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Abstract Electroporation is a phenomenon used in the

treatment of tumors by electrochemotherapy, non-thermal

ablation with irreversible electroporation, and gene therapy.

When treating patients, either predefined or variable elec-

trode geometry is used. Optimal pulse parameters are pre-

determined for predefined electrode geometry, while they

must be calculated for each specific case for variable elec-

trode geometry. The position and number of electrodes are

also determined for each patient. It is currently assumed that

above a certain experimentally determined value of electric

field, all cells are permeabilized/destroyed and under it they

are unaffected. In this paper, mathematical models of sur-

vival in which the probability of cell death is continuously

distributed from 0 to 100 % are proposed and evaluated.

Experiments were performed on cell suspensions using

electrical parameters similar to standard electrochemother-

apy and irreversible electroporation parameters. The pro-

portion of surviving cells was determined using clonogenic

assay for assessing the ability of a cell to grow into a colony.

Various mathematical models (first-order kinetics, Hül-

sheger, Peleg-Fermi, Weibull, logistic, adapted Gompertz,

Geeraerd) were fitted to experimental data using a non-linear

least-squares method. The fit was evaluated by calculating

goodness of fit and by observing the trend of values of

models’ parameters. The most appropriate models of cell

survival as a function of treatment time were the adapted

Gompertz and the Geeraerd models and, as a function of the

electric field, the logistic, adapted Gompertz and Peleg-

Fermi models. The next steps to be performed are validation

of the most appropriate models on tissues and determination

of the models’ predictive power.

Keywords Clonogenic assay � Cell death probability �
Treatment planning � Electrochemotherapy � Predictive
models � Non-thermal irreversible electroporation

Introduction

Electroporation is a phenomenon that occurs when short

high voltage pulses are applied to cells and tissues. This

exposure of cells to electric pulses results in pores being

formed in the cell membrane. Membranes become per-

meable to molecules that cannot otherwise pass in or out of

the cell (Kotnik et al. 2012; Weaver 1993). If the cell is

able to recover, it is considered reversible electroporation.

If the damage to the cell is too extensive and the cell dies, it

is considered irreversible electroporation. The existence of

the pores has been shown by molecular dynamics (Dele-

motte and Tarek 2012) and calculated by various theoret-

ical models (Neu and Neu 2009; Weaver and Chizmadzhev

1996). Electroporation is already being used in medicine,

e.g., electrochemotherapy (Edhemović et al. 2014), non-

thermal irreversible electroporation as a method of tissue

ablation (Cannon et al. 2013; Davalos et al. 2005; Garcia

et al. 2014; Long et al. 2014; Neal et al. 2013), gene

therapy (Daud et al. 2008; Heller and Heller 2010), DNA

vaccination (Calvet et al. 2014), and transdermal drug

delivery (Denet et al. 2004; Yarmush et al. 2014), as well

as in biotechnology (Kotnik et al. 2015) and food pro-

cessing (Mahnič-Kalamiza et al. 2014; Sack et al. 2010). It

has been shown that a sufficient electric field (E-field) is

the most important factor—all the cells in the tumor have

to be permeabilized (in electrochemotherapy) (Miklavčič
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et al. 1998) or irreversibly electroporated (in irreversible

electroporation) to eradicate the tumor. E-field distribution

also corresponds to tissue necrosis (Long et al. 2014;

Miklavčič et al. 2000).

When performing electrochemotherapy, irreversible

electroporation or gene therapy, fixed electrode configu-

rations with predefined pulse parameters can be used

(Heller et al. 2010; Mir et al. 2006). Alternatively, variable

electrode configurations can be used when the target tumor

is outside the standard parameters (Linnert et al. 2012;

Miklavčič et al. 2012). When using variable electrode

configurations, a plan is needed of the electrodes’ position

and the parameters of electric pulses that offer sufficient E-

field in the tissue (Campana et al. 2013; Miklavčič et al.

2010; Neal et al. 2015; Šel et al. 2007; Županič et al. 2012).

Treatment planning of electroporation-based medical

applications has already been successfully used on col-

orectal liver metastases in humans (Edhemović et al. 2014),

and on spontaneous malignant intracranial glioma in dogs

(Garcia et al. 2011a, b). It is currently assumed in treatment

plans that above an experimentally determined threshold

value of E-field, all cells are permeabilized or destroyed

and below this threshold cells are not affected or do not

die—i.e., we assume a step-like response. In reality,

though, the transition from non-electroporated to electro-

porated state and from reversibly to irreversibly electro-

porated state is continuous. Mathematical models of cell

permeabilization and survival can be implemented in order

to present treatment plan in a clearer way and to obtain a

better prediction of the tissue damaged (Dermol and Mik-

lavčič 2014; Garcia et al. 2014). In addition, mathematical

models allow us to interpolate the predicted survival of the

cells and predict survival for other parameters than those

used for curve fitting. The mathematical models of survival

have to be adaptable and describe the experimental data

well (high goodness of fit). Goodness of fit is not only an

important criterion but trends of the optimized values of the

parameters and the predictive power of the model are also

important. In an ideal case, the models would include all

the parameters important for cell death due to electropo-

ration, but would have the lowest possible number of

parameters.

There are only a few reports describing the probability

of cell permeabilization (Dermol and Miklavčič 2014) and

cell survival after irreversible electroporation (Garcia et al.

2014; Golberg and Rubinsky 2010) using mathematical

models. The first attempt using mathematical model of

survival to describe cell death after irreversible electropo-

ration was made by (Golberg and Rubinsky 2010). They

successfully fitted the Peleg-Fermi model to experimental

data of prostate cancer cells’ death described in (Canatella

et al. 2001). Later, (Garcia et al. 2014) simulated irre-

versible electroporation on liver tissue and characterized

cell death using the Arrhenius rate equation for thermal

injury and the Peleg-Fermi model for electrical injury. The

authors determined that using commercially available

bipolar electrodes (AngioDynamics, Queensbury, USA)

and standard irreversible electroporation parameters (90

pulses, 100 ls duration, 1 Hz, 3000 V) most cell death is a

consequence of electrical damage. In that study, the vol-

ume of the thermally destroyed tissue did not surpass 6 %

of the whole destroyed volume and was concentrated in the

immediate vicinity of the electrodes.

Until now, the Peleg-Fermi model has been the only

mathematical model used for describing cell death as a

consequence of irreversible electroporation in medicine.

However, mathematical modeling of cell death has a long

history in the field of microbiology, e.g., food sterilization

(Peleg 2006). Most models from the field of microbiology

describe thermal microbial inactivation; an independent

variable is treatment time (t). We used these models (first-

order kinetics, Weibull, logistic, adapted Gompertz, Geer-

aerd) in original and in transformed forms. In the original

forms, the models remained unchanged, treatment time was

an independent variable, and E-field was a parameter. In

the transformed forms, E-field became the independent

variable. There was no need to transform the Hülsheger

model and the Peleg-Fermi model, since the independent

variables were E-field and treatment time (Hülsheger et al.

1981) or E-field and the number of pulses (Peleg 1995). In

existing studies, mathematical models have not yet been

used as a function of the E-field. Since E-field is a domi-

nant parameter for predicting the effect of the electropo-

ration, we were interested in obtaining models as a function

of E-field. We also provide an explanation of the reasoning

for the transformation for each of the transformed models.

