluidic devices and
micro-biochips [103-105] as well as with direct current plasma dis-
charge devices [102]. SYTOX® Green has been used to detect resealing
of the plasma membrane [102]. It has also been used to distinguish tem-
porary electroporated cells from dead/irreversibly porated cells with
the use of an additional dye 30 min after poration [103] or in combina-
tion with the MTT viability test and cell lysis [106]. The latter method
can be used with any cell-impermeable nucleic-acid binding dye.

2.1.1.1.2. Small nonbinding fluorescent molecules. In addition to
nucleic acid binding fluorophores some other dyes such as Lucifer
yellow and calcein, are also used to study electroporation of plasma
membranes. Since they do not possess the ability to enhance the inten-
sity of their fluorescence, the cells have to be washed after applying the
pulses, either by a simple replacement of the medium in which the cells
were electroporated (in attached cells) or centrifuging (in cells in
suspension).

Lucifer yellow (LY), a small polar non-permeant nontoxic 2~ anionic
dye (522 Da, EX428/EM536) has been used in concentrations from
0.5 mM to 3.8 mM with a variety of cell lines [19,107-112]. Internalized
LY has been observed under a microscope or measured
spectrofluorometrically. Electroporation has to be done quickly, since
LY is an indicator of fluid-phase endocytosis and accumulates in endocy-
totic vesicles [75,113]. Permeabilisation of such vesicles by nsEP exposure
has been demonstrated by leakage of entrapped LY into the cytoplasm
[75], and Fig. 3. LY has also been used in studies of transdermal transport
after applying electric pulses [ 114]. However, it has been shown that LY
fluorescence may be decreased by applying an external electric field
[44], so interpreting the results must be done with great care.

Calcein is a small non-permeant highly polar 4™ charge dye (623 Da,
EX495/EM515), a polyanionic fluorescein derivative that has been wide-
ly used for electroporation studies with animal/human cells in suspen-
sion [15,107,115-120] and in monolayers [121,122], as well as with
algae, plant protoplasts and yeast [123-128], erythrocyte ghosts [129,
130], lipid vesicles [131] and for transdermal delivery [114,132-134].
Calcein acetoxymethyl (AM) ester is a cell-permeant derivative that
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Fig. 3. Monitoring the permeabilisation of endocytotic vesicles by nanosecond electric pulses with Lucifer yellow. B16 F1 mouse melanoma cells were pulsed with 20 x 60 ns, 50 kV/cm,
1 kHz nsEP. Light (A) and fluorescence (B and C) microscopy were used for image acquisition. Lucifer yellow was excited with EX425 nm and fluorescence was collected at EM535/30 nm.
Cells in A) and B) are taken before pulse application and in C) 10 min after. Before pulse application, Lucifer yellow is trapped in the endocytotic vesicles (B). After pulse application, Lucifer
yellow is released from the permeabilised vesicles into the cytoplasm (C). The scale bar in A) represents a 100 pm gap between the electrodes. The direction of the E field is marked in C).

can enter the cell and the AM group is there cleaved by esterases into a
non-permeant form [135]. The efflux of calcein out of the cell after
applying electric pulses can thus be studied [23,129,131,136,137].
Calcein blue AM derivative has also been used in similar experiments
[138]. In experiments using calcein, it is important to be aware that
metal ions such as Ni?*, Cu®>* and Fe*© quench calcein fluorescence
and that ions that are released from the electrodes during high-voltage
electric field exposure can have a significant effect on the results [139].
Aluminium ions react with calcein and form a fluorescent complex [140].

Fluorescein itself and other fluorescein derivatives apart from calcein
(fluorescein isothiocyanate, fluorescein diphosphate and fluorescein
diacetate) have not often been used for membrane electroporation de-
tection [141-145]. The reasons for the more frequent use of calcein
than other fluorescein derivatives is probably its higher cell retention
and the insensitivity of its fluorescence to pH in the physiological
range [146] but may also be due to the historical use of fluorophore in
electroporation laboratories.

2.1.1.1.3. Large fluorescent molecules and particles. Dextrans are
water-soluble polysaccharides — polymers of glucose with high molecu-
lar weight (>1000 Da). The linear backbone consists of «-1,6 linked
glucopyranosyl repeating units and branches with a-1,2, a-1,3 and a-
1,4 linkage. Different chain lengths and side branching of dextrans
lead to different molecular weights (3-2000 kDa). They have low toxic-
ity and immunogenicity and are biologically inert. Dextrans can be con-
jugated to fluorophores, which are then detected with fluorescence
microscopy, flow cytometry or spectrofluorometers.

