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Abstract—Following chronic wound area over time can give a general overview of
wound healing dynamics. Decrease or increase in wound area over time has been
modelled using either exponential or linear models, which are two-parameter
mathematical models. In many cases of chronic wound healing, a delay of healing
process was noticed. Such dynamics cannot be described solely with two para-
meters. The reported study deals with two-, three-, and four-parameter models.
Assessment of the models was based on weekly measurements of 226 chronic
wounds of various aetiologies. Several quantitative fitting criteria, i.e. goodness of fit,
handling missing data and prediction capability, and qualitative criteria, i.e. number
of parameters and their biophysical meaning were considered. The median of
goodness of fit of three- and four-parameter models was between 0.937 and 0.958,
and the median of two-parameter models was 0.821 to 0.883. Two-parameter models
fitted wound area over time significantly (p =0.01) worse than three- and four-
parameter models. The criterion handling missing data provided similar results, with
no significant difference between three- and four-parameter models. Median predic-
tion error of two-parameter models was between 111 and 746; three-parameter
models resulted in an error of 64 to 128, and finally four-parameter models resulted
in the highest prediction error of 407 and 238. Based on the values of quantitative
fitting criteria obtained, three parameters were chosen as the most appropriate.
Based on qualitative criteria, the delayed exponential model was selected as the
most general three-parameter model. It was found to have good prediction capability
and in this capacity it could be used to help physicians choose the most appropriate
treatment for patients with chronic wounds after an initial three-week observation
period, when the median error increase of fitting is 74%.
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1 Introduction Despite different research groups having proved that electrical
stimulation can accelerate wound healing, it is still not widely
used. One of the reasons could be a non-unified method of
wound healing dynamics quantification. Most researchers use
weakly measurements of wound area, depth and/or volume
(STEFANOVSKA ef al., 1993). These data allow quantitative
determination of wound healing dynamics; however, use of
different mathematical models to estimate wound healing rate
renders published reports difficult to compare. The wound
healing rate is estimated as the difference between the wound
area in week 4 and the initial wound area normalised to the initial
wound area (JOHNSON, 1997); as the average of the sequentially
computed weekly healing rates (normalised difference between
two sequential measurements) (BAKER et al., 1997); as a
percentage of the initial wound size at 12 weeks (LUNDEBERG
et al., 1992); as the time needed to complete wound closure
(BIRKE et al., 1992); as the average percentage reduction in
wound size each week over a four-week observation period
(FEEDAR et al., 1991); as the average linear healing of the wound
edge towards the centre of the wound (GORIN ef al., 1996), and
using a two-parameter exponential wound healing model by
JERCINOVIC et al. (1994). Wound healing process models in the
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CHRONIC WOUNDS are slow- or non-healing wounds (WALDORF
and FEWKES, 1995; YARKONY, 1994) that can last for weeks,
months or even years despite adequate and appropriate care.
Such wounds are difficult and frustrating to manage. Typical
chronic wounds are pressure ulcers in spinal cord injured
patients, ischemic ulcers in lower extremities of patients with
peripheral vascular disease, ulcers in geriatric patients and
wounds after limb amputations (DAGHER, 1985). Patients are
subjected to discomfort and stress, and the cost of the long-term
conventional treatment required to heal such ulceration is high.
Therefore extensive efforts have been made to find a treatment
that would accelerate the wound healing process. One thera-
peutic modality is electrical stimulation, which has been proved
to accelerate wound healing by a number of research groups
(GENTZKOW and MILLER, 1991; VODOVNIK and KARBA, 1992)
and is regularly used for more than a decade at the Institute of the
Republic of Slovenia for Rehabilitation. At the Faculty of
Electrical Engineering in Ljubljana a database of all treated
patients is maintained.
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Table 1  Distribution of wounds included in the study with respect to aetiology and diagnosis. For one included patient diagnosis and aetiology is

unknown. Altogether 226 wounds have been included in the analysis

diagnosis
Number of patients/ Spinal cord Geriatrics Sclerosis Diabetes Trauma Vascular Total
number of wounds injury multiplex mellitus insufficiency
Actiology
Pressure ulcer 116/166 3/4 5/8 1/1 11/12 1/1 137/192
Arterial ulceration 1/1 1/1
Vascular ulceration 1/2 1/2 5/5 7/9
Neurotrophic ulceration 15/15 15/15
Traumatic ulceration, amputation wounds 7/8 7/8
Total 117/167 4/6 5/8 17/18 18/20 6/6 167/225

healing have been introduced (CUDDIGAN, 1997). In these
systems scaling of wound status is determined by one or
several indicators of wound healing such as the wound area,
wound exudate and surface appearance (BARTOLUCCI and
THOMAS, 1997).

