Journal of Interventional Cardiac Electrophysiology (2019) 55:251-265
https://doi.org/10.1007/510840-019-00574-3

MULTIMEDIA REPORT m

Check for
updates

Irreversible electroporation for catheter-based cardiac ablation:
a systematic review of the preclinical experience

Alan Sugrue'® - Vaibhav Vaidya' - Chance Witt' - Christopher V. DeSimone' - Omar Yasin - Elad Maor? -
Ammar M. Killu" - Suraj Kapa' - Christopher J. McLeod' - Damijan Miklav¢i¢® - Samuel J. Asirvatham’

Received: 9 March 2019 / Accepted: 26 May 2019 /Published online: 3 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Introduction Irreversible electroporation (IRE) utilizing high voltage pulses is an emerging strategy for catheter-based cardiac
ablation with considerable growth in the preclinical arena.

Methods A systematic search for articles was performed from three sources (PubMed, EMBASE, and Google Scholar). The
primary outcome was the efficacy of tissue ablation with characteristics of lesion formation evaluated by histologic analysis. The
secondary outcome was focused on safety and damage to collateral structures.

Results Sixteen studies met inclusion criteria. IRE was most commonly applied to the ventricular myocardium (n = 7/16, 44%)
by a LifePak 9 Defibrillator (n = 9/16, 56%), NanoKnife Generator (n =2/16, 13%), or other custom generators (n = 5/16, 31%).
There was significant heterogeneity regarding electroporation protocols. On histological analysis, IRE was successful in creating
ablation lesions with variable transmurality depending on the electric pulse parameters and catheter used.

Conclusion Preclinical studies suggest that cardiac tissue ablation using IRE shows promise in delivering efficacious, safe
lesions.

Keywords Cardiac ablation - Irreversible electroporation - Pulsed electric field - Atrial fibrillation - Arrhythmias - Catheter
ablation - Translational studies

Abbreviations SVC  Superior vena cava
CA  Coronary arteries VF Ventricular fibrillation
DC  Direct current

ECG Electrocardiogram

IRE  Irreversible electroporation
PV Pulmonary vein

RF Radiofrequency

1 Introduction

Since it was first performed in 1969, cardiac ablation has
experienced numerous innovations and has evolved immense-
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of supraventricular tachycardia in patients with accessory
pathways and pre-excitation syndromes, with its success in
patients with refractory arrhythmias sparking vast growth
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recurrence of arrhythmias, drove physicians and engineers to
both develop and investigate alternative energy modalities.
This ultimately paved the way for radiofrequency (RF) ener-
gy, currently the most commonly used energy source [11, 12].
RF creates lesions by resistive heating of tissue and subse-
quent heat conduction to deeper tissue. While reasonably ef-
ficacious, it can be associated with undesirable effects to vital
structures, stemming from its thermal nature of action, not
only on the applied tissue but also to vital collateral structures.
In particular, thermal heat during ablation with RF is respon-
sible for injury to the esophagus (which predisposes for atrio-
esophageal fistula formation) [13, 14], phrenic nerve damage
[15], and formation of coagulum/thrombus with subsequent
risk for thromboembolism and both overt [16] and silent ce-
rebral infarcts/lesions [17, 18]. Cryothermal ablation is anoth-
er widely employed ablation modality that is contrastingly
different to RF. It ablates tissue by removing heat which re-
sults in tissue cooling and ice formation [19]. However,
cryothermal ablation, like RF, is also associated with compli-
cations including esophageal fistula [20], pulmonary vein
(PV) stenosis [21], phrenic nerve palsy [22], and potential
lung hemoptysis [23]. Although both these energy sources
for ablation are largely efficacious, there has been a desire to
try alternative ablation energies to improve ablation safety.
The emergence, or somewhat resurgence, of DC has seen
growth in its application in the preclinical arena as a means for
creating ablation lesions via irreversible electroporation (IRE)
of tissue. The use of DC in a pulsed form creates a local
electric field which affects the lipid bilayer permeability of
the cellular membrane inducing the formation of nano-scale
defects or pores which leads to the permeabilization of cells.
Depending upon the electric pulse delivery settings (e.g.,
pulse duration, voltage, frequency), this can be reversible,
meaning the cell can survive because of the re-establishment
of cell membrane integrity and electrical homeostasis, or irre-
versible leading to cell death [24]. IRE is a growing, well-
established FDA approved treatment modality for solid tu-
mors [25-28] and was recently approved for the treatment of
pancreatic cancer [29]. It is an alluring method for cardiac
ablation, particularly when compared to RF, as it may create
ablation lesions without the consequences of thermal damage
and enable preservation of surrounding collateral structures
[30, 31]. With the potential advantages of IRE over current
ablation modalities, there has been considerable growth in
preclinical animal publications and very recently, there was
publication of the first in human acute data [32].
Considering this growth and recent translation to humans,
we sought to conduct a systematic review of current preclin-
ical animal studies employing cardiac IRE. This review aims
to synthesize and provide an update on the efficacy and safety
of cardiac IRE with the ultimate goal of helping optimize
future preclinical experiments and ablation approaches.
Also, it will help identify current knowledge gaps which could
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serve as a vehicle to usher increased translation from preclin-
ical animal studies to human clinical trials.