Dextrans have a small electrical charge and are therefore relatively
unaffected directly by an electric field [52,53]. Because of their variable
molecular weight and size, dextrans of different molecular weight (or in
combination with other indicator molecules) have often been used in
electroporation studies to estimate the size of pores, the effects of
pulse parameters on pore size, spatial distribution and pore dynamics
[18,49,73,119,129,144,147-151]. Smaller dextrans enter cells more effi-
ciently than larger ones, depending on the size of the pores [144,148,
150,151]. Dextrans have also been used to study intracellular traffic of
molecules introduced into cells by electroporation [152]. In addition to
in vitro studies, dextrans have also been used to study transdermal de-
livery [153-155] and in vivo blood vessel permeability [156,157]. Fluo-
rescein isothiocyanate (FITC)-dextrans of 4-2000 kDa have mostly been
used in electroporation studies.

Quantum dots (QD) are semiconductor crystals of nanometer size
(typically between 2 and 6 nm), which fluoresce at narrow discrete
wavelengths depending on their size. They are photostable, have a high
quantum yield and a large Stokes shift (i.e., the difference between ab-
sorption and emission maxima), are resistant to quenching, with proper
surface modifications they are water-soluble, biocompatible and can be
conjugated to biomolecules, and therefore have a practical use in bio-
medical applications for fluorescence imaging [158-160]. However, QD

may exhibit some toxicity, mostly due to their core constituents (cadmi-
um, zing, tellurium, selenium) [158]. Quantum dots enter cells via endo-
cytosis and remain trapped inside the endocytotic vesicles. Several
biochemical and physical methods have been developed for the delivery
of QD into cell cytoplasm [158,159,161], electroporation being one of
them [21,159,162-166], meaning that they can also be used for electro-
poration detection. Because of the larger size QD delivery requires a high
pulse intensity and duration [165] and the delivery is slower than that of,
e.g., propidium iodide [21]. Aggregation of QD in cytoplasm after electro-
poration is another problem [162-164,167]; however, it can be over-
come by coating the QD surface (e.g., with dihydrolipoic acid-sulfo
betaine) to prevent interaction between nanoparticles and/or cytoplas-
mic components [164]. QD have also been delivered to cell cytoplasm
by nanochannel electroporation [166].

In addition to quantum dots, other fluorescent nanoparticles have
been used to detect electroporation, e.g., fluorescently labelled magnetic
nanoparticles [168], dendrimers conjugated with fluorophores [169],
silica nanoparticles with fluorescent dyes incorporated into the core
[170]. Rhodamine B labelled multiwalled carbon nanotubes have also
been transported to cells [166]. However, they have been shown to in-
crease the electroporation extent - it has been said that they function
as “lightning rods” [171,172] and, as such, may affect electroporation
by their presence.

2.1.1.1.4. Ions and fluorescent ion indicators. The influx of ions through
a permeabilised plasma membrane can also be an indicator of electro-
poration. The most convenient way of detecting electroporation by
ions is to observe the influx of ions that are present in the cytoplasm
at very low concentrations (such as calcium - due to its signalling
role; free calcium in cytoplasm is kept at concentrations of 100 nM or
below [173]) or is not present at all (thallium). In these cases, cells are
first loaded with a fluorescent indicator which changes its fluorescence
on ion binding. Cell-permeable acetoxymethyl (AM) ester forms of indi-
cators (e.g. fura-2 AM) are able to diffuse passively into cells and they
are cleaved in the cytosol by intracellular esterases to membrane-
impermeant dyes [135]. Ions are much smaller than other fluorescent
molecules, so they can be used for detecting smaller “pores”, especially
in the case of nsEP, which provoke “nanopores” that are too small to
allow fluorescent dyes such as PI to pass across the plasma membrane
[17] so these ion indicators can be considered very sensitive. However,
due to their high sensitivity in detecting smaller “pores”, the results can-
not always be related to membrane permeability changes with larger
molecules such as DNA.

Fura-2, fluo-3, calcium green and indo-1 have been used as indica-
tors for Ca®* concentrations. The possible influx of Ca>* ions from the
cell exterior into the cell after applying electric pulses can thus easily
be detected by the use of these indicators, together with a fluorescence
microscope [20,63,174-177], Fig. 4, or spectrofluorometer [178].
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Fig. 4. Monitoring electroporation with fura-2. (A) CHO cells—bright field. (B) Ratio of fluorescence (F345/F385) for cells in control (non-porated cells). (C) Cells 1 min after electroporation
with a 250 V/cm, 10 ms pulse. Brighter cells were electroporated. Arrow denotes the field direction. Bar represents 20 um. Source: © 2011 IEEE. Reprinted, with permission, from Pucihar,
G., Krmelj, ], ReberSek, M., Napotnik, T.B., and Miklav¢i¢, D. (2011). Equivalent pulse parameters for electroporation. IEEE Trans. Biomed. Eng. 58, 3279-3288 [20].

Some indicators shift their excitation (fura-2) or emission (indo-1)
spectra on ion binding. They can thus be used in ratiometric measure-
ments. With ratiometric measurements, variations and artefacts due
to different concentrations of the dye in different cell regions or cells
(uneven loading), in the thickness of a specimen, and also due to the
temporal dynamics of the dye (photobleaching, leakage) can be
overcome or minimized [179]. In ratiometric measurements, the
fluorescence intensity ratio at peak excitation/emission wavelengths
for bound and unbound indicators is calculated. In the case of fura-2,
two excitation wavelengths are used (EX340 and EX380) and the
emission is measured at around EM520 for both excitation wavelengths.
In the case of indo-1, the excitation is single (EX335) and the ratio
between the fluorescence intensities at two emissions (EX405 and
EM485) is determined [180].