Two-parameter wound healing models exclude the possibility
of considering an initial delay to healing following the start of
observation and/or specific therapy, which is currently noticed
in chronic wounds. Such wound healing dynamics cannot be
described solely with two-parameters. In our study three- and
four-parameter models were considered in order to find the most
general mathematical model of chronic wound healing
dynamics. An optimal mathematical model for wound healing
should satisfy the following criteria:

e it should have a minimum number of parameters;
variables described in the model should be measurable so
that collection of experimental data is possible (e.g. wound
area);

e it should give a good fit to the experimental data, irrespec-
tive of wound aetiology, location and type of treatment;

e it should be capable of predicting the wound healing process
with reasonable accuracy;

e it should have a biophysical basis;

e it should improve the general understanding of wound
healing.

Chronic wound treatment results of different research groups
can only be compared if standardised parameters of wound
healing are used.

The present study of chronic wound healing dynamics
modelling was performed in the following four steps:

e definition of criteria for inclusion of wound cases in the
assessment of mathematical models,

e selection of possible two-, three- and four-parameter
models,
selection of criteria for fitting quality determination; and

e comparison of models and selection of the best model.

2 Criteria for inclusion of wound cases

Wound healing dynamics can be described using weekly
measurements of wound area, depth and/or volume. Because
measurements of wound depth and volume involve invasive
methods, which could interfere with healing, these measure-
ments are generally avoided. Planimetric measurements of
wound area are not invasive and can be performed quickly and
easily. In the present study, healing process modelling was
performed based on wound area measurements, although an
error is automatically introduced when using a two-dimensional
curve for the description of a three-dimensional wound cavity.
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Wounds were considered to be healed at closure of the
epithelium (i.e. the wound no longer open). Wound area was
recorded at weekly intervals. During the course of the clinical
study dealing with the effects of electrical stimulation on the
healing of chronic wounds, information on 390 wounds of
different aetiologies in 266 patients was collected. Patients
were examined by a physician for an initial assessment of their
wound status and relevant factors. The experimental procedure
was explained to them and all patients agreed to participate in the
study by signing an informed consent form (JERCINOVIC ef al,
1994).

The first criterion for inclusion of wound cases in the
assessment of mathematical models of chronic wound healing
comprised a minimum of five consecutive wound area measure-
ments over time since at least one more measurement is needed
than there are model parameters. The second criterion was a
minimal initial wound area of 100 mm?®, smaller areas being
difficult to measure accurately. The last criterion demands no
plastic surgery at the wound site before or during the study.
Altogether 226 chronic wounds met these inclusion criteria. This
group involved wounds of various aetiologies (e.g. vascular
(arterial or venous), ulceration, amputation wounds, pressure
ulcers, neuropathic ulceration (diabetic ulcers), etc.), and loca-
tions on patients with various diagnoses (e.g. spinal cord injury
(SCI), diabetes mellitus, sclerosis multiplex, vascular diseases,
etc.). The distribution of wounds included in the study with
respect to etiology and diagnosis is presented in Table 1.
Wounds were treated either solely conventionally or with
biphasic (JERCINOVIC et al., 1994) or direct current electrical
stimulation (KARBA et al., 1997) or with sham treatment which
involved placement of inactive electrodes. The distribution of
the included wound cases with respect to the different treatments
is presented in Table 2.

3 Mathematical models of wound healing dynamics

A wound healing model is a mathematical expression
describing change of wound size (i.e. wound area) with
respect to time. When wounds are included in the study at the
start of observation they can be extremely heterogeneous in
terms of size. By normalising measured wound areas to initial
values, these differences are eliminated and data analysis

Table 2 Treatment of wounds, which were included in the study

Type of treatment Number of wounds

Biphasic electric current 135
Direct electric current 41
Conventional treatment only 30
Inactive electrodes (sham) 20
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facilitated. Researchers generally use linear (1) and exponential
(2) two-parameter models to represent the wound healing
process.