In (Canatella et al. 2001), the authors exposed prostate

cancer cells to 1–10 exponentially decaying pulses in the

range of 0.1–3.3 kV/cm, with time constants in the range of

50 ls–20 ms. In our experiments, up to 90 square pulses,

0–4.0 kV/cm, 50–200 ls were applied, which are typically

used in electrochemotherapy and irreversible electropora-

tion treatments. Clonogenic assay was used as a measure of

the ability of the cells to reproduce (Franken et al. 2006).

Our study is the first attempt to compare different

mathematical models describing the survival of animal

cells due to electroporation. We present the results

obtained with electrical parameters similar to those typi-

cally used in electrochemotherapy and in irreversible

electroporation clinical treatments. We evaluate the trends/

meaning of the parameters of the mathematical models,

determine whether and which models could be used for

describing cell death, and which models should be vali-

dated in the treatment planning and treatment response

prognostics of electrochemotherapy and irreversible

electroporation.
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Materials and Methods

Cell Preparation and Electroporation

Chinesehamster ovary cells (CHO-K1;EuropeanCollectionof

Cell Cultures, Great Britain) were grown in 25-mm2 culture

flasks (TPP, Switzerland) for 2–3 days in an incubator (Kam-

bič, Slovenia) at 37 �C and humidified 5 % CO2 in HAM-F12

growth media (PAA, Austria) supplemented with 10 % fetal

bovine serum (Sigma Aldrich, Germany), L-glutamine (Stem-

Cell, Canada) and antibiotics penicillin/streptomycin (PAA,

Austria), and gentamycin (Sigma Aldrich, Germany). The cell

suspensionwas prepared on the day of experiments. Cells were

centrifuged and resuspended in potassium phosphate electro-

poration buffer (10 mM K2HPO4/KH2PO4 in a ratio 40.5:9.5,

1 mM MgCl2, 250 mM sucrose, pH 7.4, 1.62 mS/cm,

260 mOsm) at a concentration 106 cells/ml.

A drop of cell suspension (100 ll) was pipetted between

two parallel stainless steel electrodes (Fig. 1) with the dis-

tance between them set at 2 mm. The surface of the elec-

trodes was much larger than the contact surface between the

cell suspension and the electrodes. All the cells were thus

exposed to approximately the same electric field, which was

estimated as the voltage applied divided by the distance

between the electrodes. Pulses were delivered using a

Betatech electroporator (Electro cell B10 HVLV, Betatech,

France) and monitored with an oscilloscope LeCroy Wave-

Surfer 422, 200 MHz and a current probe AP015 (both

LeCroy, USA). The parameters of the applied electric pulses

are summarized inTable 1. The electrodeswerewashedwith

sterile 0.9 % NaCl and dried with sterile gauze between

samples. After pulse application, 80 ll of cell suspension
was transferred into a microcentrifuge tube in which there

was already 920 ll of HAM-F12. In the control, sample cells

were put between the electrodes and no pulses were deliv-

ered. Control was performed at the beginning and at the end

of each experiment to monitor whether the survival or

number of cells in the suspension during an experiment had

decreased. After all the samples had been exposed to electric

pulses (10–20 min), cells were diluted in 0.9 % NaCl and

plated in triplicates in 6-well plates (TPP, Switzerland) in

3 ml of HAM-F12. Different numbers of cells were plated,

shown in Table 2 for parameters with different lengths of

pulses and in Table 3 for parameters with different numbers

of pulses (Franken et al. 2006). In preliminary experiments,

we determined how many cells have to be seeded in order to

obtain around 100 colonies per well. When more intense

treatments (600 V, 50–90 pulses and 800 V, 30–90 pulses)

were applied, often no cells survived but, because of

experimental conditions, we could not seed more cells than

the given number. Cells were grown for 6 days at 37 �C and

5 % CO2.

After 6 days, HAM-F12 was removed and cells were

fixed with 1 ml of 70 % ethanol (Lekarna Ljubljana,

Slovenia) per well. Cells were left in ethanol for at least

10 min,which rendered all cells dead. Colonieswere colored

with 200 ll of crystal violet (0.5 %w/v in distilledwater) per

well. Excessive crystal violet was washed away with pipe

water. Colonies that had more than 50 cells were counted.

The proportion of surviving cells (S) was calculated as

S ¼ number of colonies after the treatment

number of seeded cells � PE
; ð1Þ

where plating efficiency (PE) is defined as

PE ¼ number of colonies formed in the control

number of colonies seeded in the control
: ð2Þ

The number of colonies formed in the control was cal-

culated as an average of the triplicates of the colonies formed

in the controls at the beginning and at the end of the exper-

iment. The number of colonies seeded in control samples was

100. There was no difference between the two controls, so we

could pool the results. At least four independent experiments

were performed for each pulse parameter, and mean and

standard deviation were then calculated.

In order to determine whether our pulses were indeed

not causing significant heating, we measured the temper-

ature of the cell suspension before any pulses were applied

and within 5 s after the application of 90 pulses, 4.0 kV/

cm, i.e., the most intense exposure. Because of the limi-

tations of the temperature probe, the temperature could not

be measured during the pulse application. We used the

fiber optic sensor system ProSens (opSens, Canada) with a

Fig. 1 Stainless steel parallel plate electrodes with a droplet of cell

suspension between the electrodes (upper image). Inter-electrode

distance is 2 mm
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fiber optic temperature sensor, which was inserted in the

cell suspension between the electrodes. In addition, a

numerical model of the cell suspension droplet between the

electrodes was made and temperature distribution after

90 pulses of 4.0 kV/cm was calculated (Appendix).

Fitting of the Mathematical Models of Survival

to the Experimental Results

Different mathematical models of survival were fitted to the

experimental data: (i) the first-order kinetics model (Bige-

low 1921), (ii) the Hülsheger model (Hülsheger et al. 1981),

(iii) the Peleg-Fermi model (Peleg 1995), (iv) the Weibull

model (van Boekel 2002), (v) the logistic model (Cole et al.

1993), (vi) the adapted Gompertz model (Linton, 1994), and

(vii) the Geeraerd model (Geeraerd et al. 2000). The method

of non-linear least squares was applied using Matlab

R2011b (Mathworks, USA) and Curve fitting toolbox.

Optimal values of the parameters of the mathematical

models and R2 values were determined. R2 or the coefficient

of determination is a statistical measure for the goodness of

fit, i.e., it is a correlation between the predicted and

experimentally determined values. Its values can be

between 0 and 1 and the closer its value is to 1, the better the

fit is. Natural logarithms of mathematical models were fitted

to natural logarithms of the experimental data. This pre-

vented the residuals at higher proportions of surviving cells

from influencing the R2 value the most. Treatment time t

was understood as the time of exposure of cells to the

electric field (E-field). It was calculated as

t ¼ NT ; ð3Þ

where N means number of the applied pulses and T the

duration of one pulse.

The first-order kinetics model has a long history

(Bigelow 1921):

SðtÞ ¼ expð�ktÞ: ð4Þ

Here, t denotes the time of exposure of bacteria to high

temperature and k is the first-order parameter, i.e., the

speed of decrease of the number of bacteria as a function of

the duration of their exposure to heat.