Most measurements are done in a qualitative manner, although the
concentration of free cytosolic Ca?™ can be determined quantitatively
by in situ calibrations with solutions of known ion concentration (in
combination with chelators) and ionophores for manipulating intracel-
lular Ca?* concentrations [181].

However, in experiments in which electroporation of a plasma
membrane is determined by Ca?™ uptake, one must always be aware
of the possibility that Ca?* is also released from internal cellular stores,
especially in the case of nsEP use [92,174,182]. Moreover, more complex
Ca? ™ pathways, such as calcium-induced calcium release [183,184] and
store-operated (capacitive) calcium entry [178], can contribute to Ca®™*
elevation in cells, as well as the activation of voltage-sensitive calcium
channels in the plasma membrane [185-187].

To avoid false detection of plasma membrane electroporation, thallium
ions that are not present in cells in any detectable concentrations are used
instead of Ca?*. The detection of T influx is thus always related to plas-
ma membrane permeabilisation. The detection technique for plasma
membrane permeabilisation using the TI™* indicator FluxOR™ (Thermo
Fisher Scientific Inc.) was first introduced by Pakhomov and colleagues
[17,188]. Thallium ions are especially suitable for detecting nstP
“nanopores”, since they are even smaller than Ca®™ (TI™: 0.392 nm,
Ca®*: 0462 nm) [17].

2.1.1.1.5. Annexin V and phosphatidylserine externalization. Annexin V is a
vascular protein that binds to membrane phospholipid phosphatidylserine
(PS). PSis only present in the inner leaflet of the plasma membrane but it is
translocated to outer layer of the membrane during apoptosis. Fluorescent-
ly labelled annexin V (mostly FITC-annexin V) is therefore widely used as a
tool for detecting PS externalization in cells and hence serves as an assay for
apoptosis [189]. However, Vernier and co-workers hypothesized that PS
can translocate from the inner to the outer leaflet of plasma membranes
along the walls of electropores that emerge during electroporation, since
PS translocation occurs very rapidly (within seconds) after pulse applica-
tion [22,96]. PS externalization detection with FITC-annexin V has thus
been used for detection of electroporation, especially after nsEP application
[188,190,191]. Since PS externalization occurs at voltages below dye uptake

(PL, YO-PRO®-1 Iodide), it is considered to be a sensitive method for elec-
troporation detection [96,188,190]. FITC-annexin V is added to the electro-
poration solution prior to or immediately after applying electric pulses and
analysed under fluorescence microscope [188,191] or by flow cytometer
[22,190]. PS externalization and detection >20 min after EP can, however,
be a sign of apoptosis rather than membrane permeabilisation [192].

2.1.1.2. Colour stains. Colour stains are not used to detect plasma mem-
brane electroporation as often as fluorescent dyes. Trypan blue has
mostly been used in experiments, although other colour stains have
also been used in a few studies, e.g., phenosafranine [193,194] and
erythrosine B [195]. Detection of colour stain influx through
electropores can be done by simple light microscopy [23,195-197] or
spectrophotometrically [194].

2.1.1.2.1. Trypan blue. Trypan blue is a diazo dye with a molecular
weight of 961 Da. It has already been widely used for more than a hun-
dred years as a vital stain to determine cell viability, since it is excluded
by most living cells with intact membranes. It enters cells with compro-
mised membranes and stains cellular structures blue [198], especially
nuclei [196], so it can also be used for detecting plasma membrane elec-
troporation. Trypan blue is added to media prior to [23,172,197,199,
200] or immediately after (within minutes) electroporation [196,201],
as well as at different times after applying electric pulses, to monitor
plasma membrane resealing [200,201]. It has been used to test pulse pa-
rameter effects (duration, field strength, pulse number) on electropora-
tion [196,197,199,201,202], to detect the site of electroporation and
observe dye influx in single cells on an electroporation chip [23] and
to determine the role of electroporation in cell fusion [201]. Trypan
blue has also been used as a fluorescent molecule: it emits red fluores-
cence (EM 605 nm) on activation by green light (EX 550 nm) [203].
The disadvantages of trypan blue are low sensitivity and contrast (com-
pared to fluorescent probes), cytotoxicity in longer incubations, and it is
not suitable for nsEP experiments.