(1

S(f) = Spiv — Opnt

S(t) = Spyp - € et

@)

where S;;y and Spxp are the estimated initial wound areas
expressed as a percentage of the initial wound area, and the
parameters 0; ;v and 0y p are the wound healing rates in % per
day. Positive values of wound healing rate 6 indicate wound area
decreasing with time (wound is healing) and negative values
indicate increasing wound area (non-healing wound). Both
models are distinguished by a small number of parameters,
which have biophysical meaning. However, neither model has
an adequate physiological basis. The most prominent disadvan-
tage of the linear model is that it sets no limit to wound area (Fig.
la). Knowing that wound area cannot be negative, a limitation
should be introduced to the linear model to limit wound area to a

minimum of 0%. The modified linear model is termed by
piecewise linear model (eqn 3) (Fig. 15).

Spry — Oprnt Spy — Opnt =0

S(r) = 3)

0 SPLN — QPLNI <0

The advantage of the exponential model (eqn 2) (Fig. 1¢) over
the linear model is that it assumes wound healing rate to be and
proportional to wound area at time 7. It also assumes wound area
to be greater than zero. The exponential model allows the
introduction of the concept of halving time, the time required
for wound area S(¥) to halve t /,:

In2
fii2 = Opxp

“4)

A survey of analysed normalised wound area time plots revealed
that 51% of wounds which fulfilled the inclusion criteria have an
exponential wound healing process with an initial delay longer
than 3.5 days (half a week); in 40% of wounds the delay was
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Fig. 1 Graphical presentation of investigated mathematical models based on follow-up measurements of 36-year-old male spinal cord injured
patient. Initial pressure ulcer area was 1315 mm? and after 92 days of treatment with biphasic electrical stimulation it has been closed.
Model type: (a) linear, (b) piecewise linear, (c) exponential, (d) delayed exponential, (e) sigmoid, (f) logistic, (g) Gompertz, (h) double

exponential decay, (i) rational 4-parameter
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more than seven days and in 26% of wounds the delay was more
than 14 days. Fig. 2 shows the distribution of time delay as a
histogram plot. Such wound healing dynamics cannot be
described with a two-parameter model, which led to the intro-
duction of the parameter 7'to describe the time delay between the
start of observation and the onset of healing, expressed in days.
This modified exponential model was termed the delayed
exponential model (Fig. 1d):

$() = SpEx t < Tppx )
Spex - e~ Opex(t=Thrx) t > Tppx

where Sppy is the estimated initial wound area expressed as a
percentage of the initial wound area, 0y is the wound healing
rate in % day ' and Tpiyx is the time delay in days. The delayed
exponential model and the piecewise linear model have non-
continuous first partial derivatives of model parameters.

Many biological processes can be described by the three-
parameter sigmoid model shown in Fig. le.

3 Ssom

S(t) 1 + et—Tsum/Osom (6)
In the literature describing tumour volume modelling (VAIDYA
and ALEXANDRO, 1982; MIKLAVCIC et al., 1995), the logistic
model (eqn 7) and the Gompertz model (eqn 8) are often
considered. These three-parameter models could also be used
to describe the dynamics of the wound healing process. They are
presented in Figs 1fand 1g.

SLOG
: [ BLOG > 0
1+ |=—
TLOG
S(t) = ¢t |"Owe (7)
SLOG - ‘TIOG
¢ |~Owe 0106 <0
(-
TIOG
S'(t) = SGOM . e*"(l*ﬂcosw/“cow) (8)

The parameters of the sigmoid and logistic model can be
described in a similar fashion. Sg;,, and S;p; are estimated
initial wound areas expressed as a percentage of the initial
wound area, parameters Og;,, and 0, in % day ' describe
the negative slope of the tangent to the curve at time points Ty,
and Tj,g, while Ty, and Tp, are the times needed for the
wound area to decrease to 50% of the initial wound area,

40 1
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Fig. 2 Histogram of wound distribution due to delay of healing
process. The delay used is delayed exponential model para-
meter Tpry
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expressed in days. The parameters of the logistic and sigmoid
models are thus biophysically explainable. The logistic model
suffers from convergence problems when ¢ approaches zero
and/or when parameter T;,; approaches zero.

