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Abstract
Manually counting cell colonies, especially those that originate from fibroblast
cell lines, is a time-consuming, eye-straining and tedious task in which
consistency of counting is difficult to maintain. In this paper we present a novel
model-based image segmentation method, which employs prior knowledge
about the shape of a colony with the aim to automatically detect isolated,
touching and overlapping cell colonies of various sizes and intensities. First,
a set of hypothetical model instances is generated by using a robust statistical
approach to estimate the model parameters and a novel confidence measure to
quantify the difference between a model instance and the underlying image.
Second, the model instances matching the individual colonies in the image
are selected from the set by a minimum description length principle. The
procedure was applied to images of Chinese hamster lung fibroblast cell line
DC3F, which forms poorly defined or ‘fuzzy’ colonies. The correlation with
manual counting was determined and the cell survival curves obtained by
automated and manual counting were compared. The results obtained show
that the proposed automatic procedure was capable to correctly identify 91%
of cell colonies typical of mammalian cell lines.

1. Introduction

The reproductive potential of cells undergoing chemical or physical treatment is commonly
assessed by the cell colony formation method. Despite new methods being devised for
viability measurements in mammalian cell systems, a colony-forming ability test is still the
most consistent, relevant and reproducible, especially for cytotoxic studies (Cook and Mitchell
1989). First, a certain number of cells is plated onto petri dishes where each cell that remains
viable after a certain treatment divides and eventually gives rise to a colony of daughter cells;
second, the cells are fixed and stained; third, cell colonies are counted; and finally, the relative
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survival rate is calculated from the number of colonies obtained from treated and untreated cells
(Cook and Mitchell 1989). High cell numbers are required to achieve acceptable statistical
accuracy. Counting cell colonies manually is a time-consuming, eye-straining and tedious
task in which consistent objectivity is hard to achieve. Computer vision methods, which in
many applications have proven to be accurate, reliable, robust and fast, may overcome the
deficiencies of manual counting. The crucial part of automated detection of cell colonies is
image segmentation, by which individual colonies are identified in an image, regardless of their
position, size and intensity. The proper separation of touching and overlapping colonies, often
forming larger clusters, is an especially demanding task. Although significant inter-operator
differences have to be taken into account, a colony detection algorithm is usually judged by
how well it emulates a well-trained, well-rested and motivated human operator.

Various methods have been proposed in the past to segment images of cell colonies.
Under optimal illumination and material preparation, a careful selection of one or more
thresholds, usually assisted by an operator, may extract the colonies from the background
(Corkidi et al 1998). Because clustered colonies cannot be separated by simple thresholding,
a method using thresholding followed by a distance transform was proposed (Mukherjee et al
1995). Region-based methods, e.g. the watershed algorithm, may also separate touching and
overlapping colonies, but require manual interaction (Malpica et al 1997). An operator must
enter a unique seed for each cell colony, which is a task similar to manual counting. An
automated counter being able to identify less-discrete cell colonies typical of fibroblast cell
lines was recently proposed by Barber et al (2001). The method uses the edge information of
the image and a compact Hough transform. This model-based segmentation method, which
employs prior knowledge about the object’s shape, may fail when cell colonies are small or
of low contrast. Other model-based methods recognize objects in an image as instances from
a database of models or as model instances generated on-line. An example of the former
approach, similar to the well-known template matching, is the method of Noordmans and
Smeulders (1998). They approximate the shape of a spot or colony by the Gaussian model
and determine the parameters of the model in two phases. In the detection phase, models
with different parameters are matched to the underlying image and the model that produces a
minimal match error is retained. The match is performed at each image position and only those
models, which match their underlying images better than the models in the neighbourhood, are
kept. In the subsequent characterization phase, the parameter vector of each detected colony
model is refined to reduce the match error.