Hülsheger studied the effect of E-field on E. coli and

derived an exponential empirical model (Hülsheger et al.

1981):

Sðt;EÞ ¼ t

tc

� ��ðE�EcÞ
k

; ð5Þ

Table 1 Experimental

parameters of electric pulses,

pulse repetition frequency 1 Hz

Voltage/V Electric field/kV/cm Number of pulses/- Pulse duration/ls

Varying pulse length 0–800, step 100 0–4, step 0.5 8 50, 100 or 200

Varying pulse number 0–800, step 200 0–4, step 1 30, 50, 70 or 90 100

Table 2 Number of plated cells

in experiments with different

lengths of the pulses, 8 pulses,

1 Hz pulse repetition frequency

Voltage/V Electric field/kV/cm Number of plated cells/-

For 50 ls For 100 ls For 200 ls

0 0 100 100 100

100 0.5 100 100 100

200 1.0 120 120 120

300 1.5 150 150 150

400 2.0 200 200 200

500 2.5 200 400 400

600 3.0 400 1000 1000

700 3.5 1000 2500 2500

800 4.0 2500 10,000 25,000

Table 3 Number of plated cells

in experiments with different

numbers of the pulses, 100 ls,
1 Hz pulse repetition frequency

Voltage/V Electric field/kV/cm Number of plated cells/-

For 30 pulses For 50 pulses For 70 pulses For 90 pulses

0 0 100 100 100 100

200 1.0 120 150 200 200

400 2.0 1000 2500 25,000 25,000

600 3.0 25,000 25,000 25,000 25,000

800 4.0 25,000 25,000 25,000 25,000
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where k is a constant, which depends on the type of

microorganism, Ec is the critical value of E-field below

which there will be no inactivation (100 % survival), and tc
is the extrapolated critical value of t below which there will

also be no inactivation.

The Peleg-Fermi model (Peleg 1995) has already been

used for modeling irreversible electroporation (Garcia et al.

2014; Golberg and Rubinsky 2010) and is defined as

S E;Nð Þ ¼ 1

1þ exp
E�Ec Nð Þ
k Nð Þ

� � ; ð6Þ

EcðNÞ ¼ Ec0 expð�k1NÞ; ð7Þ
kðNÞ ¼ k0 expð�k2NÞ; ð8Þ

where Ec means critical E-field, N is the number of applied

pulses, k is the kinetic constant that defines the slope of the

curve, Ec0 is the intersection of Ec(N) with the y axis, k0 is a

constant in kV/cm, k1 and k2 are non-dimensional constants

that depend on the parameters of the pulses and on the

cells.

The Weibull model describes the time to failure of

electronic devices after they have suffered some stress. The

Weibull model is based on the observation that cells die at

different times, which are statistically distributed. Cell

death due to electroporation can also be described using the

Weibull model (van Boekel 2002). We made a parallel: cell

death as a function of E-field is also statistically dis-

tributed. In addition, no-one has so far observed any cor-

relation between biological parameters and the parameters

of the Weibull model. We thus transformed the Weibull

model as a function of treatment time to a function of E-

field. In previous studies, the independent variable was

treatment time (time of exposure to high temperature or E-

field). The Weibull model as a function of t is

S tð Þ ¼ exp � t

b

� �n� �
; ð9Þ

where t denotes time of exposure, b is a scale parameter,

and n is a shape parameter. We can transform the Weibull

model and obtain a model as a function of E:

S Eð Þ ¼ exp � E

b

� �n� �
; ð10Þ

where all the parameters have the same meaning as in (9).

The logistic model can be used for describing distribu-

tions with a sharp peak and long tails (Cole et al. 1993).

The logistic model is defined as

S tð Þ ¼ 10

x�a

1þexp
4rðs�log10ðtÞ

x�a

� �
 !

; ð11Þ

where parameter a denotes the common logarithm of the

upper asymptote (survival around t = 0), x the common

logarithm of the lower asymptote (survival when t ? ?),

r the maximum slope, and s the position of the maximum

slope. We measured the proportion of surviving cells. After

a short treatment time, most of the cells are still alive,

survival is 1. Therefore,

a ¼ log upper asymptoteð Þ ¼ log 1 ¼ 0: ð12Þ

This allows us to simplify the Eq. (11) by assuming

a = 0:

S tð Þ ¼ 10

x

1þexp
4rðs�log10ðtÞ

x

� �
 !

; ð13Þ

where all the parameters have the same meaning as in (11).

A cumulative distribution of cell death was obtained in

the experimental results. This means that the experimental

data point of proportion of destroyed cells includes also

cells that would already die at shorter treatment times or

lower E-field values. A derivative of the cumulative cell

death distribution shows how cell death is spread over

different treatment times or E-field values; it shows cell

death distribution. Because our experimental data was

discontinuous, we obtained the derivative by calculating

the difference in survival between two consecutive data

points. We thus obtained the proportion of cells that die in

a certain range of treatment time or E-field values, for

example from 3000 to 5000 ls or from 1 to 2 kV/cm.

Shorter treatment times or lower E-field values do not kill

cells in that range. In dependence on the logarithm of the

treatment time, the derivative of the cumulative cell death

distribution (the derivative of experimental results) has a

sharp peak and two long tails. A similar shape of cell death

distribution is obtained as a function of E-field (without the

logarithm). As already mentioned, the logistic model is

suitable for distributions with a sharp peak and long tails.

This was our basis for the transformation from treatment

time as the independent variable to E-field as the inde-

pendent variable. The model is

S Eð Þ ¼ 10

x

1þexp
4rðs�EÞ

xð Þ

� �
; ð14Þ

where r and s have the same meaning as in (11) and x
denotes survival when E ? ?.

The Gompertz model is usually used for describing

growth of a tumor but in an adapted form it has also been

used for cell survival (Linton 1994):

S tð Þ ¼ exp Ae�e B0þB1 tð Þ � Ae�eB0
� �

: ð15Þ

A denotes the natural logarithm of the lower asymptote, B0

is the length of the upper asymptote, and B1 is connected to

the speed of cell death. B1’s absolute value determines the

speed, the minus sign means a decrease in the number of
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cells and plus means an increase. The adapted Gompertz

model is purely empirical and was chosen because it offers

an excellent goodness of fit. High R2 is also obtained if the

independent variable is E-field instead of treatment time.

This was the reason for the transformation from treatment

time as the independent variable to E-field as the inde-

pendent variable. We transformed the adapted Gompertz

model to a model as a function of E:

SðEÞ ¼ expðAe�e B0þB1Eð Þ � Ae�eB0 Þ; ð16Þ

where all the parameters mean the same as in (15).

Geeraerd defined a model that describes exponential

decay of the number of surviving cells and a lower

asymptote that models the remaining resistant cells

(Geeraerd et al. 2000; Santillana Farakos et al. 2013):

S tð Þ ¼ Y0 � Nresð Þexpð�ktÞ þ Nres: ð17Þ

Y0 means the number of cells at the beginning of experi-

ments, Nres is the lower asymptote, and k is the specific

inactivation rate (the slope of the exponentially decaying

part of the curve). In our study, the number of cells was

substituted by the proportion of cells in order to scale the

model to our experimental data. At the beginning of our

experiments, the proportion of survival was always 1. We

simplified the Geeraerd model into

S tð Þ ¼ 1� Nresð Þexpð�ktÞ þ Nres; ð18Þ

where all the parameters have the same meaning as in (17).