The major drawback of the Gompertz model is that the
equation describing it is not derived on any biophysical basis.
In spite of the inability to find any biophysical meaning for the
Gompertz model parameters it was still compared with the other
models.

Sums of exponential curves can be made to fit almost any
time-dependent biologic data set by simply increasing the
number of exponential components (BARDSLEY et al., 1995).
We confined ourselves to two exponential components because
with more exponentials, parameter estimates become imprecise
and even with two exponents the parameters have no unequi-
vocal meaning:

S([) = SipED . e~ Opep? + Sopip - o~ taoept ©)

The double exponential decay model (eqn 9) is a four-parameter
model and is shown in Fig. 14. In general each added parameter
adds one level of freedom so that the model can better fit the data.
But such a model can be over-determined, consequently its
parameters have no biophysical meaning (i.e. the model is ill-
conditioned). In that case adding parameters cannot improve the
general understanding of wound healing. It was also difficult to
find good starting values when fitting the double exponential
model to wound area measurements. One often has to try
different sets of starting values to achieve convergence.

The rational four-parameter model (eqn 10) was also used
because this model is highly flexible and fits almost any data. It is
shown in Fig. 1i. Its parameters, however, have no biophysical
meaning.

Srap + Orapl

S =
1+ Brapt + yrapt®

(10)

4 Model fitting

A computer program was developed to perform curve fitting and
to calculate five different fitting quality criteria. To fit an n-
parameter nonlinear equation to wound area measurements, the
Marquardt-Levenberg algorithm (PRESS et al., 1992) was used.
This nonlinear regression algorithm seeks the values of para-
meters that minimise the sum of squared differences between the
values of the observed and predicted values of the wound area.
This process is iterative. It starts with initial parameter estimates,
checks to see how well the equation fits, then continues to make
better estimates until the differences between the residual
sums of squares no longer decrease significantly (algorithm
converges). The algorithm also needs first partial derivative of
the fitted equation for each parameter. Weekly wound area
measurement data were derived directly from a chronic wound
database and results (model parameters and fitting quality
criteria) were saved to the same database. A commercial
statistical package was used to perform statistical analysis
(SPSS INC., 1997).

5 Criteria for model assessment

Criteria for model assessment can be divided into quantitative
and qualitative criteria.
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5.1 Quantitative criteria

(a) The sum of squares of errors (SSE) can be interpreted as a
measure of how much variation in § (wound area) is left
unexplained by the model. It is defined as

SSE=Y" (S - si)2 (11)
i=1

where S; is the ith wound area measured at discrete time t;,
i=1,2,...,n,S;is the ith estimated value of wound area and n
is the number of wound area measurements over time. SSE is
minimised in the Marquardt-Levenberg optimisation algorithm.
When minimised it is called the least sum of squares of errors.

(b) Standard error of the estimate (SE) is the normalised SSE
resulting from the elimination of the effects of a number of
experimental points (#) and a number of model parameters (k). In
eqn 12, denominator n — k is used because & degrees of freedom
(number of parameters or independent variables) are lost in
estimating the model parameters. SE enables comparison of
models with different numbers of parameters.

(12)

(c) The coefficient of determination or goodness-of-fit (+2) is the
portion of observed variation of the parameter S explained by the
model (eqn 13). Good fit is characterised by values of the
criterion % close to 1, while decreasing values of r* indicate
worsening fit.

(13)

Total sum of squares (SST) gives a quantitative measure of the
total amount of variation in observed values of the parameter S.
The objective of regression analysis is to find a model that is both
simple (relatively few parameters) and provides a good fit to
data. To balance the cost of using more parameters against the
gain in %, many statisticians use the adjusted coefficient of
multiple determination (adjusted r?):

n—lSSE_(n—l)rz—k—f-l
n—kSST n—k

Adjusted * =1 — (14)
where k& is the number of parameters and » the number of
experimental points.