In this paper we present a novel model-based method for automated detection of cell
colonies, which improves on the approach by Noordmans and Smeulders (1998). To avoid
exhaustive testing of numerous parameter instantiations, a robust statistical approach is used
to estimate the model parameters. To efficiently quantify the difference between a model
instance and the underlying image a novel confidence measure is applied. The identification of
touching and overlapping colonies is improved by employing a global optimization criterion,
based on the minimum description length (MDL) principle (Rissanen 1983). Experiments
were performed, which showed that the proposed method is capable of correctly identifying
isolated, touching and overlapping colonies of various sizes and intensities which are typical
of fibroblast cell lines.

2. Material and methods

2.1. Petri dish preparation

2.1.1. Cell cultures. Transformed Chinese hamster lung fibroblast cells, DC3F (Biedler
and Riehm 1970) were grown in Eagle’s minimum essential medium with Earle’s salts
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(Sigma–Aldrich, UK) supplemented with 10% fetal bovine serum, 2 mM L-glutamine, sodium
bicarbonate, 200 000 IE benzil penicylin and 16 mg gentamicin sulfate. The cell cultures were
grown in an incubator at 37 ◦C in a humidified atmosphere that contained 5% CO2. From
the confluent culture, cell suspension was prepared with 0.05% trypsin solution in Hank’s salt
solution that contained 0.02% EDTA.

2.1.2. Experiments

(a) Preliminary experiment. To test the ability of the automated colony detection procedure
to accurately detect isolated, touching or overlapping cell colonies of various sizes and
intensities, untreated cells were plated in 17 round petri dishes, dimensions (diameter ×
height) 60 × 15 mm (Corling, USA). To study the ability of the method to properly treat
overlapping colonies, high proportions of overlapping colonies were obtained by plating
500 cells in each petri dish. The colonies were grown for 5 days in an incubator under
the conditions described above.

(b) Electroporation. Cell survival was determined after the exposure of the cell suspension to
short intense electric pulses of different amplitudes, a treatment known as electroporation
(Kotnik et al 2000). For this purpose a cell suspension was prepared in SMEM culture
medium (Life Technologies, USA), which is a Spiner modification of Eagle’s minimum
essential medium that does not contain calcium. A 50 µl drop of cell suspension that
contained 106 cells was placed between stainless steel electrodes spaced 2 mm apart. The
train of eight pulses, duration of 100 µs and repetition frequency 1 Hz was employed. The
amplitudes of applied pulses were 0, 80, 120, 160, 200, 240, 280, 320, 360 and 400 V.
Electroporated cells were incubated at room temperature for 30 min to allow the cell
membrane to reseal.

(c) Surfactant C12E8. To study the effect of non-cytotoxic concentration of surfactant C12E8

on electroporated cells, C12E8 was added immediately after electroporation. Cells which
had been only electroporated and cells which had been electroporated and treated with
C12E8 were plated in round petri dishes of 60 × 15 mm dimensions (Corling, USA) at a
concentration of 200 cells per petri dish. A smaller number of cells was plated to reduce
the time of manual counting. The colonies were grown for 5 days in the incubator under
the same conditions described above.

2.1.3. Fixation and staining. In all experiments the growth medium was removed and
colonies were fixed with methanol (Merck, Germany) for 10 min and stained with an aqueous
solution of crystal violet (Sigma–Aldrich, UK) in concentration of 5 mg ml−1 for 10 min. The
stain was removed and the petri dishes were rinsed with water.

2.1.4. Cell survival. Cell survival of only electroporated cells was defined as the number
of cells that survived electroporation with a specific amplitude divided by the number of
surviving cells not undergoing electroporation (0 V). Survival of electroporated cells, to which
C12E8 had been added, was determined as the number of cells that survived electroporation and
treatment with C12E8 divided by the number of cells not undergoing electroporation but treated
with C12E8. Three repetitions were performed for electroporated as well as electroporated and
C12E8-treated cells, yielding altogether 60 petri dishes. To determine the correlation between
automatic and manual count, the cell colonies were counted manually and automatically.