Results

Experimental Results

Figure 2 shows the experimental results—Fig. 2a for dif-

ferent pulse lengths and Fig. 2b for different numbers of

pulses. Experimental results are shown in a semi-loga-

rithmic scale, which enables low proportions of surviving

cells to be visualized. It can be observed in Fig. 2a that

longer pulses of the same electric field (E-field) cause

lower survival. However, with 8, 200 ls pulses of 4.0 kV/

cm, survival is still higher than with 50 or more 100 ls
pulses of 4.0 kV/cm (Fig. 2b). When the E-field increases

from 1.0 to 2.0 kV/cm, the survival after 50 pulses applied

drops by two decades, while after 70 and 90 pulses it drops

by three decades. In Fig. 2b, it can be seen that the

experimental values of survival are very similar for 50, 70,

and 90 pulses of 3.0 kV/cm and 4.0 kV/cm.

Results of the Mathematical Modeling

The results of the mathematical modeling are presented in

two ways. First, Tables 4, 5, 6, and 7 summarize the optimal

values of the parameters and R2 values for all the mathe-

matical models described in the Materials and Methods

section. Figures 3, 4, 5, and 6 show plotted optimized

mathematical models. When the results of the fitting are

presented in linear scale, the curves go straight and exactly

0 0.5 1 1.5 2 2.5 3 3.5 4
10-6

10-5

10-4

10-3

10-2

10-1

100

E /kV/cm

S
/-

50 sµ
100 sµ
200 sµ

a

0 0.5 1 1.5 2 2.5 3 3.5 4
10-6

10-5

10-4

10-3

10-2

10-1

100

E /kV/cm

S
/-

8 pulses
30 pulses
50 pulses
70 pulses
90 pulses

b

Fig. 2 Experimental results of the clonogenic assay for different

pulse lengths (a) and for different numbers of pulses (b) as a function
of the applied electric field (E). Mean ± one standard deviation is

shown, pulse repetition frequency 1 Hz. If mean minus standard

deviation is lower than 0, it cannot be presented in a semi-logarithmic

scale and there is no error bar. The survival is lower when longer

pulses are applied and the electric field is held fixed. However, higher

number of pulses decreases the survival considerably. With 8, 200 ls
pulses of 4 kV/cm, the survival is still higher than with 50 or more

100 ls pulses, 4 kV/cm
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through the experimental results. In semi-logarithmic scale,

deviations are more easily noticed. When fitting survival

models to experimental results, it is advisable also to look at

the data in semi-logarithmic scale. All our results are

therefore presented in semi-logarithmic scale. When com-

paring the values of our optimized parameters with the val-

ues in other studies, itmust be borne inmind that on the x axis

there are t in ls or E-field in kV/cm.

Mathematical Models Describing Cell Survival

as a Function of Treatment Time

A good fit could not be achieved using the Hülsheger

model (5) because there were problems with the initial

value of the parameters and local minima. The results are

thus not shown and we do not discuss them.

In Fig. 3, (3.0 kV/cm, 100 ls, 1 Hz) it can be observed

that the Weibull model (9), the logistic (13), the adapted

Gompertz (15), and the Geeraerd models (18) are all

similarly shaped and go very close to the experimental

points. From the point of goodness of fit, they can be seen

as equally good. The first-order kinetics model (4) is only

able to describe a straight line in semi-logarithmic scale

(Fig. 3, gray dashed line). It is unadaptable and offers low

R2 (0.47–0.90). Because of very low goodness of fit, the

meaning of its parameters is not relevant.

Table 4 gives the optimized values of the parameters of

the mathematical models as a function of treatment time. In

the Weibull model (9), the values of n and b decrease with

a higher applied E-field. In the logistic model (13), the

value of the parameter x decreases with higher E. The

values of parameter s are very similar. The values of r
increase with longer pulses, as expected (higher value,

steeper slope). In the adapted Gompertz model (15), the

values of parameter A decrease, which means a lower

asymptote is reached. The values of parameters B0 and B1

also decrease, which means faster cell death with longer

pulses applied. In the Geeraerd model (18), Nres corre-

sponds to the remaining surviving cells and decreases with

higher E (similar to parameter A in the Gompertz model).

Parameter k corresponds to the speed of decrease and also

increases, both as expected.

Mathematical Models Describing Cell Survival

as a Function of Electric Field

In Fig. 4 (8, 100 ls pulses, 1 Hz), it can be observed that

all models look very similar. The difference is in their

behavior at high E-fields, i.e., in extrapolation of the data.

In terms of goodness of fit, all four models on Fig. 4

(Peleg-Fermi (6), Weibull (10), logistic (14) and Gompertz

(16)) can be considered equal.

In Fig. 5 (90, 100 ls pulses, 1 Hz), however, the dif-

ferences among the models are more pronounced. They no

longer overlap as shown in Fig. 4. The Peleg-Fermi (6) and

Weibull models (10) go close but not exactly through the

Table 4 Calculated optimal values of parameters of mathematical models as a function of treatment time and R2 value for different electric field

values

Mathematical models Parameters Optimized values of parameters and R2 value

For 2.0 kV/cm (400 V) For 3.0 kV/cm (600 V) For 4.0 kV/cm (800 V)

First-order kinetics model (4) k 0.0008805 0.001382 0.001582

R2 0.9096 0.8237 0.4747

Weibull model (9) b 908 112 3.178

n 0.8915 0.5490 0.3105

R2 0.9135 0.9442 0.9225

Logistic model (13) x –3.925 –6.026 –20.760

r –5.059 –4.240 –2.815

s 3.659 3.532 4.078

R2 0.9346 0.9607 0.9260

Adapted Gompertz model (15) A –8.18 –14.15 –16.05

B0 1.419 0.3732 1.8e-6

B1 –0.0004339 –0.0004419 –0.001291

R2 0.9389 0.9661 0.8539

Geeraerd model (18) Nres 0.0005619 4.157e-5 4.014e-5

k 0.001004 0.002011 0.007824

R2 0.9390 0.9788 0.8411

In all the experiments, pulses of 100 ls duration with pulse repetition frequency 1 Hz were applied
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experimental points (R2 between 0.90 and 0.91), since they

cannot model the lower asymptote but only a shoulder and

then a constant decrease of cell survival (on a semi-loga-

rithmic scale). The logistic and the adapted Gompertz

models, on the other hand, go exactly through the experi-

mental points (R2[ 0.99) and also look very similar. From

the point of view of the adaptability of the models, the

logistic and Gompertz models are better than the Weibull

(10) and Peleg-Fermi models (6).

Table 5 shows the results of fitting mathematical models

as a function of E-field for different pulse lengths. The

results of fitting the Peleg-Fermi model (6), the Weibull

model (10), the logistic model (14), and the adapted

Gompertz model (16) as a function of E-field are presented.

For each model, the optimal values of the parameters and

R2 value for three different pulse durations (50, 100 and

200 ls) are shown.