(d) Predicted residual error sum of squares (PRESS) is a
measure of how well a regression model predicts missing data.
Small values of PRESS indicate better capability of handling
missing data. The PRESS (eqn 15) is computed by summing the
squares of the prediction errors (the differences between
predicted and observed values) for each observation (except
the initial one), with that point deleted from the computation of
the regression equation. In the case of n wound area measure-
ments over time, the test was performed n — 1 times and the
average calculated:

> (3-s)
PRESS = =! . (15)

where S ¢ is the estimated value of S; when the model was
obtained without the ith observation, and » is the number of
experimental points.
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Because wound area was not always regularly measured, there
is a lot of missing data in the chronic wound database and
therefore the capability of the model in handling missing data is
very important.

(e) Multiple predicted residual sum error of squares
(MPRESS) measures the capability of the model to predict the
dynamics of the wound healing process after a certain observa-
tion period. In contrast to PRESS, which removes only one
measurement from a set of experimental data, MPRESS (eqn 16)
removes the last n — m measurements. The model is fitted to the
first m measured experimental points (m = 4, 5, 6 or 7) and then
from calculated model parameters the error between wound area
estimates and measured values in the remaining n — m points is
calculated. MPRESS can be calculated only for wounds
followed regularly every week (with no missing data). There
were 144 wounds followed weekly with no missing data, at least
during the first three weeks (four measurements), 92 wounds
were followed for at least the first four weeks, 70 wounds were
followed for at least the first five weeks and 44 wounds were
followed weekly with no missing data for at least six weeks. We
seek the model with the highest prediction capability (lowest
MPRESS). MPRESS was calculated for observation periods of
three to six weeks.

n ~ 2
> (8=
MPRESS(m) = =2+ ( )

n—m

(16)

5.2 Qualitative criteria

In addition to the above quantitative criteria, two qualitative
criteria were used:

e The model should have a minimum number of parameters.
Problems associated with ill-conditioned regression result-
ing from the use of over-determined models should be
avoided.

e Model parameters should have biophysical meaning and the
model should improve the general understanding of wound
healing.

6 Results

All five listed quantitative criteria are unimodal and of non-
parametric distribution for wound healing data when consid-
ering the above described models. Therefore, we compared their
medians using non-parametric statistical methods. The Mann—
Whitney Rank Sum Test (DEVORE, 1995) was used to test the
hypothesis of equality of models, which was rejected at a
selected significance level p = 0.01. The data set of criteria is
ordered from smallest to largest and the lower and upper quarter
calculated. The lower (upper) quarter is the median of the
smallest (largest) half of the data.

6.1 The sum of squares of errors

Medians of SSE for the nine models are presented on the left-
hand side of Table 3. The hypothesis concerning the equality of
SSEs of different models was tested and the resulting p values
are presented on the right-hand side of Table 3. It can be seen that
three-parameter models fit wound area measurements over time
significantly better than two-parameter models. Two-parameter
models resulted in values of SSE double (or more) those of three-
parameter models. Furthermore, three-parameter models
resulted in values of SSE roughly double those of four-parameter
models. There are also differences among two-parameter
models. The piecewise linear model and the exponential
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Table 3 Medians of SSE for 226 analysed wounds and values of p

SSE p

Model  Median  25%  75%  LIN PLN EXP DEX SGM LOG GMP DED R4P
LIN 931 418 2369 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
PLN 610 257 1370 1 0.687 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
EXP 567 227 1340 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
DEX 277 98 772 1 0.957 0.965 0.890 0.004 <0.001
SGM 284 107 769 1 0.937 0.824 0.005 <0.001
LOG 292 80 776 1 0.920 0.005 <0.001
GMP 282 111 760 1 0.002 <0.001
DED 169 58 604 1 0.176
R4P 145 31 549 1

LIN-linear, PLN—piecewise linear, EXP—exponential, DEX—delay exponential, SGM—sigmoid, LOG-logistic, GMP—-Gompertz, DED—double
exponential decay and R4P-rational four parameter model. Values of p equal or less than significance level 0.01 are printed in bold.

model are statistically significantly better than the linear model
but there is no significant difference between the first two. There
is also no significant difference between three-parameter
models. It seems that all three-parameter models fit wound
healing dynamics similarly. The fit of four-parameter models
is significantly closer to experimental points than any two- or
three-parameter model, while there is no difference among the
selected four-parameter models.

6.2 Standard error of the estimate

From Table 4 it can be seen that the more parameters a model
has, the closer the fit to wound area measurements. Results of
testing the hypothesis concerning equality of SEs of different
models are very similar to results gained with SSE. The only
difference is that there is no significant difference between the
four-parameter double exponential decay model and three-
parameter models.