2.2. Hardware

The cell colony detection system was composed of a custom-made homogeneous diffuse
illumination unit to which a petri dish holder was attached (figure 1). A 2/3′′ monochrome
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Figure 1. Cell colony detection system.

Figure 2. Cell colony detection flow chart.

CCD camera (Sony XC-77) with C-mount lens ( f = 50 mm) was installed above the petri dish
and connected to a Pentium III based PC via a frame grabber. The spatial resolution of the
obtained eight-bit images was 512 × 512 pixels.

2.3. Software

The image processing software, implemented in C++, masks the petri dish edge before counting
cell colonies. As the petri dish position is fixed, a simple image masking with a circular region
of interest is applied to each petri dish image. Colonies lying completely under the mask
are discarded from further image analysis, while the colonies that are only partially covered
by the mask are further analysed taking into account only their unmasked part. The flow
chart of the cell colony detection method is presented in figure 2. Only small portions
(90 × 100 pixels) of processed images of cell colonies are shown in order to illustrate the main
steps of the procedure. The method is based on a hypothesis generation–selection principle
(Leonardis et al 1995). Prior knowledge about the shape of a colony is incorporated into a
parametric model. In the hypothesis generation step, a model instance is generated at every
image position, describing a possible colony in the underlying image. Instead of exhaustively
trying out all possible model amplitudes and sizes, a robust statistical approach is used to
estimate these parameters from the underlying image. Next, a confidence measure is used to
verify the obtained model instances. The model instances that pass the verification process
form a set of possible cell models or hypotheses, containing at least one model instance for a
detectable cell colony. Finally, the position, amplitude and size of the model instances in the
set are optimized to better match the underlying image. In the hypothesis selection step, the
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Figure 3. (a) Wireframe representation of a cell colony and (b) corresponding Gaussian model
instance M(x, pi).

minimum description length (MDL) principle (Rissanen 1983) is employed to select a unique
model instance for each colony. Each step in this process is outlined in more detail in the
following subsections.

2.3.1. Cell colony model. A cell colony model incorporates prior knowledge about the shape
of a colony, which is the result of both the mechanism that drives the formation of a colony
and the transfer function of the imaging system. The shape can be well approximated by the
parametric Gaussian model M(x, pi):

M(x, pi) =
{

ai exp
(−2−1 ‖x − xi‖2 /s2

i

) ‖x − xi‖ � 3si

0 otherwise

where x = (x, y) is an arbitrary point in the image, pi = (xi , ai, si) is the parameter vector
consisting of the model’s position xi = (xi, yi), amplitude (intensity) ai, and size si. A specific
example of a model, uniquely defined by pi, is named a model instance. Figure 3 shows the
wireframe image of a cell colony and its corresponding Gaussian model instance.

2.3.2. Model instance generation. The initial values of the amplitude ai and size si of a
model instance positioned at point xi are first estimated. The initial amplitude is simply set to
the intensity value I(xi), while the initial size is defined by using the intensities and intensity
gradients of pixels

si =
{

2−1/2‖x′ − xi‖ ‖x′ − xi‖ � smax

smax otherwise

where smax is the size of the largest expected cell colony and x′ are points equidistant from
xi , ‖x′ − xi‖ = constant, satisfying

I (x′) · w(x′)
w(x′)

= I (xi )

e
.

The weight w(x) is proportional to the image gradient magnitude |∇I (x)|. It decreases
with angle γ (x, pi ), defined by the scalar product between the image gradient ∇I(x) and model
gradient ∇M(x, pi ), normalized by the parameter γg

w(x) = |∇I (x)| exp
(−2−1γ 2(x, pi )/γ

2
g

)

γ (x, pi) = arccos
∇I (x) · ∇M(x, pi)

|∇I (x)||∇M(x, pi)|
.

In the case of the Gaussian model, ∇M(x, pi) depends only on xi, ∇M(x, pi ) ∝ x − xi .