Table 6 presents the results of fitting mathematical

models as a function of E-field for different numbers of

pulses. Optimal values of parameters and R2 values for

each fit are shown. The pulse length was held fixed at

100 ls. It can be seen that R2 values are relatively high for

Table 5 Calculated optimal

values of parameters of

mathematical models as a

function of electric field and R2

for different lengths of the

pulses

Mathematical models Parameters Optimal values of parameters and R2 value

For 50 ls For 100 ls For 200 ls

Peleg-Fermi model (6) Ec/kV/cm 2.766 2.344 2.001

k/kV/cm 0.4160 0.2677 0.2871

R2 0.9968 0.9975 0.9836

Weibull model (10) b 2.992 2.408 1.936

n 2.831 3.645 2.695

R2 0.9900 0.9964 0.9615

Logistic model (14) x –1.555 –3.780 –2.961

r –0.963 –1.888 –2.082

s 3.383 3.537 2.916

R2 0.9966 0.9951 0.9809

Adapted Gompertz model (16) A –5.348 –19.080 –7.692

B0 3.528 2.683 4.149

B1 –1.013 –0.6438 –1.505

R2 0.9987 0.9991 0.9961

In all the experiments, 8 pulses with pulse repetition frequency 1 Hz were applied

Table 6 Optimized values of parameters of mathematical models as a function of E and R2 for different numbers of the pulses; the column 8

pulses is the same as the column 100 ls in Table 5

Mathematical models Parameters and R2 Optimal values of parameters and R2 value

For 8 pulses For 30 pulses For 50 pulses For 70 pulses For 90 pulses

Peleg-Fermi model (6) Ec (kV/cm) 2.3440 0.9720 0.9517 0.4298 0.4853

k (kV/cm) 0.2677 0.4260 0.2446 0.2833 0.2852

R2 0.9975 0.8959 0.9637 0.9085 0.9148

Weibull model (10) b 2.336 1.030 0.731 0.388 0.416

n 3.410 1.439 1.480 1.076 1.098

R2 0.9989 0.9652 0.9408 0.9004 0.9039

Logistic model (14) x –3.78 –2.93 –4.99 –4.58 –4.63

r –1.888 –1.474 –3.308 –5.029 –4.483

s 3.537 2.260 2.243 1.754 1.863

R2 0.9951 0.9918 0.9989 0.9825 0.9995

Adapted Gompertz model (16) A –19.08 –7.23 –11.74 –10.82 –10.96

B0 2.683 2.439 3.849 3.372 3.348

B1 –0.643 –1.221 –1.894 –2.221 –2.037

R2 0.9991 0.9987 0.9999 0.9865 0.9999

In all the experiments, pulses of 100 ls duration with pulse repetition frequency 1 Hz were applied

872 J. Dermol, D. Miklavčič: Mathematical Models Describing Chinese Hamster Ovary Cell Death…

123



all the fits in Tables 5 and 6. The trends of the models are

therefore analyzed more carefully for each of the models

separately in the following paragraphs.

The plotted optimized Peleg-Fermi model (6) is pre-

sented in Fig. 6a. The Peleg-Fermi model (6) has an

additional two models, which describe Ec0 (7) and k (8) as

functions of the number of pulses (N). Optimal parameters

of these two models (7), (8) are plotted in Fig. 6b. In

Fig. 6a, it can be seen that for higher numbers of pulses (50

or more), the model does not go exactly through the

experimental points. For 8 and for 30 pulses, the Peleg-

Fermi model describes the data very well, since there are

no problems with modeling the lower asymptote. In

Fig. 6b, it can be seen that Eq. (7) fits the experimental

points well (black circles). However, Eq. (8) does not fit

the data well (white squares on Fig. 6b), R2 = 0.049.

Equation (8) suggests an exponential dependence of k on

the number of pulses, while in our data the value of k is

almost constant.

Table 7 presents additional results of fitting the Peleg-

Fermi model, in which optimal values of the parameters

and R2 value for each fit of Eqs. (7) and (8) are shown. As

already observed in Fig. 6b, Eq. (8) does not describe our

data well. It can be observed that the goodness of fit is

relatively high for the Peleg-Fermi model ([0.89) for dif-

ferent durations (Table 4), as well for different numbers of

pulses (Table 5).

The Weibull model as a function of E-field (10) has a

similar shape as the Peleg-Fermi model (6) (Fig. 5). The

Weibull model cannot describe a sigmoid shape in semi-

logarithmic scale, so a deviation at higher E-field of more

than 8 pulses is noticeable (compare gray solid lines in

Figs. 4 and 5). The meaning of the parameters of the

Weibull model has not yet been established (10) and there

is also no trend in the value of parameter n in our results.

The value of parameter b decreases with longer pulses

(Table 5) and with a higher number of pulses applied

(Table 6).

The logistic (14) model is more adaptable and has a

concave (Fig. 4) or sigmoid shape (Fig. 5) in semi-loga-

rithmic scale. When fitting the logistic model (14) to the

results of different pulse lengths (Table 5), r decreases

(faster death). Parameter s denotes where on the x axis the

decrease is fastest. It is similar for all pulse lengths

(Table 5). When only 8 pulses of different lengths are

applied (Table 5), the asymptote is not reached (Fig. 1a).

Although the model predicts an asymptote, it is outside the

Table 7 Calculated optimal values of parameters of additional Peleg-

Fermi mathematical models (7), (8) for Ec and k as functions of N

Mathematical models Parameters Optimal values

of parameters

and R2 value

Peleg-Fermi mathematical

model for Ec(N) (7)

Eco (kV/cm) 2.734

k1 0.02506

R2 0.9237

Peleg-Fermi mathematical

model for k(N) (8)

k0 (kV/cm) 0.3259

k2 0.001598

R2 0.04916
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Fig. 3 Mathematical models (lines) and experimental results (sym-

bols) showing cell survival as a function of the treatment time (3 kV/

cm, 100 ls, 1 Hz). On y axis, there is the proportion of the surviving

cells (S) in logarithmic scale. For each fit, R2 value is shown. Except

for the first-order kinetics model (4), all the models offer a good fit

(R2[ 0.94). We found the adapted Gompertz (15) and the Geeraerd

model (18) to be the most suitable
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Fig. 4 Mathematical models (lines) and experimental results (sym-

bols) showing cell survival as a function of electric field (8 pulses,

100 ls, 1 Hz). On y axis, there is the proportion of the surviving cells

(S) in logarithmic scale. For each fit, R2 value is shown. All the

models as a function of electric field offer a similarly good fit

(R2[ 0.99). We found the adapted Gompertz (16), the Peleg-Fermi

model (6)–(8), and maybe the logistic (14) model to be the most

suitable
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range in which our models are valid. In this case, the value

of x is not relevant since the models are not meant for

extrapolation of the data. When fitting the logistic model to

the results of different numbers of pulses, the parameters

cannot be so easily explained. Parameter x is similar with

more pulses applied (Table 6) since we reach a similar

lower asymptote (Fig. 1b). Parameter r is similar for 70

and 90 pulses and on average higher than for 30 and 50

pulses. This means faster cell death when 70 or 90 pulses

are applied. Parameter s mostly decreases with a higher

number of pulses applied (Table 6), which means that cells

die at lower E-fields when more pulses are applied.