Table 4 Medians of SE for 226 analysed wounds and values of p

6.3 Adjusted coefficient of determination

The higher the value of adjusted coefficient of determination
the better the model fits the data. The value range is between 0
and 1. From Table 5 it can be seen that the results of hypothesis
testing are the same as the results obtained with the measure SE.
Measure definitions of SE and adjusted r> are similar and
consequently their results are also similar. Both measures
show that in contrast to results gained with SSE there is no
significant difference between the four-parameter double expo-
nential decay model and three-parameter models.

6.4 Predicted residual error sum of squares

PRESS measures the ability of a model to handle missing
data. Using the Levenberg—Marquardt algorithm, problems with
convergence were encountered in some cases. The numbers of
successfully converged cases are shown in the second column of
Table 6. It can be concluded from the results shown in Table 6

SE p

Model Median 25% 75% LIN PLN EXP DEX SGM LOG GMP DED R4P
LIN 13.2 8.9 17.6 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
PLN 9.4 6.9 14.3 1 0.694 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
EXP 10.0 5.8 154 1 <0.001 <0.001 <0.001 0.001 <0.001 <0.001
DEX 7.5 4.5 11.7 1 0.963 0.902 0.834 0.279 0.004
SGM 7.2 4.7 124 1 0.984 0.784 0.339 0.004
LOG 7.5 43 11.7 1 0.761 0.347 0.007
GMP 6.9 49 124 1 0.220 0.002
DED 6.8 43 11.8 1 0.055
R4P 5.7 33 10.7 1
Table 5 Medians of Adjusted P for 226 analysed wounds and values of p

Adjusted 12 p
Model Median 25% 75% LIN PLN EXP DEX SGM LOG GMP DED R4P
LIN 0.821 0.658  0.907 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
PLN 0.885 0.757  0.951 1 0.714 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
EXP 0.883 0.731 0.957 1 <0.001 0.001 0.001 0.002 <0.001 <0.001
DEX 0.941 0.822 0977 1 0.964 0.962 0.881 0.425 0.007
SGM 0.946 0.792  0.978 1 0.985 0.815 0.454 0.010
LOG 0.937 0.812  0.982 1 0.837 0.482 0.008
GMP 0.946 0.789  0.975 1 0.344 0.005
DED 0.943 0.838  0.981 1 0.045
R4P 0.958 0.846  0.988 1
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Table 6 Medians of PRESS and values of p

PRESS p

Model No Median  25%  75%  LIN PLN EXP  DEX SGM LOG GMP DED R4P
LIN 226 26.7 9.4 61.3 10007 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 0.009
PLN 222 19.2 6.1 41.9 1 0.524 0.002 0.006 0.020 0.006 0.002  0.493
EXP 225 15.3 5.2 522 1 0.041 0.086 0.190 0.083 0.030  0.837
DEX 217 115 4.0 273 1 0.750 0.427 0.770 0.651  0.042
SGM 224 11.7 3.8 35.9 1 0.643 0.968 0.516  0.083
LOG 206 13.2 43 32.4 1 0.633 0275 0.188
GMP 225 10.7 33 375 1 0.531  0.074
DED 217 8.6 30 435 1 0.028
R4P 223 15.6 4.1 68.0 1

that a larger number of model parameters does not automatically
mean significantly lower PRESS. This can be seen in the case of
the rational four-parameter model, which handles missing data
very badly, although it has four parameters. However the highest
PRESS was found in the two-parameter linear model which has
also significantly higher error than the other two-parameter
models, piecewise linear and exponential. Also, the two-para-
meter piecewise linear model is, in terms of PRESS, significantly
worse than the delay exponential, sigmoid, Gompertz and
double exponential model, while the two-parameter exponential
model does not differ significantly from the three- and four-
parameter models. There is no statistically significant difference
between three-parameter and four-parameter models. The lowest
value of PRESS was obtained for the four-parameter double
exponential model; however, the hypothesis regarding equality
with other models could be rejected only for two-parameter
models LIN and PLN.