2 Methods

The review methodology was pre-specified and documented
using SYRCLE’s (Systematic Review Centre for Laboratory
Animal Experimentation) systematic review protocol for ani-
mal intervention studies [33] and was performed in line with
the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyze) statement [34].

2.1 Search strategy

Preclinical studies on the use of cardiac IRE as an ablation
modality were identified by comprehensive searches using
three sources (PubMed, EMBASE, and Google Scholar); we
used the search components “cardiac,” “irreversible electro-
poration,” “ablation,” and “animal” (for full search strategy
see Supplemental Table 1). The literature was reviewed up
to March 1, 2018. No limits were applied to language.
Additional citations were assembled from the reference lists

of related papers and review articles.
2.2 Study selection

After removal of duplicates studies, two investigators (A.S.
and V.V.) independently screened all titles and abstracts to
identify studies meeting the inclusion criteria. Studies were
included if it was an animal model (in vivo or ex vivo) and if
the study met > 1 of the following criteria: (1) assessed the
effect of IRE on cardiac tissue (either myocardium, nerves,
ganglia); (2) evaluated the effect of IRE on collateral cardiac
structures (phrenic nerve, esophagus, vagus nerve); (3) report-
ed safety outcomes on cardiac IRE application. Meeting ab-
stracts were not included in this review. Full text of all poten-
tially eligible studies was retrieved and independently
assessed for eligibility by two investigators (A.S and V.V)
with disagreements resolved by consensus.

2.3 Outcomes assessed

The primary outcome assessed was lesion formation (size and
transmurality) on histology. Secondary outcome included ab-
lation safety through/by evaluating/assessing/observing dam-
age to collateral structures.

2.4 Data abstraction
Study characteristics were extracted by one reviewer (A.S.)

and checked for inconsistencies by a second reviewer (V.V.),
with disagreements resolved by consensus. For each study, we
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extracted data on a standardized extraction form which includ-
ed the animal model used, type of tissue targeted, source of
high voltage pulses, type of ablation device used (including
electrode size, spacing, shape), high voltage delivery (or
pulsed electric field) parameters (pulse duration, pulse fre-
quency, number of pulses, voltage applied), as well as biblio-
graphic details (1st author, year, title, journal). If data were
presented graphically only, we extracted data using a digital
screen ruler, capable of measurement to 0.1 mm.

2.5 Quality assessment

We employed the ARRIVE checklist [35] to assess methodo-
logical quality and bias. The ARRIVE (Animal Research:
Reporting of /n Vivo Experiments) guidelines are intended to
improve the reporting of research using animals and consists
of a checklist of 20 items describing information that all sci-
entific publications should include. Each study was given a
quality score out of a possible total of 20 points, and the group
median was calculated. Two independent investigators (A.S.
and V.V) performed a quality assessment of all included stud-
ies and resolved disagreements by consensus.

2.6 Statistical analysis

Owing to considerable heterogeneity in the reported methods
and data, a meta-analysis was not feasible. As a result, no
statistical examination was performed or formal testing of bias
across multiple studies.