2.1.2. Magnetic nanoparticles

Iron, manganese and gadolinium are chemical elements with
paramagnetic properties and therefore have a strong effect on a local
magnetic field. They can be used in the form of 35-1000 nm nanoparti-
cles with a magnetic core and coated with various substances, such as
dextran, PEG, polystyrene or silica. Magnetic nanoparticles can be addi-
tionally coated with a variety of molecules (e.g., DNA, fluorescent mole-
cules) that can be delivered to cells alongside. Iron oxide particles are
most widely used and can be obtained commercially (Feridex, Bayer
HealthCare Pharmaceuticals, NJ, USA; Endorem, Guerbet, Villepinte,
France), as reviewed in [204]. The paramagnetic properties of such
particles can also be exploited for detection and separation. Cells loaded
with magnetic nanoparticles can be traced with MRI, various staining
protocols or magnetic force microscopy (MFM) or can be separated
from nonlabelled ones in a magnetic field.
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There have been some attempts to use electroporation to deliver
magnetic nanoparticles to cells in vitro. Magnetic nanoparticles have
been detected with DAB-enhanced Prussian blue staining for iron
[205-208], particle surface related fluorescent molecules [24] and
mRNA gene expression [209], as well as by MRI [24,205,206,208,210]
and MFM [211]. Cells labelled with magnetic nanoparticles have mostly
been later transplanted and monitored by MRI in vivo [24,205,207,208,
210], although electroporation in the presence of magnetic nanoparti-
cles has also been done in vivo [212]. MRI contrast agent - chelate con-
taining gadolinium (Gd-DOTA, Dotarem, Guerbet, Aulnay-sous-Bois,
France) has also been used as an electroporation test in vivo [213,
214]. However, with the use of gadolinium, it is necessary to be aware
that it has been shown that Gd*>* ions cause a decrease of electropora-
tion yield [45,46].

Most papers report that magnetic nanoparticles remain in
endosomal compartments after electroporation. In the process termed
magnetoelectroporation, magnetic nanoparticles are transported to
cells by macropinocytosis, not through the pores in the membrane
that emerge from exposing cells to an electric field [205-208]. However,
Tachibana reported nanoparticle localization in the cytoplasm [24].

The possibility of designing a microfluidic device that uses electro-
poration, electrophoresis and magnetophoresis for dragging DNA-
labelled magnetic nanoparticles into cells, and later magnetic separation
of successfully loaded cells, has been studied [215].

2.1.3. Functional molecules

2.1.3.1. Cytotoxic compounds. Among functional molecules, cytotoxic
compounds are most widely used for electroporation detection due to
their use in electrochemotherapy. Electrochemotherapy combines
non-permeant cytotoxic drugs with electric pulses that locally - in tu-
mours - permeabilise cell membranes. Chemotherapeutics (such as
bleomycin and cisplatin) enter tumour cells and kill them. In such a
way, electrochemotherapy increases the effectiveness of chemothera-
peutics at the site of action and decreases adverse systemic side effects.
Electrochemotherapy is now a widely used method for local cancer
treatment [216]. The cytotoxic effect is dependent on pulse parameters
[25] so cytotoxic compounds can be used indirectly, as a tool to investi-
gate the extent of electroporation in vitro and in vivo. The cytotoxic ef-
fect on cells can be estimated by cytotoxicity tests, such as clonogenic
assay, dye exclusion tests (using trypan blue or PI), MTT or MTS tests.

Bleomycin (BLM) is a non-permeant 1.5 kDa glycopeptide. Electro-
poration permeabilises the plasma membrane and allows BLM uptake:
BLM causes DNA fragmentation immediately after reaching the cell in-
terior: a few hundred molecules of BLM are already enough to kill the
electroporated cell [217,218]. BLM cytotoxicity has been used to detect
electroporation in a number of studies in vitro [25,26,219-225] and
in vivo [226].

0

Other cytotoxic drugs, such as cisplatin [227-229] can also be used
in the same manner as BLM to detect electroporation, although the fac-
tor of increased cytotoxicity after electroporation is not as high as it is in
the case of bleomycin [227]. Cisplatin, however, is easily determined in
cells and tissues by atomic absorption spectroscopy or inductively
coupled plasma mass spectrometry [230-232] and can thus be used as
a very sensitive probe for membrane electroporation.

2.14. DNA and RNA

Nucleic acids can also be introduced in vitro and in vivo to cells by
using electroporation: foreign genes can in this way be transferred to
cells via gene electrotransfer [233,234]. DNA and RNA in connection
with fluorescence can serve as detectors for electroporation by directly
observing fluorescently labelled DNA transport into the cell [27,
235-237] or monitoring expressed proteins derived from transferred
DNA, e.g., fluorescent proteins such as green fluorescent protein or
GFP [65,238,239], luciferase activity [240], using selective media [234],
evaluating the biological effect of the protein [241] or silencing a target
gene in the case of siRNA [242]. DNA (or RNA) can thus be a reporter
candidate for electroporation detection [243]. However, DNA uptake is
a very complex process and is not always easily achievable. There are
a few basic steps of gene electrotransfer: 1. plasma membrane electro-
poration, 2. DNA-plasma membrane interaction, 3. translocation of
DNA across a plasma membrane, 4. migration of DNA toward and into
the nucleus and 5. gene expression [244]. Only if all the steps are
achieved is gene electrotransfer successful. DNA is a large molecule
and its transport across an electroporated plasma membrane (whether
through large pores, by electrophoresis or by various endocytotic
pathways) is still under investigation [36].