6.5 Model prediction capability (MPRESS for m =4,5,6 and 7)

MPRESS measures the prediction capability of a model. Low
values of MPRESS result in high model prediction capability.
The results shown in Table 7 are for prediction based on model
fitting to the first five measurements: 92 wounds out of 226
analysed wounds were followed regularly once per week for at
least the first four weeks. The greatest prediction error was
obtained using the linear model and the four-parameter double
exponential model. Between these two models there is no
significant difference. Other two- and three-parameter models
are significantly better than the linear and double exponential
model, but there is no significant difference between them.
Predictability of the four-parameter rational model is signifi-
cantly better than that of the linear model but equal to the
piecewise linear, exponential and logistic model and has a
significantly worse prediction capability than the delay expo-
nential, sigmoid and Gompertz model. There is no significant

Table 7 Medians of MPRESS (m = 5) for 92 wounds and values of p

difference between four-parameter models. From Table 7 it can
be seen that the lowest error was produced with three-parameter
models. Among three-parameter models there are no differ-
ences. Four-parameter models are significantly worse than
three-parameter models, except in the case of the logistic
model. The four-parameter double exponential decay model
error is significantly greater than the error of piecewise linear
and exponential models. The prediction capability of the four-
parameter double exponential decay model is as bad as that of
the worst model, the linear model. A characteristic of models
with higher numbers of parameters is their flexibility, which, on
one hand assures a good fit to experimental data, while on the
other, decreases the prediction capability of models.
Comparison of the prediction capability of models, illustrated
by MPRESS, revealed the same relations for m = 4, m = 6 and
m="717.

7 Discussion

Based on the results using quantitative criteria it can be
concluded that the two-parameter linear model has the worst
fit to experimental data. Other two-parameter models, piecewise
linear and exponential, have a better fit but still significantly
worse than three- and four-parameter models. Because the
exponential model handles missing data significantly better
than the piecewise linear model, the exponential model was
found to be the best of the two-parameter models.

Three-parameter models have a good fit to wound area
measurements, they can handle missing data well and have
good prediction capability. Four-parameter models have even
better fit, their handling of missing data is comparable to three-
parameter models but their prediction capability can only be
compared to the prediction capability of two-parameter models.
It can be concluded that the optimal number of model parameters
is three.

MPRESS (m =5) P

Model Median 25% 75% LIN PLN EXP DEX SGM LOG GMP DED R4P
LIN 746 199 2589 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.100 <0.001
PLN 134 35 429 1 0.852 0.057 0.337 0.764 0.396 0.003 0.012
EXP 111 29 607 1 0.067 0.316 0.841 0.317 0.003 0.021
DEX 74 18 179 1 0.488 0.019 0.532 <0.001 <0.001
SGM 74 22 413 1 0.171 0.928 <0.001 <0.001
LOG 128 28 405 1 0.171 0.005 0.022
GMP 64 14 461 1 <0.001 <0.001
DED 407 43 3034 1 0.337
R4P 238 66 844 1
Medical & Biological Engineering & Computing 2000, Vol. 38 345



Between three-parameter models there are no statistically
significant differences, but we can see that the logistic model
produced at least 50% greater error when handling missing data
than the other three-parameter models. The logistic model also
cannot describe increasing wound area dynamics because in the
case of a negative wound healing rate the estimated initial wound
area Sy is zero.

Qualitative criteria relating to the biophysical meaning of
model parameters were not fulfilled in the case of the Gompertz
model. The delayed exponential model may be considered
unreal because of its break point at time Tjgy. Biological
systems work more like a sigmoid with smooth changes. If
all wounds started to heal after a delay, then sigmoid would be
the choice, but 49% of wounds started to heal with no delay
(less than a half of week) and 6% of wounds did not heal at all.
Such healing processes can still be represented with a sigmoid,
but the meaning of its parameters cannot be determined. In
cases when wounds started to heal with no delay, the sigmoid
model estimated the initial wound area mean value to be
4374 £ 7451%. Such estimation has no biophysical explanation.
The delayed exponential model is very similar to the exponential
model in such cases. We conclude that the delayed exponential
model is the most general model for wound healing dynamics
over time.