3 Results
3.1 Study characteristics

From 68 potentially eligible studies, 23 were retrieved for full-
text evaluation after screening citations by title and abstract,
and subsequently, 16 studies met the inclusion criteria and
were included in this review (Fig. 1) [36-51]. All studies were
interventional cohort studies, and 6 (38%) studies specified a
control group. In total, 171 animals were studied with swine as
the most common preclinical model (n=10/16, 63%). Five
were acute studies, 10 were chronic survival studies, and
one study involved both acute and chronic models. High volt-
age pulses for IRE was applied most commonly to the ven-
tricular myocardium (n = 7/16, 44%) followed by atrial tissue/
pulmonary veins (n = 6/16, 38%), coronary arteries (n=1/16,
6%), esophagus (n=1/16, 6%), phrenic nerve (n=1/16, 6%),
and cardiac ganglia (n=1/16, 6%). All preclinical studies in-
volved healthy animal models. Further characteristics of these
16 studies are highlighted in Table 1.

3.2 Quality of studies

According to the ARRIVE guidelines, the median score
for quality of studies was 18 (range 14-20). At times
although it was not explicitly stated what the primary
and secondary outcomes of the study were, this could
be generally inferred.

3.3 Electroporation: delivery and protocols

A total of 320 ablations were performed across the 16 studies
(Table 2), with further more detailed information provided in
Supplemental Table 2. High voltage electric pulses were de-
livered by a LifePak 9 Defibrillator in 9 studies (n=9/16,
56%), the NanoKnife generator in two studies (n=2/16,
13%), and other generators in five studies (n=15/16.31%).
Fourteen different catheter types were used for ablation across
16 studies, with six studies testing two or more different cath-
eters. The most common catheter type was a circular multi-
electrode ring catheter (n=7/16, 44%), followed by a linear
ablation catheter (n =4/16, 25%), and other custom prototype
catheters (5/16, 31%). As there are no commercially devel-
oped catheters for the specific delivery of electric pulses, most
studies employed currently used catheters for radiofrequency
ablation delivery which were modified as needed or devel-
oped new prototype catheters (e.g., balloon or linear
catheters).

There was significant heterogeneity regarding both electro-
poration protocols and reporting of protocols across all stud-
ies. Pulse duration and number of pulses was consistently
reported and varied from 20 us to 6 msec and 1-200, respec-
tively. Pulse repetition frequency was rarely reported, with 13
studies (81%) not reporting this. In the three studies that it was
published, the frequency ranged between 1 and 5 Hz. The
amount of energy delivered was heterogeneous across all stud-
ies with many different units reported, with 9 (56%) studies
reporting Joules, 4 (25%) voltage, 2 (13%) electric current,
and 1 (6%) study did not indicate the specific parameters of
electric pulses applied. Two studies reported the voltage-to-
distance ratio (V/cm).

3.4 Lesion histology (Table 3)
3.4.1 Ventricular myocardium

A total of six studies applied high voltages pulses to the ven-
tricular epicardium and one study to the endocardium. When
applied to ventricular epicardium in acute studies, changes
were not observed macroscopically. Chronic survival studies
showed that the delivery of energy to the epicardium often
resulted in the formation of a white lesion that was sharply
demarcated from the surrounding tissue. There was some pur-
ple discoloration (bruising) when a linear suction device was
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Fig. 1 PRISMA statement

)

Records identified through
database searching
(n=68)

Additional records identified
through other sources
(n=0)

Identification

[

)

Records after duplicates removed
(n= 65)

Eligibility Screening

Included

used. Histologically, destruction of cardiac myocytes and con-
nective tissue with loose collagen fibers remained. The higher
the energy, i.e., higher amplitude of pulses or longer pulses or
greater number of pulses applied, the larger the lesion and the
more likely it was transmural, but variations in protocol deliv-
ery and inconsistency in reported “energy units” prohibit com-
parison analysis.