3066 R Bernard et al

From the initial model parameters, a better estimation of ai and si is obtained by a hard
redescender M-estimator (Mirza and Boyer 1993), which is robust against Gaussian noise
and outliers introduced by touching and overlapping colonies. The objective function of the
M-estimator is Tukey’s biweight function (Mirza and Boyer 1993, Meer et al 1991, Zhang
1998) of the difference between a model instance and the underlying image. A downhill
simplex method (Press et al 1992) is employed for its minimization. The scale of the
M-estimator is calculated as suggested by Rousseeuw and Leroy (1987).

2.3.3. Model instance verification. To eliminate model instances matching non-circular
structures, we use a confidence measure o(xi ), which quantitatively expresses the difference
between a model instance and the underlying image. The measure is based on the assumption
that gradient directions at geometrically corresponding points of the image and model instance
are equal only if (a) the centre of the model instance corresponds to the centre of the colony and
(b) both colony and model are circular with monotonically increasing or decreasing intensities.
The confidence measure o(xi ) is

o(xi ) = 1

N

∑
x where

M(x,pi )>0

exp
(−2−1γ 2(x, pi)/γ

2
g

)

where N is the number of points under the model, i.e. points satisfying condition M(x, pi ) > 0.
When a model instance and the underlying image perfectly match, the value of the

confidence measure o(xi) will be 1. In practice, lower values than 1 are obtained because
(a) the colony under the model instance is not perfectly circular, noise is present in the image
and there are numerical gradient calculation errors, and (b) the model instance covers more
than one colony.

After recovering a model instance at each pixel and obtaining its confidence measure, a
verification test is performed to eliminate model instances, which poorly match the underlying
image. First, model instances for which ai < amin and si < smin, where amin and smin are
pre-selected values, are eliminated. Next, a non-maxima criterion is used to eliminate the
model instances whose confidence measure does not represent a local maximum in the two-
dimensional function o(x). The model instances that pass the verification process form a set
of hypotheses containing at least one model instance for a colony.

2.3.4. Model instance optimization. To achieve a better segmentation accuracy, the
parameters of model instances in the set of hypotheses are optimized. The same optimization
routine is used as in section 2.3.2, with the exception that now besides amplitude and size
the model’s position is also optimized using the values estimated in the generation step as an
initial guess. Figure 4 is a simple one-dimensional illustration of the hypothesis generation
part of the algorithm. Suppose that two functions are given (figures 4(a), (d)) and we would
like to obtain the Gaussian model instances at points x1 and x2. The dotted functions in figures
4(b), (c) and 4(e), (f) show the initial model instances obtained in the model generation step,
while the dark solid functions in these images show the model instances after the optimization
step. This example shows that as long as we are close to an object’s centre, the object will be
correctly modelled even if it was only roughly initialized.

2.3.5. Hypothesis selection. To select a unique model instance for a colony in the image
the minimum description length (MDL) principle was employed (Rissanen 1983, Leonardis
et al 1995). Model instances are selected sequentially, according to their contribution to the
criterion function F evaluating their mutual overlap and confidence measure. Let mi be a
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Figure 4. Intensity profile of a Gaussian object (a–c) and two overlapping Gaussian objects (d–f)
with initial (dotted functions) and optimized (dark solid functions) model instances at points x1
and x2.

Boolean variable for model instance i. The value of mi is 1 when a model instance is selected
and 0 otherwise. Already selected model instances compose a vector m̂. The contribution
�F(m̂,mi) of a model instance i to the criterion function F consists of two terms

�F(m̂,mi) =
(

o(xi ) − oK

1 − oK

)
+

(
1 −

(
1 − Vi/V 0

i

)
VK

)
.