Quantitative criteria for model prediction capability MPRESS
can be used only for model comparison; it does not give an
overview of the absolute prediction capability of the model. To
achieve such a measure, the delayed exponential model predic-
tion capability was further investigated. The relative prediction
error measures the level of error increase if model is fitted only to
the first m wound area measurements instead to all » measure-
ments. It is calculated by dividing the difference between the
SSE of fit to all experimental data points and the SSE of fit to the
first m experimental points calculated for all experimental points
and the SSE of fit to all experimental points. Percentages are
presented in Table 8. The level of error increase is 73% in the
case of fitting after three weeks observation, 35% increase after
four weeks observation, 34% increase after five weeks and 17%
increase after six weeks. The goal of model prediction is to
predict healing dynamics as accurately as possible and to make
such prediction as soon as possible. Optimal follow-up duration
before predicting healing dynamics is four weeks, based on the
mentioned two contradictory criteria.

The exponential model is very close to three-parameter
models in handling missing data. Although it has a greater
prediction error than three-parameter models, the difference
was not significant. The advantage of the exponential model is
that it has only two parameters.

As Spgx describes estimated the initial wound area, which
after normalisation is always around 100% and can be elimi-
nated from the wound healing rate description, parameters 0 y
and Ty describe the wound healing process. In the exponential
model only one parameter, Opxp, describes wound healing
dynamics. This is very convenient when using different statis-

Table 8 Relative prediction error for delay exponential model. It is
calculated as difference between error sum of squares of fit to all
measurements and error sum of squares of fit to first m measurements
calculated for all measurements divided by error sum of squares of fit
to all measurements. RP gives us a percentage estimate of error
increase when delayed exponential model is fitted to less number of
wound area measurements

Prediction based on No Median 25% 75%
3 weeks 144 74 9 346
4 weeks 92 35 3 127
5 weeks 70 34 1 160
6 weeks 44 17 5 100
346

tical methods as well as induction tree learning algorithms.
Using a three-parameter model in such cases requires a new
parameter to describe the wound healing rate determined from
the parameter combination Tj,;y and 8,5y or even better from
all three parameters. If the goal is to compare wound healing
rates, the exponential model should be used. Considering that
almost half of all wounds started to heal with a delay less than
half a week, the error due to fewer model parameters should not
be increased too much. Three-parameter models allows one to
separately study the delay in healing processes and wound
healing rate after delay.

8 Conclusion

In our study all wounds were pooled irrespective of wound
etiology, location and type of treatment because we were
looking for the most general model of chronic wound healing
dynamics. After considering a number of two-, three- and four-
parameter models, the delayed exponential model was found to
offer better fit and handling of missing wound area data over
time than two- or four-parameter models and better describes the
wound healing process than other three-parameter models.
According to the two-parameter models, application of a
model with more parameters requires more experimental data,
which means longer observation periods, but it can still be fitted
easily to four or more wound area measurements.

The delayed exponential model was proved to accurately
describe the wound healing process and to have good prediction
capability. This means that, based on wound area follow-ups in
the first few weeks (three weeks minimum is recommended),
healing process dynamics in the next weeks can be predicted.
However, such prediction based on fitting wound area measure-
ments to the model of wound healing dynamics described would
be rather rough. Since the wound healing process is not merely a
surface phenomenon, other parameters should also be consid-
ered to increase prediction accuracy, such as patient and wound
parameters. Patient parameters are patient identifiers, such as
age, diagnosis and if he/she is a spinal cord injury patient, date
of injury and degree of spasticity. Wound parameters could be
the duration of the wound from its appearance at start of
treatment, wound type, wound grade, location and size. Also
other parameters can be included, however they are rarely
measured and we do not plan to use them in future: examples
include bacteriological analyses, measurements of wound poten-
tials, oximetry and NMR imaging. Finally we should not forget
the type of treatment as a parameter that has a very important
effect on wound healing dynamics.

A future goal is to build a classifier for wound healing
prediction where model parameters would be used in combina-
tion with patient and wound parameters. The resulting classifier
for wound healing prediction could be realised as a computer
application, which would not demand any modelling knowl-
edge. Of course, use of a personal computer cannot be avoided.
The clinician would enter the required wound and patient data
and the application would return as an output a probability that
the wound is going to heal with a certain healing rate using a
specific type of treatment. Such application would be particu-
larly useful as an aid to decision making on wound treatment
(conventional treatment, plastic surgery, electric stimulation,
etc.).
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