When the expression of transferred genes, such as GFP (EX396 or
475/EM509), is used for electroporation detection, at least 24 h is re-
quired for full expression of the protein (Fig. 5). Sterile work is therefore
required in such experiments.

2.2. Cell's own ions/molecules: leaking out of the cell

Due to electroporation, plasma membrane permeability increases
and not only exogenous substances are transferred into the cell interior
but the cell's own components, ions and molecules such as ATP, leak out
of the cell to the cell's surroundings [245], which has led to numerous
applications in the food industry for the extraction of juices and other
valuable compounds, as reviewed in [3-5]. Electroporation can also be
detected by detecting the efflux of cell constituents.

2.2.1. Extraction of biomolecules

Electroporation can also be detected by the efflux of biomolecules
(e.g. proteins, nucleic acids, pigments, lipids and sugars) from cells
into the surrounding medium [3-5].

Fig. 5. Gene electrotransfer of a green fluorescent protein (GFP) encoding plasmid: CHO cells that were successfully electrotransfected were detected with a fluorescence microscope. With
light microscopy (A), all the cells are visible, whereas with fluorescence microscopy (B) only transfected cells are visible. GFP was excited with EX488 nm and fluorescence was collected at
EM525/50 nm. Cells were pulsed with 8 x 5 ms, 700 V/cm, 1 Hz and allowed 24 h for gene expression. The scale bar in A) represents 50 pm.
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Overall protein release after electric pulse application has been
monitored spectrophotometrically in bacteria [246], yeast [16,247] and
microalgae [248]. Moreover, the release of active protein enzymes such
as glutathione reductase, alcohol dehydrogenase, 3-phosphoglycerate ki-
nase, hexokinase and proteases has also been detected spectrophotomet-
rically [16,247,249]. The efflux of specific intracellular proteins has also
been monitored by fluorescence detection [250,251] or polyacrylamide
gel electrophoresis (SDS-PAGE) and Western blotting [248,250,252].

During electroporation, nucleic acids (plasmid DNA and RNA) are
released from bacterial cells and can be detected by anion exchange
chromatography or gel electrophoresis [250,253].

Various other compounds such as pigments (e.g., chlorophyll a and
b, carotenoids) [254,255], oils [256], carbohydrates, proteins and
phenolics [257] can be extracted from microalgae in the process of
electroporation.

Electroporation can also lead to electroextraction of components
from plant tissues, such as fruit [258,259] and vegetables [259,260],
reviewed in [5,261]. These detection methods can however be cell/tis-
sue type specific, or at least dependent, so they may not necessarily be
transferable to other cell/tissue types. Other drawbacks of these
methods are that additional detection methods are required, they can
be time consuming and are not necessarily very sensitive.

2.3. Physical and chemical methods
2.3.1. Conductivity and impedance measurements
Electroporation causes cell membrane permeabilisation and an

immediate increase in membrane conductivity and, consequently,
affects the measured impedance of the cell suspension or tissue (it is

Pulse generator

decreased). Measuring the passive electrical properties of cell mem-
branes can therefore be used for electroporation detection [262,263].

Impedance is a complex ratio of the voltage to current in an alternating
current circuit and it takes into account the contribution of both resistive
and capacitive components. From impedance measurements we can ex-
tract both the conductivity and resistivity of the sample. Impedance mea-
surements are performed by inducing a known current flow through the
sample while measuring the resulting voltage, or vice versa [262], see
Fig. 6.

During an electroporation pulse, the conductivity can be estimated
by dynamic conductivity measurements from simple current-voltage
recordings [220,264-266]. It has been shown that a rapid increase in
conductivity of cell suspensions due to the formation of pores is
followed by a slow increase in conductivity [264,267]. The conductivity
increase due to electroporation can be best seen in dense cell suspen-
sions and tissues in which cells represent a large part of the sample vol-
ume and the resolution of current measurements is increased [264,265].
Before and after electroporation, the electrical properties of cells can
also be determined by applying an alternating current signal at a specific
frequency, and the voltage is measured [152,268]. At lower frequencies,
the membrane conductivity increase due to electroporation causes a
drop in impedance magnitude and allows current to flow through the
electroporated cell. At high frequencies, current already flows freely
across the membrane in non-porated cells. High frequencies are there-
fore not suitable for electroporation detection, and frequencies below
10 kHz are used to detect electroporation [262]. Some studies have per-
formed multifrequency measurements (electrical impedance spectros-
copy, EIS). However, this method is less suitable for recording fast
changes in membrane properties since it requires a long measuring
time compared to an EP pulse [28,269,270]. Electroporation can also
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Fig. 6. Schematic presentation of common setup in electroporation applications for measuring the conductivity before and after the pulse using a small signal with a tetrapolar
configuration. Source: © 2016 Springer International Publishing. Castellvi, Q., Mercadal, B., and Ivorra, A. (2016). Assessment of Electroporation by Electrical Impedance Methods. In
Handbook of Electroporation, D. Miklavcic, ed. (Springer International Publishing), pp. 1-20 [262]. Reprinted with the permission of Springer International Publishing AG.