The first term denotes the match of the model instance i to the corresponding colony and
is based on its confidence measure o(xi ). The constant oK is the lowest allowed value for the
model instance i to be selected. The second term denotes the volume overlap of the model
instance i with previously selected model instances m̂. V 0

i denotes the whole volume under the
model instance i, whereas Vi denotes the volume under the model instance i not occupied by
previously selected model instances. The constant VK is a pre-selected proportion of volume
overlap.

3. Results and discussion

Two experiments, carried out on images of DC3F cell colonies, were conducted to evaluate the
performance of the proposed automated cell colony detection procedure. First, its ability to
accurately detect cell colonies in the images was examined. Second, the correlation with the
manually counted colonies was determined and the cell survival curves, obtained by automated
and manual counting, were compared. The following image analysis parameters were used
in all experiments: γg = 30◦, smax = 10, smin = 1, amin = 20, oK = 0.25 and VK = 0.7.
The parameter γg has a direct influence on the sensitivity and smoothness of the confidence
measure o(xi). Small values of γg (γg < 10◦) make o(xi) sensitive to partly circular structures
in the image. On the other hand, by using large values of γg (γg > 90◦) some touching and
overlapping colonies may not be detected. Any value of γg between 20◦ and 80◦ can be used,
as the selection in this range does not significantly influence the outcome of colony detection.
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Figure 5. Cell colonies in (a) petri dish number 17 and (b) petri dish number 8.

Parameters smax and smin were set to the size of the largest and smallest expected colony in
the image, respectively, and amin was set to the intensity of weakest contrast colony expected
in the image. Parameters oK and VK depend on maximal expected overlap of colonies in the
image. By selecting lower values of VK and oK, overlapping colonies and colonies whose
shape deviates from the Gaussian shape will be detected.

With the purpose of testing the ability of the automated cell colony detection procedure
to accurately detect cell colonies and to study the shape of DC3F cell colonies in detail,
images of 17 petri dishes containing from 170 to 330 cell colonies (mean = 267) were
analysed. The resulting model instances were manually classified into two classes: the correct
model instances, corresponding to actual colonies, and the false positive model instances,
corresponding to artefacts present in the image. The major sources of artefacts were:
(a) colonies composed of less than 50 cells, (b) colonies with hairy outgrowths, and (c)
traces of the growth medium not completely removed from petri dishes before colony fixation
and staining. This was due to the established routine practice of material preparation, which
paid no special attention to the subsequent automated analysis. Unmasked colonies that had
not been detected by the proposed automatic method were manually located. At each manually
defined location a model was fitted to the underlying image. These colonies were classified as
false negative model instances. The major sources of undetected colonies were (a) isolated,
small and faint colonies composed of little more than 50 cells and (b) heavily overlapped
colonies in colony clusters. The consistent use of 50 cells per colony as a threshold is hard to
meet in practice. Because counting cells in colonies is too labour-intensive, the threshold
is applied indirectly via the appearance of a colony. However, because a small change in
cell number is only slightly reflected in the colony appearance, mistakes around the threshold
are inevitable, regardless of the method applied. Figure 5 shows two typical images of cell
colonies in petri dishes illustrating the wide range of cell colony sizes and intensities that may
appear.

Figure 6 illustrates the distributions of volume overlap, confidence measure, amplitude
and size of all correct, false positive, and false negative model instances. From these
distributions we extracted some global characteristics of the DC3F colonies we had analysed.
The distribution of volume overlap in figure 6(a) shows that colonies were mostly isolated or
overlapped less than 10%. The great majority of heavily overlapping colonies was correctly
identified. The colonies and artefacts that gave rise to false negative and false positive model
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Figure 6. Distributions of over 4500 model instances classified into correct (light grey bars), false
negative (dark negative bars) and false positive model instances (dark positive bars): (a) volume
overlap (%), (b) confidence measure, (c) amplitude (grey levels), (d) size (pixels).