When applying the adapted Gompertz model (16) to the

results of different pulse lengths, the values of parameter

A are quite different (Table 5) because the lower asymptote

was not reached in the experiments (Fig. 2a). Parameter

A also does not have a trend with different numbers of

pulses applied (Table 6), but the reason could be that with

50, 70, or 90 pulses, there is a similar proportion of sur-

viving cells at higher E-field (around 10-5). Parameters B0

and B1 in Table 5 have similar values since the experi-

mental values for different lengths of the applied pulses are

similar. The value of B0 is similar for different numbers of

pulses (Table 6) since it denotes the length of the upper

asymptote, which is similar for all lengths of pulses

(Fig. 5). B1 decreases with more pulses (Table 6), which

means faster death with more pulses applied.

Discussion

Several mathematical models are able to describe experi-

mental results. The most appropriate models as a function

of treatment time are the adapted Gompertz (15) and the

Geeraerd models (18). The logistic model (13) can be used

but a clearer meaning of its parameters needs to be estab-

lished. The most appropriate models as a function of

electric field (E-field) were the Peleg-Fermi (6), the logistic

(14), and the adapted Gompertz models (16). Mathematical

models of cell survival could thus be integrated into

treatment planning of electrochemotherapy and irreversible
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Fig. 5 Mathematical models (lines) and experimental results (sym-

bols) showing cell survival as a function of electric field (90 pulses,

100 ls, 1 Hz). On y axis, there is the proportion of the surviving cells

in logarithmic scale. For each fit, R2 value is shown. Experimental

values at 3 kV/cm and at 4 kV/cm (the lower asymptote) are on the

limit of our detection. We found the adapted Gompertz (16), the

Peleg-Fermi model (6)–(8), and maybe the logistic (14) model to be

the most suitable
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Fig. 6 The Peleg-Fermi model (6) for different numbers of pulses

applied. For each fit, R2 value is shown. a Symbols are the

experimental values for 1 Hz, 100 ls, lines show the Peleg-Fermi

model (6). b Symbols are the optimized values of Ec and k, lines show

the optimized mathematical models (7) and (8). On y axis, there are

the values of Ec and k in kV/cm. Since the Peleg-Fermi model (6)

incorporates dependence on E as well as on N (7), (8) it already

connects two treatment parameters (electric field and number of the

pulses) and can therefore be used more easily than other models

investigated in this study
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electroporation as a method of tissue ablation. It must be

emphasized that the models should not be extrapolated,

since they predict different behaviors at very high E-fields

or very long treatment time. Some of them keep on

decreasing and some of them reach a stable value on a

semi-logarithmic scale.

Experimental Considerations

The electrical parameters chosen for the experiments were

similar to electrochemotherapy and irreversible electropo-

ration electrical parameters typically used in vivo. For

electrochemotherapy parameters, we used a fixed number

of pulses (8) and we varied the length of the pulses. In

electrochemotherapy treatments, 100 ls pulses are usually

used but to evaluate the trend of the parameters of the

mathematical models we also applied 50 ls and 200 ls
pulses (results on Fig. 2a). For irreversible electroporation

parameters, we tried to cover the parameter space as

equally as possible. In an orthogonal space, where on one

axis there was number of the pulses (N) and on the other E-

field, we equidistantly sampled it by increasing the voltage

by 200 V and the number of pulses by 30 (results on

Fig. 2b).

An important aspect of irreversible electroporation

experiments is the effect of increased temperature. Because

of high voltage, many pulses, and high current, the tem-

perature in the tissue or (as in our case) in the cell sus-

pension can be increased considerably by Joule heating

(Županič and Miklavčič 2011). Heating can change the

conductivity of the cells, as well as damage them (Neal

et al. 2012). Cell death could therefore be a thermal and not

electrical effect (Garcia et al. 2014). The temperature of the

suspension was therefore measured before and within 5 s

after the end of application of 90 pulses, 4.0 kV/cm (the

most severe electrical parameters employed in our study).

Even with the most severe electrical parameters, the tem-

perature within 5 s after the end of pulse application did

not surpass 40 �C. This proved that, under our experi-

mental conditions, cell death can indeed be considered

solely as a consequence of irreversible electroporation.

The percentage of surviving cells was first evaluated

using tetrazolium based assay (MTS assay). The MTS

assay, however, proved not suitable for distinguishing

between low proportions of surviving cells and it cannot be

used to quantify the number of living cells exactly. The

MTS assay is based on measurements of absorbance, which

is then correlated to the number of metabolically active

cells. After reaching 2 % of the surviving/metabolically

active cells, the number did not drop, no matter how much

higher an E-field or how many more pulses we applied.

Since irreversible electroporation can be used successfully

to treat tumors, a lower percentage of surviving cells

should be achievable. In addition, metabolic activity and

the ability to divide do not necessarily correlate. We

therefore decided to use clonogenic assay, which requires

more time than the MTS assay but enables exact quantifi-

cation of the number of clonogenic cells. With more severe

treatments, we could detect as low as 1 surviving cell in

25,000 (4 9 10-5 survival). In some experiments, the

survival was lower than 4 9 10-5 because the final pro-

portion of surviving cells was calculated as a mean over at

least four repetitions. Often no cells survived (0 survival)

with severe treatments. In calculating the mean, the 0

survival caused the final proportion of the survival to be

lower than 4 9 10-5. The detection limit of our clonogenic

assay was thus reached at approximately 4 9 10-5. The

lower asymptote that can be observed in Fig. 2b for 50, 70,

and 90 pulses at 3.0 and 4.0 kV/cm could be a consequence

of the detection limit. For more precise (and lower), pro-

portions of surviving cells at high E-field values and many

pulses, more cells should be seeded, which can be achieved

using a denser cell suspension. However, more precise

results with denser cell suspension are perhaps not even

needed. In vivo, the last few clonogenic cells seem to be

eradicated by the immune system when performing elec-

trochemotherapy (Calvet et al. 2014; Mir et al. 1992; Serša

et al. 1997), as well as irreversible electroporation (Neal

et al. 2013). The proportion of cells needed to kill to cause

a complete response and destroy the whole tumor should be

determined in future studies.

In our experimental results, we determined that the

transition area between maximum and minimum survival

gets narrower, i.e., the death of cells is quicker with higher

numbers of pulses applied (Fig. 1b). This is in agreement

with the theoretical predictions made (Garcia et al. 2014)

using the Peleg-Fermi model. The authors predicted that

the transition zone between electroporated and non-elec-

troporated tissue becomes sharper when more pulses are

applied.

There are also other parameters of the electric pulses,

and biological parameters, which could affect the survival

of cells. For example, the pulse repetition frequency in our

experiments was always 1 Hz and when calculating the

treatment time as t ¼ NxT ; we ignored the effect of pulse

repetition frequency. There are contradicting studies that

report on its effect on cell survival (Pakhomova et al. 2013;

Pucihar et al. 2002; Silve et al. 2014). The effect of pulse

repetition frequency on the shape of survival curves needs

also to be investigated in future studies. It must be

emphasized that even if t1 ¼ t2 ¼ N1T1 ¼ N2T2 his cannot

be necessarily understood as equal if T1 6¼ T2 and N1 6¼ N2:

Different repetition frequencies affect cell permeabiliza-

tion, and cell survival and temperature increase differently.