3.4.2 Atrial tissue

Six studies have applied high voltage pulses to atrial tissue.
When IRE was applied in the superior vena cava (SVC), 2 out
of 3 studies (66%) observed a grossly visible lesion. When
applied to the pulmonary vein tissue, this was not the case, and
no acute gross macroscopic changes were identified. On his-
tology, decellularization was observed with only collagen
scaffolding remaining. Similar to the ventricular epicardium,
the higher the energy (higher amplitude, greater number of
pulses), the greater the lesion size and transmurality, but again
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(n=42)
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Full-text articles assessed Full-text articles excluded,
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| 1 editorial

3 not reporting enough to
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qualitative synthesis

(n=16)

A4

Studies included in
systematic review
(n=16)

variations in protocol delivery and reported energy units pro-
hibit comparison analysis.

3.4.3 Coronary arteries

In the two studies that reported on high voltage pulses to the
coronary arteries (CA) this resulted in varying degrees of in-
timal hyperplasia. Although mild narrowing was noted, there
was no significant stenosis observed, and the vessel was gen-
erally unaffected.

3.4.4 Esophagus

Direct application of high voltage pulses to the esophagus was
performed in two studies. The first study noted that the lesions
were restricted to the muscle layer; the luminal epithelial layer
and the lamina muscularis mucosae had no pathological
changes. A more recent study by Neven showed that direct
esophageal IRE resulted in self-limiting vesicles on the non-
keratinizing squamous epithelium at the ablation site. After 7-
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and 60-day follow-up, the epithelium normalized entirely.
There were no signs of ulceration or other adverse reactions
at both day 7 and day 60.

3.4.5 Ganglia

IRE of cardiac ganglia has been shown in one study to be
relatively efficacious. In this study, Madhavan was able to
successfully target and ablate ganglia in five out of six dogs
(83%).

3.4.6 Safety/adverse events

Only one study observed a significant complication related
directly to the delivery of cardiac IRE (Table 4). In this event,
inadvertent movement of the catheter over the ventricle during
electric pulse delivery resulted in ventricular fibrillation (VF)
and early demise (delivery of energy was not performed with
synchronization). Ten studies (62%) reported no adverse
events with either delivery of IRE or the procedure performed.
In the other five studies, there were adverse events reported
which were related to the procedures itself rather than IRE
delivery. There was no suggestion or reported collateral dam-
age to surrounding cardiac structures.

4 Discussion

As IRE gathers considerable interest as an alternative means to
perform cardiac ablation, this systematic review of published
preclinical data provides critical synthesis and insight into its
efficacy and safety. This review is vital in highlighting knowl-
edge gaps, enabling guidance for future preclinical studies and
ultimately helps in the progression from preclinical to clinical
studies and practice.

4.1 Effectiveness

Overall, IRE can be successfully applied to cardiac tissue
and achieve the goal of creating an ablation lesion. Many
of the ablation lesions were transmural; however, defin-
itive recommendations on the optimal IRE parameters for
creating a transmural ablation lesion are not possible
based on current published studies given the significant
heterogeneity in reporting and parameters applied.
Further, typical defibrillators do not control the applied
voltage, but the total applied energy, which is likely to
impact repeatability and reproducibility of studies. Future
studies should be meticulous in their reporting of these
parameters (Table 5). The most eloquent study that pro-
vides insight was performed by Zager et al., where dif-
ferent protocols were applied to rat myocardium (final
study included 45 rats) which enabled a direct
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comparison of effects of different parameter changes.
While this study is beneficial, we acknowledge that
performing this type of experiment on larger animals
(canine or swine) would be prohibitively expensive.
That said, although common knowledge amongst the
electroporation community, this study shows that use of
high voltage, longer pulse duration, lower pulse frequen-
cy, and a greater number of pulses results in increased
tissue damage (and vice versa). However, it ought to be
noted that smaller animals may not be as readily trans-
lated to parameters suited for larger animals, and impor-
tantly humans. While overall we are unable to provide a
meta-analysis on efficacy, it is clear that although differ-
ent studies employ different devices and generators, IRE
can create ablation lesions and this alone provides im-
portant support and rationale for continued research and
study of this ablation modality.