174 T. Batista Napotnik, D. Miklav¢ic / Bioelectrochemistry 120 (2018) 166-182

be monitored by time domain methods such as time domain reflectom-
etry (TDR) [271,272] and time domain dielectric spectroscopy (TDDS)
[273,274] in which the reflected signal that contains information on
the electrical parameters is measured and converted into the frequency
domain by a Fourier transform. Electrical impedance tomography (EIT)
[275] and magnetic resonance electrical impedance tomography
(MREIT) [276] can be used for spatial conductivity distribution. Electro-
poration can be also monitored by microwave dielectric spectroscopy
[277].

However, after the electroporation pulse, impedance measurements
are affected not only by membrane conductivity changes due to electro-
poration but also by leakage of intracellular contents (ions) into the sur-
rounding medium (resulting in a conductivity increase), Joule heating in
a highly conductive medium (conductivity increase) and by cell swelling
(conductivity decrease) [220,265]. These processes all influence imped-
ance measurements and mask the membrane conductivity increase
due to electroporation. This can lead to erroneous results of the extent
of electroporation and difficulties in electroporation detection.

2.3.2. Voltage clamp techniques

Voltage clamp techniques enable direct measurements of mem-
brane currents by clamping a constant voltage across the cell membrane
and simultaneously measuring the transmembrane current in single
cells or membrane patches. Changes in the membrane conductance
can thus be observed [278]. By applying a ramp or rectangular voltage
steps to the membrane before and after the electroporation pulse, the
breakdown threshold and membrane conductance change can be mon-
itored [279,280]. Electroporation-induced changes in membrane con-
ductance can be evaluated from current-voltage (I-V) curves before
and after electroporation. It is one of the fastest (with ps resolution)
and most informative methods of analysing changes in membrane per-
meability [279,281].

vVoltage clamp techniques were initially developed as a tool for
monitoring changes in currents through ion channels and utilises
clamping at a physiological voltage range, usually from around — 60
to +40 mV [282]. Electric pulses for electroporation are therefore de-
fined as supra-physiological membrane potential pulses, with a
magnitude of 300 mV or higher [283,284]. This poses a significant
problem, since such high voltages can damage the voltage clamp
amplifier and cause saturation or recording artefacts, and additional
electrodes for delivering the EP pulse are needed, especially in the
case of short (ns) pulses of higher electric fields (tens of kV/cm)
[281].

In addition to planar lipid bilayer experiments [285-288], various
methods of voltage clamp techniques have so far been used for studying
electroporation in vitro. A classical, two-electrode voltage clamp
technique (a double vaseline gap modification) has been used to observe
the effects of electric pulses on skeletal muscle cell membrane both
during and after exposure to the electrical pulse and moreover, it enabled
pulse-induced electroporation (or “leakage”) current to be distinguished
from ionic channel currents [278,279,283]. In these experiments,
transmembrane potential threshold for EP, a heterogeneous population
of pores, two-phase resealing dynamics and the amplitude and duration
effect on EP were observed.

In most other experiments, a patch clamp technique in various con-
figurations (cell-attached, outside-out, and whole-cell) has been used
[10,76,188,286,289-299]. The advantage of a patch clamp over a classi-
cal voltage clamp is the use of a single electrode (in a glass micropipette)
instead of two (in a two-electrode voltage clamp), which makes mea-
surements simpler, and, moreover, it provides the ability to measure
transmembrane currents at small patches of membrane. However,
since the distribution of pores is highly dependent on the spatial
position in an electric field [1,34] whole-cell configuration recording
currents over the membrane of the entire cell is advantageous. Patch
clamp techniques have been used to determine thresholds of EP and
irreversible EP, kinetics of pore expansion and resealing [293,294],
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Fig. 7. Patch clamp recording in studies with nanosecond electric pulses: Nanosecond
pulsed electric field (nsPEF) exposure of individual cells attached to a glass cover slip.
NsPEF was delivered by a pair of electrodes (E1, E2) made of 125-um diameter tungsten
rod. These electrodes were placed symmetrically on the sides of the selected cell
(center). Cells chosen for exposure or sham exposure were situated out of large cell
clusters and showed no visible signs of damage or deterioration. A glass micropipette
(MP) for patch-clamp recording was brought in contact with the exposed cell after
nsPEF exposure. Source: © 2007 Elsevier. Reprinted from Pakhomov, A.G., Shevin, R.,
White, J.A., Kolb, J.F.,, Pakhomova, O.N,, Joshi, R.P., and Schoenbach, K.H. (2007).
Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch.
Biochem. Biophys. 465, 109-118 [76], with the permission of Elsevier.

differences in EP in cell types [10,76,286], EP in plants [296-298], char-
acteristics of nanopores after nsP [10,29,76,188,290-292], the inhibi-
tion effect by electric field reversal using nanosecond electric field
oscillations [289] and poration by subnanosecond electric pulses [295].
In nsEP studies, high voltages of the porating pulse can damage the
patch clamp setup or tight, gigaohmic seal between the cell membrane
and the micropipette (“gigaseal”), all of which can lead to the produc-
tion of artefacts in the recording currents [10,281]. This can be avoided
by establishing the patch after nsEP pulsing [10,29,76,290], and Fig. 7,
however, when using slightly lower voltages than usual in nsEP studies,
the gigaseal can withstand pulsing and effective patch clamp recording
is possible [29,188,291,292].