We therefore present and discuss the results of different

numbers and different lengths of applied pulses separately.
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The value of E-field applied in the tissue is needed for

correct prediction of surviving cells. At the moment, the

most reliable method of determining E-field in tissues is

numerical modeling. However, in future, the E-field in

tissue could be monitored using current density imaging

and magnetic resonance electrical impedance tomography

(Kranjc et al. 2012, 2015). Cell survival in tissue could be

correlated even better by taking into account conductivity

changes (Kranjc et al. 2014) measured during application

of the pulses.

One possible problem with prediction of cell death in

tissues is the use of mathematical models fitted in vitro in

an in vivo environment. Tissues, unlike cell suspensions,

are heterogeneous; there are connections between cells;

cells are irregularly shaped; extracellular fluid is more

conductive than the pulsing buffer used in our study; and

there is an immune system present. Before starting clinical

studies, the parameters of electric pulses are first tested on

cell lines. In the past, good correlation was found between

the behavior of cells in vitro and in vivo. We expect sur-

vival curves in tissues to have a similar shape as in our

in vitro study. The question is whether there will be a lower

asymptote present or survival as a function of treatment

time or E-field will keep decreasing. Our models can

describe both options. The optimal values of the parameters

depend on the sensitivity of the cells to the electric pulses

and will probably be different. If the threshold values of the

E-field for reversible and irreversible electroporation for

different tissues are compared, different values can be

found. For example, in vivo the threshold values of the E-

field for muscle (8 9 100 ls pulses) for reversible elec-

troporation have been determined to be 0.08 kV/cm and

0.2 kV/cm (parallel and perpendicular directions, respec-

tively) and for irreversible electroporation to be 0.4 kV/cm

(the same for parallel and perpendicular directions of

muscle fibers) (Čorović et al. 2010, 2012). In vivo the

threshold for irreversible electroporation of healthy pros-

tate tissue has been determined to be 1 kV/cm (90 9 70 ls
pulses) (Neal et al. 2014), and for healthy brain tissue

0.5 kV/cm (90 9 50 ls pulses) (Garcia et al. 2010). For

healthy liver tissue, the threshold for reversible electropo-

ration has been reported to be 0.36 kV/cm and for irre-

versible electroporation 0.64 kV/cm (Miklavčič et al.

2000). The thresholds thus seem to be different for dif-

ferent tissues (Jiang et al. 2015). In vitro the thresholds are

usually higher and different for different cell lines: for

reversible electroporation around 0.4 kV/cm and for irre-

versible electroporation around 1.0 kV/cm for 8 9 100 ls
pulses (Čemažar et al. 1998). The curves in vivo can

therefore be expected to have a similar shape but they will

be scaled according to the thresholds for different types of

tissue.

Mathematical Modeling

It was mentioned in the Introduction section that predictive

power is one of the three most important criteria for

choosing the model (in addition to goodness of fit and

trends of values of the optimized parameters of the mod-

els). In our current study, however, predictive power was

not assessed. For assessing predictive power, our optimized

models must be validated on the samples for which the

survival will be predicted. In our case, the models will be

used in predicting death of tissues in electrochemotherapy

and irreversible electroporation. Validation of the models

on tissues is beyond the scope of this paper but must be

done before implementing the models in actual treatment

planning of electroporation-based treatments. The reader

should also note that all the models approach 0 survival

asymptotically but can never actually reach 0 survival. As

already discussed, it is still not known how many cells must

be killed to achieve a complete response of the tumor.

Based on the fact that the immune system seems to erad-

icate the last remaining tumor cells, it seems that our

models adequately describe 0 to 100 % survival. It remains

to be established, however, what percentage of cells actu-

ally needs to be killed by irreversible electroporation.

Mathematical Models Describing Cell Survival

as a Function of Treatment Time

We fitted the first-order kinetics (4), the Weibull (9), the

logistic (13), the adapted Gompertz (15), and the Geeraerd

(18) models to the experimental data as a function of

treatment time. At 1.0 kV/cm (200 V), the percentage of

surviving cells decreased to 68 % for 90 pulses, 100 ls,
1 Hz. The results of fitting the models to 200 V are thus not

presented, since the decrease in survival was too small to

be relevant for describing cell death due to electroporation.

It can be seen in Fig. 3 that, except for the first-order

kinetics model (4), all the models describe the experi-

mental points well. From the point of goodness of fit, the

Weibull (9), the logistic (13), the adapted Gompertz (15),

and the Geeraerd model (18) are equal. The next criterion

is the trend of parameters which is to be discussed for each

model separately in the next paragraph.

The first-order kinetics model (4) has a very low R2

(Table 4) and it is not suitable for describing cell death. It

is still very often used for describing microbial inactiva-

tion. (Peleg 2006) stated that the first-order kinetics model

is popular because any data can be described with it if the

data are sampled too sparsely. The second reason for its

popularity is its long history. In the Weibull model (9), the

parameters have a trend. However, in many studies, it has

been shown that parameter n is not connected to any
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biological or other parameter (Álvarez et al. 2003; Mafart

et al. 2002; Stone et al. 2009; van Boekel 2002). It only

describes the shape of the curve (concave, convex, linear).

The Weibull model is often used because it is highly

adaptable and can describe different shapes. Because the

Weibull model was used in many previous studies, but the

meaning of the parameters was not established in any of

them, the Weibull model is most likely not suitable for

predicting cell death after electroporation. The logistic

model (14) has a high R2 and most of its parameters can be

connected to some biological parameter. It may be suitable

for predicting cell death due to electroporation but the

meaning of its parameters must be more clearly defined. In

the adapted Gompertz model (16), both parameters B0 and

B1 behave as expected (shorter upper asymptote and stee-

per decline). The Geeraerd model was defined for the

shapes of curves just like ours—first the number of the

cells exponentially decreases and, after a certain treatment

time, it reaches a lower asymptote. The R2 value was high

and there was a trend of the values of the parameters.

It can be concluded that, as a function of treatment time,

adapted Gompertz and Geeraerd models are suitable, while

the logistic model has potential but should be tested with

more electrical parameters.

Mathematical Models Describing Cell Survival

as a Function of Electric Field

It can be seen in Fig. 4 that if there is no lower asymptote

present, all the models describe the data well and have a

similar R2 value. In Fig. 5, a lower asymptote is present and

the goodness of fit is different for different models. Looking

at Figs. 4 and 5, it can be said that the logistic (14) and the

adapted Gompertz models (16) are most suitable. In the

Weibull model (10) (Tables 5, 6), there is no trend in the

values of the optimized parameters. The Weibull model is

not suitable for the use in treatment planning. The adapted

Gompertz model (16) has high R2 and the values of its

parameters can be explained. The adapted Gompertz model

is thus suitable for describing cell death after electroporation.

The logistic model (14) is highly adaptable. Because of

the detection limit, not all values of the parameters behave

as expected. Until the detection limit is reached (Fig. 2a),

all the parameters can be explained (Table 5). It can

therefore be said that the logistic model is probably suitable

but it should be tested on a larger dataset.