4.2 Safety

The delivery of IRE has been shown to cause both lethal and
non-lethal cardiac arrhythmias [52—-54]. In our systematic re-
view, we present a large amount of preclinical animal data that
suggests that direct cardiac IRE delivery is reasonably safe,
with only one lethal arrhythmic event reported across all 16
studies. In this event, inadvertent movement of the catheter
over the ventricle during voltage pulse delivery resulted in VF
and early demise. Importantly, no electrocardiogram (ECG)
synchronization to high voltage electric pulse delivery was
performed. ECG synchronization during pulse delivery is a
critical tool to mitigate lethal arrhythmic risk in ensuring that
the energy is delivered during the absolute refractory period of
the cardiac cycle. For example, the delivery of electrical
pulses can be synchronized with the electrocardiogram via
AccuSync 42, an external R wave triggering device
(AccuSync, USA). The AccuSync 42 detects the R wave of
each individual heartbeat early on the ascending slope of the R
wave and provides a trigger for the device [55]. Currently, the
NanoKnife system delivers a pulse 50 milliseconds after each
R wave [56]. Validation of trigger pulses is performed by a
built-in synchronization algorithm.

Although ECG synchronization is essential, there are sig-
nificant limitations that should be noted. First, it has been
shown to increase the total treatment time [57] and second,
synchronization relies on the occurrence of the R wave and
therefore in patients who have irregular R-R intervals (e.g.,
atrial fibrillation), this will affect the delivery pulse frequency.
Subsequently, this may produce a different effect than predict-
ed or modeled where a consistent delivery of pulses and con-
stant membrane effect is assumed. There is growing interest in
nanosecond pulses, and translation of this safety data to nano-
second pulses is unclear and should not be assumed, and of
course, this requires further evaluation.
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Table 3 (continued)

Collateral
damage

Outcome

Lesion

Histological comments Energy

Gross (macroscopic)

Lesion

Author

Tissue type

(J, unless
stated)

location

Depth

Width

part of the muscular layer. The

epithelium of the mucosa was intact.

Phase 1:

Nil

12-5000

Phase 1:

Madhavan Cardiac

- Ablation with loss of nucleoli
- No damage to surrounding

ganglia Phase 2:

plexus

[40]

- Clusters of 3-4 mm hemor-

myocardium

Phase 2:

rhagic lesions at sites of ab-

lation

- Nuclear disarray and loss of cellular

architecture at 17/23 sites treated

4.3 Cardiac electroporation protocols—time
for standardized reporting

This review demonstrates that there is significant heterogene-
ity with IRE delivery tools, electroporation pulse generators,
and reporting of applied electroporation parameters. The pro-
cess of IRE is strongly dependent upon the pulse parameters
of the delivered electric pulses and therefore to enable repro-
ducibility, uncomplicated comparison across studies, and safe
translation into human studies, the electric parameters should
be described precisely [58]. Standardized terms and reporting
criteria for cardiac IRE are necessary. Most studies included in
this review reported the pulse length and amplitude (“energy”
delivered); however, often there was a lack of reporting of
other vital parameters, such as pulse frequency and a calcula-
tion of the electric field. The pulse frequency is essential as it
affects temperature (with increased pulse frequency there is
less time for heat dissipation between pulses) and the occur-
rence of muscle contraction as well as nerve stimulation
[58-60]. Additionally, as shown by Zager [48], a lower fre-
quency pulse frequency resulted in significant echocardio-
graphic evidence of tissue damage, while the higher frequency
protocols did not demonstrate any significant reduction in
echocardiographic measures. Recently, recommendations for
standardized reporting were published for pulsed electric field
technology in food and biotechnological processes [61], life
sciences/biology [62], and electrochemotherapy [63]. Based
on these recommendations, we suggest that future cardiac IRE
publications report the following parameters in Table 5. This
formalization of reporting will not only strengthen IRE
evidence-based practice and enable solid recommendations,
but will also allow essential outcome comparisons with other
cardiac ablative technologies.