instances were mostly isolated. The distribution in figure 6(b) shows that the number of
false positive and false negative model instances decreases with an increasing value of the
confidence measure. All colonies represented by model instances with high values of the
confidence measure were correctly detected. Similar to the distribution of the confidence
measure, the distributions of amplitudes (figure 6(c)) and sizes (figure 6(d)) show a trend
of false positive and false negative model instances decreasing with increasing amplitude
and size. As expected, high-contrast colonies and/or colonies large in size were reliably
detected. The conclusions we can make from this experiment are that the main source of
false negative model instances are small and faint colonies and colonies whose appearance
deviates significantly from the Gaussian model. If there were no artefacts in the image, many
false negative colonies could be detected by setting lower values of smin, amin and oK. In the
presence of the artefacts the reduction of these parameters would lead to more false positive
colonies.

Table 1 shows the results for the 17 petri dishes in more detail. For each petri dish it
gives the number of manually defined colonies and the rate of correct, false positive and false
negative model instances. It also gives the percentage of model instances selected from the
sets of hypothetical model instances and the average overall time, as well as the times for the
hypothesis generation and selection phases. On average 91.1% of cell colonies were correctly
detected. The highest false positive and false negative rates were 9.4 and 18.2%, in petri dish
7 and 8 (figure 5(b)), respectively. The average rate of false positive and false negative was
5.0 and 8.9%, respectively. On an average 55.7% of model instances were selected in the
hypothesis selection step. The average time consumption for automated colony counting was
2 min and 35 s per petri dish on a Pentium III based PC. On average 77% of the time was used
by the hypothesis generation step and 23% by the hypothesis selection step. The above results
show that the detection procedure is capable of identifying touching and overlapping colonies.
It is very reliable and accurate in detecting colonies, which match well with the Gaussian
shaped model but may fail to correctly discriminate between small, non-contrast, non-circular
colonies and artefacts. However, even an experienced operator may have difficulty in counting
such cell colonies.

In the second experiment the correlation with the manually counted colonies was
determined and the cell survival curves obtained by automated and manual counting, were
compared. To estimate the effect of masking the petri dish edges, we manually counted the
colonies under the mask and added their number to the number obtained by automated counting.
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Table 1. Number of model instances, classified as correct, false positive and false negative for 17
petri dishes.

Petri Colony Correct False+ False− Selected Time Generation Selection
dish no no (%) (%) (%) (%) (min:s) (%) (%)

1 254 93.7 4.7 6.3 36 1:56 76 24
2 258 95.0 5.4 5.0 61 1:23 77 23
3 253 90.5 5.9 9.5 57 1:34 79 21
4 225 89.3 5.8 10.7 72 0:52 82 18
5 210 84.8 4.8 15.2 78 0:37 78 22
6 278 92.8 5.0 7.2 71 1:18 80 20
7 330 87.0 9.4 13.0 41 5:14 76 24
8 176 81.8 6.3 18.2 78 0:20 85 15
9 280 92.1 5.0 7.9 48 2:54 78 22
10 312 93.9 6.7 6.1 48 4:29 80 20
11 307 96.7 2.9 3.3 39 5:08 70 30
12 170 81.8 8.2 18.2 76 0:21 80 20
13 316 92.7 2.2 7.3 46 4:21 74 26
14 271 92.6 3.3 7.4 47 4:21 81 19
15 324 93.8 2.5 6.2 50 3:28 71 29
16 325 93.8 2.5 6.2 50 3:12 71 29
17 256 96.1 3.5 3.9 50 2:30 73 27
avg. 267 91.1 5.0 8.9 55.7 2:35 77 23
max 330 96.7 9.4 18.2 78.0 5:14 85 30
min 170 81.8 2.2 3.3 36.0 0:20 70 15

The results of this semi-automated counting were given beside the results of automated and
manual counting. Comparison of colony numbers obtained manually and semi-automatically
for 60 petri dishes showed an almost direct linear relationship (figure 7(a)). The relationship
between manual and automated counts was also linear; however, the slope of regression line
deviated from the ideal case (figure 7(b)). The correlation coefficients were 0.995 and 0.994 for
semi-automated and automated counting, respectively, and are comparable to the correlation
coefficients obtained by Barber et al (2001) for cell lines HT29, A172, U118 and IN1265.
The linear regression slopes were 0.964 and 0.840 and intercepts were 0.768 and −1.070
for semi-automated and automated counting, respectively. For semi-automated counting no
positive or negative offset was thus revealed.