We mentioned before that the Peleg-Fermi model (6)

does not well describe cell death for higher numbers of the

pulses. The reason is that it is not suitable for describing

lower asymptotes. However, it is very likely that the lower

asymptote is a consequence of the detection limit of the

clonogenic assay. In this case, it is not problematic that the

lower asymptote cannot be described. If it is discovered

in vivo that there is a lower asymptote present, the use-

fulness of the Peleg-Fermi model will have to be evaluated

separately for in vivo data. When the Peleg-Fermi model

(6) was fitted to our in vitro experimental results, the E-

field was the independent variable and the number of the

pulses or their length was the parameters. Unfortunately,

with different lengths of applied pulses, we could not

model the change of k(N) and Ec(N), since there is no

model to connect k and Ec with the length of the applied

pulses. With different numbers of applied pulses (Table 6),

we could also evaluate models for Ec(N) (7) and k(N) (8)

(Table 7). The value of Ec decreases with a higher number

of pulses (Table 6), is in agreement with our understanding

of Ec as a critical E-field (Pucihar et al. 2011) and can be

described using the proposed model (7). Ec changes less

with a higher number of pulses. An even higher number of

pulses applied would probably not lower the critical elec-

tric field but most likely only increase the heating. Values

of k are approximately similar for all different numbers of

applied pulses and they cannot be described using the

proposed model (8). One reason may be the sensitivity of

the clonogenic assay, as mentioned before. With more

pulses, there could be even lower proportions of surviving

cells, the model would be steeper and the value of

parameter k would decrease. In (Golberg and Rubinsky

2010), the model was fitted to experimental data of up to 10

pulses applied, while in our study we fitted it to up to 90

pulses applied. Equation (8) may be exponential for up to

10 pulses applied but for more pulses it seems more like a

constant. Equation (8) should be verified on tissues to see

whether there is an exponential dependency. We assume

that the Peleg-Fermi model (6), (7) will be suitable for use

in treatment planning of electrochemotherapy and irre-

versible electroporation, while the dependency of param-

eter k on the number of pulses (8) remains questionable.

We next compared the values of our optimized param-

eters to the values reported in the literature. Our values of

Ec and k are lower than in (Golberg and Rubinsky 2010)

and optimized to describe the experimental results for 8–90

pulses. The authors in (Golberg and Rubinsky 2010) opti-

mized their parameters to 1–10 pulses, whereby the

decrease of the number of cells in dependency on the E-

field is slower and smaller than for more pulses. This could

explain the lower values of k and Ec as well as the non-

exponential dependence of Eq. (8). The Peleg-Fermi model

(6) seems the most promising of all the models analyzed in

this study, since it also includes dependency on the number

of pulses.

It can be concluded that the Peleg-Fermi (6), the adapted

Gompertz (16), and probably also the logistic model (14)

can all be used for describing cell death due to electropo-

ration and could all be used in treatment planning of

electrochemotherapy and irreversible electroporation.

J. Dermol, D. Miklavčič: Mathematical Models Describing Chinese Hamster Ovary Cell Death… 877

123



Since the Peleg-Fermi model incorporates dependence on

E-field as well as on the number of pulses it already con-

nects two electrical parameters and can therefore be used

more easily, while such connections still have to be

determined for other models.

Conclusion

Mathematical models can describe cell death after elec-

troporation. Hopefully, they can also be used in treatment

planning of electrochemotherapy and irreversible electro-

poration as a method of tissue ablation. Mathematical

models suitable for treatment planning have to describe the

data well, have predictive power, and their parameters have

to have a trend. Using the probability of cell death, the

treatment plan can be made more reliable and also more

comprehensive. Instead of displaying the electric field

around the electrodes, the probability of tissue destruction

around the electrodes can be shown. In this study, it was

shown that not only the Peleg-Fermi but also other models

are suitable for describing in vitro experimental results.

However, it still needs to be determined whether the pro-

posed mathematical models also have predictive and not

just descriptive power. Our results are valid only for one

cell line in suspension under our experimental conditions.

The question is whether mathematical models could also be

translated to tissues and more complex geometries. This

validation should be done on tissues since the models will

be used on tissues. Applying mathematical models of sur-

vival to tissues is thus the next step.
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Appendix: Numerical Model of Temperature
Distribution

We calculated temperature distribution to determine that 90,

100 ls pulses of 4 kV/cm and 1 Hz repetition frequency do

not induce significant Joule heating. A numerical model of a

drop of cell suspension between parallel plate electrodes was

made in ComsolMultiphysics (v4.4, Comsol, Sweden) using

Electric Currents, Heat Transfer, and Multiphysics modules

in time-dependent analysis. Electrodes were modeled as two

blocks of 20 9 10 9 1 mm and a drop of cell suspension

was modeled as a block of 7 9 7 9 2 mm. Two boundaries,

one on each electrode, were modeled as terminals, with

?400 V and-400 V in the first 90 s of the simulation, while

the other boundaries were electrically insulated. Similar as in

(Garcia et al. 2011a, b), only one pulse was applied for 90 s,

but we multiplied the Joule heating by the duty cycle (du-

ration/period) to adjust the amount of delivered energy. We

ran the simulation for an additional 5 s after the pulse

application to validate the model with our temperature

measurements, since measurements of temperature were

made within 5 s after the pulse application.

The change of conductivity due to cell electroporation

was disregarded in the model, since our cell suspension

was dilute. The values of parameters used in the simulation

are shown in Table 8. The properties of the cell suspension

(except for electrical conductivity, which is characteristic

of our electroporation buffer) are the same as for water.

The model was validated with current and temperature

measurements at 90, 100 ls pulses, 4 kV/cm, 1 Hz repe-

tition frequency. The predicted current (3.3 A) was in the

same range as the measured current (from 2.9 to 3.5 A).

Temperature measured within 5 s after the pulse applica-

tion was 37.0 �C, while the predicted temperature 5 s after

Table 8 Parameters, used in our numerical model, with their symbols, values, and units

Name of the parameter Symbol Value Units

Electrical conductivity rs 0.162[S/m] 9 (1 ? 0.02 9 (T[degC]-20)) S/m

re 1.73913[MS/m] 9 (1 ? 0.00094 9 (T[degC]-20))

Heat capacity at constant pressure Cps 4200 J/(kg K)

Cpe 500

Density qs 1000 kg/m3

qe 8000

Thermal conductivity ks 0.58 W/(m K)

ke 15

Relative permittivity es 80 –

ee 1

Subscript s denotes cell suspension and subscript e denotes electrodes
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the pulse application was 37.6 �C. The model thus ade-

quately described our experiments.

The temperature distribution on the surface of the cell

suspension and on the electrodes, and a slice through the

drop of cell suspension after 90 pulses, is shown in Fig. 7.

Since the temperature of the cell suspension does not

exceed 42 �C, under our experimental conditions cell death

can indeed be ascribed to electroporation.
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Dermol J, Miklavčič D (2014) Predicting electroporation of cells in an

inhomogeneous electric field based on mathematical modeling

and experimental CHO-cell permeabilization to propidium

iodide determination. Bioelectrochemistry 100:52–61
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Mali B, Jarm T, Kos B, Pavliha D, Grčar Kuzmanov B, Čemažar
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