4.4 Future developments

To date, all cardiac IRE testing has occurred in healthy animal
models and there has been one human study published [32].
While this provides a solid foundation for efficacy and safety,
the patients who are most likely to benefit from this new
technology will have diseased hearts. The translation from a
normal to a diseased model will be essential understand elec-
troporation of cells in diseased tissues and other complex en-
vironments. This will be key to its successful use and optimi-
zation in various applications [24]. It is unclear if and what the
differences that occur in the diseased myocardium will be
compared to that of the normal heart. With the many variables
that can alter the electric field distribution and its effective-
ness, future studies should address disease models.

The results of this systematic review should provide the
impetus for the development of specialized IRE delivery tech-
nology. IRE technology, however, poses novel challenges for
device design. Except for a few studies, most of the IRE has
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Table 4 Cardiac IRE adverse
outcomes

Table 5 Key IRE
reporting parameters

@ Springer

Study  Author Adverse outcome
Lavee [39] No adverse events
2 Hong [38] Arching observed with clamp device
3 Wittkampf ~ No adverse events
[47]

4 Wittkampf ~ No adverse events

5 Du Pre [37]  One animal suffered from an episode of fever, presumably due to pericarditis.

6 Neven [41]  No adverse events

7 Neven [42]  One animal had to be euthanized acutely before electroporation applications had been
delivered because of complications caused by failed subxiphoid puncture.

8 van Driel No adverse events

[45]

9 Neven [43]  One animal suddenly developed cyanosis with hemodynamic instability after the end of
the index procedure, =7 h after ablation. At autopsy, no pericardial effusion or
trauma other than the ablation lesions was found. Gross inspection of other organs
also showed no abnormalities.

10 DeSimone No adverse events

[36]
11 Van Driel No adverse events
[44]

12 Zager [48] Three animals died during the surgical and pre-procedural period: one during induction
of anesthesia, one during traumatic intubation and one as a result of laceration of
LAD during resection of the pericardium.

13 Madhavan One dog developed refractory VF during ablation at 5000 pA

[40]

Key elements

* Electric pulse generator

o Commercially available

= Company

= Model

o Prototype

* Bipolar vs monopolar delivery

* Electrode material

* Electrode design

o Shape

o Electrode size

© Number of electrodes

o If more than 1 electrode, electrode
spacing

* Pulse parameters

o Number

o Shape

o Duration

o Frequency (pulse repetition)

o Voltage applied (voltage-to-distance
ratio)

o Current measured
* Electric field distribution (calculations)

* Electrode positioning with respect to
target tissue

been delivered with current or slightly modified cardiac tools
which were not created for the delivery of electric pulses. The
currently available irrigated and non-irrigated catheters for RF
energy delivery may not be ideally suited for electroporation
delivery. Future devices must be compatible with catheters in
a wide variety of configurations and possess steerability.
Further, the electric field intensity and distribution within the
tissue will vary with catheter size and electrode configuration.
Specialized tools would be ideal for better ablation zone mod-
ulation and control of the electric field thereby enabling supe-
rior targeting and ultimately provide a more efficient and safe
technology.

4.5 Limitations

Our study has several limitations that are common to system-
atic reviews. First, included studies are limited to only those
that have already been published, and while a thorough effort
was made with a broad search strategy, it is possible that we
may have missed some relevant studies. Additionally, the
studies retrieved were vastly heterogenous in IRE delivery
protocols, and therefore, it is difficult (if not impossible) to
draw conclusions on the optimal parameters for cardiac IRE
ablation, an area that requires further work and examination
and may ultimately vary depending upon the device and gen-
erator used. Second, all studies have relied on healthy models,
so it is unclear at this stage the impact of IRE on disease
hearts, particular from a safety and efficacy point of view.
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Third, at present, there are no studies with a direct comparison
with other cardiac ablation modalities which will be essential
to show critical differences in this technology.

5 Conclusions

Cardiac irreversible electroporation (IRE) is an emerging ab-
lation modality with alluring potential. This systematic review
shows that IRE can be successfully and safely applied to car-
diac tissue to create ablation lesions. Significant heterogeneity
in the current literature raises the need to follow standard
reporting of IRE parameters. This will lead to further progress
in the field and improve the potential for translation into the
clinical realm for human catheter ablation as we are starting to
see.
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