The cell survival curves are given in figures 8(a) and 8(b) for electroporated and
electroporated and C12E8-treated cells, respectively. Cell survivals obtained by the manual,
semi-automated and automated counting are given side by side together with the standard
deviations of the three repetitions. It is evident that the variability between the semi-
automated, automated and manual counting is comparable to the variability between repetitions
of treatments. An analysis of variance was used to determine an overall coefficient of variation
(CV) of the survival fraction values for the counts made on electroporated as well as on
electroporated and C12E8-treated cells. The CV was based on the normalized variability
averaged over voltage and gave an overall figure of merit for an experiment (smaller values
indicating less error throughout the experiment). For the electroporated only cells the CVs of
manual, semi-automated and automated counting were 11.35, 12.71 and 11.05, respectively.
For C12E8-treated cells CVs were 10.53, 10.09 and 10.61. These results indicate that the
proposed method was consistent with manual counting. It is possible that to a small extent this
agreement is due to the fact that false positive and false negative counts may cancel each other
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Figure 7. Correlation of (a) manual versus semi-automated and (b) manual versus automated
counting. Ideal correlation and regression lines are shown by a thin and a thick line, respectively.

Figure 8. Cell survival curves for (a) electroporated cells and (b) electroporated and C12E8-treated
cells.

out. However, this may also be the case when counting cells manually. The obtained CVs are
comparable to the CVs obtained by Barber et al (2001) for cell lines U118 and IN1265.

In summary, we have developed an automated model-based method, which we have used
to analyse DC3F cell colonies. The counting accuracy is dependent on how well the colonies
fit the Gaussian model. This model was selected to describe the radial intensity variation in
DC3F colonies after comparing the performances of a linear model and various second-order
models in the form of parabola, semi-circle, cosine and Gauss. We have also found that a
circular symmetric model is better than the elliptical one when colony clusters were present.
The elliptical model tended to fit to the whole colony cluster, while the circular symmetric
model managed to fit to individual colonies in a cluster. While more complex models may
better approximate the variety of colony appearances, the stability of the fitting process may
decline and the computational cost may increase dramatically. Although we have used this
method to analyse DC3F cultures, there is no reason why it should not be used to analyse
different cell lines. If these lines have a different colony morphology, the Gaussian model
should be replaced by the model that best describes the colony morphology.

The proposed automated method gives not only the number, but also the size and
intensity of each colony. These parameters are impossible to define manually, although
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they might represent valuable additional information on the effects of the treatment. The
colony size is important in experiments in which cytostatic but not cytotoxic agents are
tested. These agents do not reduce colony number but do reduce colony size (Freshney
1994). The proposed automated method could thus be used to study the effects of cytotoxic
and cytostatic agents. Despite its complexity, the proposed method is relatively fast, as it
employs optimization to precisely estimate the model parameters. Because model instances
are generated independently, the hypothesis generation can be implemented in parallel. In
any case, however, the detection time increases with image complexity, i.e. with increasing
overlap of colonies in the image, because the selection phase is performed sequentially.

The proposed method gives comparable results to the method of Barber et al (2001),
which, however, does not give the size and intensity of each colony. The main drawbacks of
the proposed method are its inability to process colonies lying close to the petri dish edge and
a number of parameters which need to be set manually. For this reason we plan to integrate
a model of a petri dish edge into the method. We furthermore plan to develop an interactive
training procedure to estimate optimal image processing parameters from a set of training
images.
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