2.3.3. Cell swelling

One of the physico-chemical effects of electric pulses, cell swelling,
can also be used to detect electroporation. Swelling occurs due to the os-
motic imbalance generated by the leakage of ions and small molecules,
which is followed by water influx, which is the primary cause of cell
swelling [30,56,300]. There are four main stages of cell swelling after
electric pulse application: 1. electroporation opens pores that allow
the passage of small ions; 2. equilibration of intra- and extracellular
Na™, K™, Cl~ ion concentrations by diffusion through pores or other
structures; 3. during equilibration, osmotically driven water influx to
the cell induces cell swelling; 4. when ion concentration gradients
reach zero, water influx decreases until pores close. lons afterwards
re-establish concentration gradients or, if this is no longer possible,
the cell ruptures [30]. Swelling occurs rapidly after plasma membrane
electroporation [30,301] but if the cell survives swelling, cell size is reg-
ulated back to initial values by the extrusion of osmolytes in less than
ten minutes [301]. Nevertheless, swelling has been proven to be a reli-
able method of determining the electroporation extent [30,56,104,220,
301-303], even for nanosecond pulses that open pores too small for
dye molecules such as propidium iodide [30,56]. The method is simple
and only requires use of light microscopy. Swelling has been reported
to be dependent on pulse field intensity [104,220,302,303] and other
pulse parameters such as number and repetition rate [30]. Swelling
after electric pulse application is strongly dependent on buffer osmolar-
ity: it is most prominent in a hypotonic buffer [300,301,304]. Moreover,
by observation of swelling in buffers containing different sugars and
PEGs, electropore size can be determined [56].
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2.4. Other methods

Other methods have also been used to detect electroporation in var-
ious cells and tissues. Through the decades of research in the field of
electroporation, scientists have striven to visualize pores that emerge
after electric pulse application. Since the pores are mostly smaller than

the resolution of light microscopy, there have been a few attempts to
observe the pores with electron microscopy. However, volcano shaped
openings in freeze-fractured samples of erythrocytes [305] were later
argued to be experimental artefacts — haemolysis pores induced by a
secondary effect of cell swelling [306]. Other studies have revealed
areas with rough structure on the membranes of melanoma xenografts

Table 1
Overview of all the methods with their advantages and drawbacks, together with some references in the last column.
Detection Compounds Advantages Drawbacks References
method
Nucleic acid Propidium iodide, - Significant fluorescence enhancement upon « Toxic, long incubations have to be avoided due to [7,8,15,17,50,53,68,81,96,188]
binding ethidium bromide, binding to DNA cytotoxicity
fluorophores  ethidium « No need to wash before detection « Not suitable for detecting nanopores after nsEP
homodimer-1, « Suitable for fluorescence microscopy application
YO-PRO®-1 (real-time monitoring in individual cells), « Not the most sensitive
lodide, SYTOX® microplate readers, and flow cytometry (for
Green average population response)
« Also in vivo experiments.
Small Lucifer yellow, « Suitable for spectrofluorometers and « No fluorescence enhancement [15,75,108,109,114,116,123]
non-binding  calcein fluorescence microscopy (after washing) « Washing of cells before detection needed
fluorescent « For transdermal delivery « Time consuming - not for real-time observations
molecules * AM ester form for studying efflux of the dye « Leakage due to incomplete resealing of the

out of the cell
« Detection of vesicle poration after nsEP

Dextrans 3-2000 kDa « Suitable for fluorescence microscopy, flow
dextrans, labelled  cytometry and spectrofluorometry
with fluorophores < For transdermal delivery
« For estimating pore size and threshold as a
function of molecular size

Quantum dots « High photostability, quantum yield and a large
and Stokes shift
fluorescent « Resistant to quenching
nanoparticles « Suitable for fluorescence microscopy

Ions and Fura-2, fluo-3, « Very sensitive, also suitable for nsEP
fluorescent calcium green, experiments (especially TI™)

ion indicators indo-1, FluxOR™ < Ratiometric measurements
«Suitable for fluorescence microscopy, or
spectrofluorometry

Annexin V FITC-annexin V « Sensitive
« Also suitable for nsEP experiments
« For fluorescence microscopy and flow

cytometry
Colour stains Trypan blue, « Can be used with simple light microscopy
phenosafranine,
erythrosine B
Magnetic « After delivery of magnetic nanoparticles, cells
nanoparticles survive and can be transplanted to organisms
« In vivo detection possible
Cytotoxic Bleomycin, « Sensitive
compounds cisplatin « Can be used in vitro and in vivo
DNA and RNA « Suitable for fluorescence microscopy and flow
cytometry

« In vitro and in vivo

Extraction of Proteins, nucleic « Biological species-dependent (can be an
biomolecules acids, pigments, advantage or drawback)
lipids, sugars

Conductivity and « In vitro and in vivo
impedance
measurements
Voltage clamp « Very sensitive
techniques » With high time resolution
« Single cell observation
Cell swelling « Can be used with simple light microscopy

« Very sensitive
« Also suitable for nsEP experiments

membrane in the working step or dilution due to
adding medium to soon
« Possible quenching with metal ions

« Not suitable for detecting nanopores after nsEP [49,52,119,144,151,155,156]
application
« May be toxic [21,162-164]

< Aggregation in cytoplasm after EP

« Increased pulse duration and intensity required for

delivery

« Ca®™ can also be released from internal stores or [20,63,174,175,188]
pass the plasma membrane via calcium channels or

more complex pathways, which can all contribute to

false positive results

« Not directly related to membrane permeability for

larger molecules of interest

« With long incubations might overlap with apoptosis [22,96,188,190,191]
detection

« Low sensitivity and contrast [23,197,199-201]

« Toxic, long incubations have to be avoided due to

cytotoxicity

« Not suitable for detecting nanopores after nsEP

application

« Require additional staining protocols or the use of ~ [24,205,206,208,211]
magnetic resonance imaging or magnetic force

microscopy

« Time consuming, indirect observation of [25,26,220,222,224]
electroporation

« Toxic

« Time consuming [27,234,235,238,242]
« Require sterile work when detected by GFP

expression

« Not sensitive (gene electrotransfer is a complex

process, depending on different conditions and not

easy to achieve)

« Not sensitive [246,249,256,259,260]
« Requires additional detecting methods

« Time consuming

« Biological species- dependent

« Not specific [152,220,264,265,271,273]
« Not directly related to membrane permeability for

larger molecules of interest

« Require equipment for electrophysiology and a [10,278,279,286,296]
skilled expert

« Only single cell observation

« Strongly dependent on experimental buffers [30,56,300,301,303,304]
« Cell volume regulation mechanisms/dynamics need

to be considered
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and erythrocytes without pore-like craters [307], or concave-shaped
pores in irreversible electroporation ablated tissues [308]. However,
the techniques for sample preparation in electron microscopy are very
aggressive and can affect metastable structures in a cell membrane
[309], leading to possible artefacts. Recently, using total internal
reflection fluorescence microscopy (TIRF), it was shown to be possible
to detect and visualize individual electropores in planar droplet inter-
face layers in real time by detecting the fluorescent signal proportional
to the flux of calcium [12] or potassium ions [310] flowing through a
pore (by exploiting optical single-channel recording). Pore dynamics,
stochastic appearance and disappearance of pores, diffusion through
pores, interaction between electropores, and fluctuations in pore radius
have been estimated with TIRF. However, there are still limitations to
this method: direct measurement of pore diameter is not possible
since the detected cloud of ions is larger than the pore itself, and diffrac-
tion and time resolution limit the detection of events on a smaller time
and space scale [12,310].

Another goal in electroporation studies has been to separate
electroporated cells from non-electroporated. This can be done by the
use of dielectrophoresis (DEP) in microfluidic devices [13,311-313].
Electroporated cells change their geometrical and electric properties,
which has a strong influence on the behaviour of cells when exposed
to DEP. This allows separation of non-porated cells from porated ones
and even reversibly- and irreversibly-porated cells [13] by choosing
the proper frequency for DEP.

There are many other methods of detecting electroporation but they
are not often used, such as second harmonic generation imaging [314,
315], ultra-weak light emission (endogenous biological chemilumines-
cence) detection for assessment of electroporation-induced lipid perox-
idation [316,317] or confocal Raman microspectroscopy to investigate
the effect of pulsed electric fields on the chemical composition of
membrane proteins and lipids [318,319]. Some methods are avoided
for safety reasons, such as cell uptake of radioactive isotopes [320].
Several other techniques have been specifically developed or modified
for detecting electroporation in microorganisms such as the selective
medium plating technique or Fourier transform infrared spectroscopy
(FTIR), and food tissues, such as acoustic tests, and are more thoroughly
described elsewhere [321,322]. A concise overview of all the methods is
given in Table 1.

3. Conclusion

The number of researchers contributing to the development of the
field of electroporation is increasing every year. They search for new ap-
plications, seek to optimize process parameters and to elucidate the
mechanisms of this phenomenon. However, most studies begin with
the detection of electroporation and/or determination of the extent of
membrane electroporation in specific conditions. This can be done by
using one of the numerous methods of detection that have been devel-
oped over the decades of EP research. However, they all have advan-
tages and disadvantages, considering the available equipment and
experimental conditions used. This review describes methods for the
detection of membrane electroporation in a way that is intended to
help scientists to choose the most suitable one for their specific studies.
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