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Effective-susceptibility tensor for a composite with ferromagnetic
inclusions: Enhancement of effective-media theory and alternative
ferromagnetic approach
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For calculating magnetic properties of a composite usually effective-medium theories are used.
However, we show that for a composite with ferromagnetic inclusions such theories, in particular,
Maxwell-Garnett equation, give peculiar and unphysical results, such as significant shift of
ferromagnetic-resonance frequency with diminishing volume fraction of ferromagnetic inclusions.
Starting from ferromagnetic theory we derive a simple expression for the calculation of the effective
magnetic susceptibility of a composite and follow with detailed magnetostatic derivation of tensor
equivalent of Maxwell-Garnett equation. By demonstrating the equivalence of both derivations we
confirm the validity of the expression which we obtained from the ferromagnetic theory.
Furthermore, we identify errors leading to unphysical results of effective-medium theories and show
the correct application of these theories. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1713042#
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I. INTRODUCTION

Determining the mixture properties as a function of co
stituents’ properties has found use in a range of fields,
ticularly in the field of electric properties. There are seve
expressions for evaluating the effective permittivity of co
posite ~here taken as mixture of matrix and inclusions!,1–4

most notably Bruggemann effective-medium theory~EMT!
for denser composites and Maxwell-Garnett~MG! equation
for dilute ~noninteracting! composites with spherical inclu
sions ~particles!.1,2 In the limit of low volume fraction all
expressions reduce to the MG equation1,2

«eff2«m

«eff12«m
5F

«p2«m

«p12«m
, ~1!

whereF is the volume fraction of particles~inclusions! and
subscriptp refer to particle~inclusion!, m to matrix, and eff
to effective property.

On the basis of equivalence of electric- and magne
field equations in the absence of the electric charge and
rent sources the same equations can be used also for c
lation of the effective magnetic permeability by simp
exchanging permittivity« with permeability m.2,3 Such
effective-medium expressions for the effective magnetic p
meability are widely used in literature.3–14 Yet, as we show
later they have only little physical relevance in case of co
posites with ferromagnetic inclusions~particles!, especially
when permeability~susceptibility! as a function of frequency
is evaluated in the range of the ferromagnetic resonance

a!Email address: vladimir.bregar@ijs.si
6280021-8979/2004/95(11)/6289/5/$22.00
-
r-
l

-

-
r-

cu-

r-

-

The aim of this paper is to determine an unambiguo
expression for the effective permeability of a dilute compo
ite with ferromagnetic inclusions, valid in whole frequenc
range and correctly reproducing the tensor nature of the
romagnetic susceptibility. In order to achieve this we fi
qualitatively compare the magnetic-susceptibility frequen
spectrum of a dilute composite, calculated from the fer
magnetic theory and the Maxwell-Garnett equation. Furth
we quantitatively derive our expression for an effectiv
susceptibility tensor from the ferromagnetic theory and c
tinue with a derivation of the magnetostatic equivalent
Maxwell-Garnett equation for a susceptibility tensor. W
show that although the Maxwell-Garnett equation
used3,5–14is not valid even far from resonance, ferromagne
theory and magnetostatics give physically correct expr
sions, however, the magnetostatic expressions are sig
cantly more complex. Finally, by comparing both expre
sions we conclude that our ferromagnetic expression is m
elegant for calculation of an effective susceptibility of dilu
and homogeneous composite with ferromagnetic inclusio

II. FERROMAGNETIC RESONANCE IN COMPOSITE

In the study of ferromagnetic materials one is interes
not only in the magnetic susceptibility but often even mo
in its frequency dependence. The frequency dependenc
the magnetic susceptibility of a homogeneous ferromagn
material is obtained from the theory of ferromagnetism~e.g.,
Ref. 15!, with notable exception of a superparamagne
single-domain particle, which pose somewhat different a
more complex problem~e.g., Ref. 16! and shall not be con-
sidered here.
9 © 2004 American Institute of Physics
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The ferromagnetic susceptibility due to the magneti
tion rotation is a tensor

x5Ux 2k

k x
U, ~2!

with the following components:15

x5
vM@vo1 iav1~Nx,y2Nz!vM#

v r
22v212iav@vo1~Nx1Ny22Nz!vM/2#

,

~3!

k5
ivvM

v r
22v212iav@vo1~Nx1Ny22Nz!vM/2#

,

where a is a dimensionless damping coefficient andvo

5gHo , vM5g4pMs with Ho denoting static magnetic
field, Ms the saturation magnetization, andg the gyromag-
netic constant. The resonance frequencyv r is defined by
Kittel’s equation as

v r
25@vo1~Nx2Nz!vM#@vo1~Ny2Nz!vM# ~4!

and is essentially determined by the static magnetic fieldHo .
Equation ~3! gives the general form of the susceptibili
components, where the difference between bulk and fi
sample is set with demagnetization factors. Demagnetiza
factors Ni are a function of shape~e.g., Nx,y,z51/3 for
sphere!, but for bulk materialNi are not defined and ar
therefore omitted in the expressions.15 It is evident that the
susceptibility of the bulk material and that of the spheri
particle are equivalent. Also the resonance frequencyv r is
equivalent in both cases.

For the demagnetized or partially magnetized partic
the susceptibility is also derived from the theory
ferromagnetism,17–19 but the expressions greatly depend
the geometry and the domain configuration of the partic
Nevertheless, there are some simple expressions for the
romagnetic permeability tensor for a few special cases
demagnetized particles.17,18 These permeability tensors a
diagonal and, importantly, are going through the resonanc
the same frequency as the magnetized particle.

Let us now consider the composite made from we
dispersed spherical ferromagnetic particles surrounded
nonmagnetic matrix and so dilute that the interparticle int
actions are negligible. Intuitively, one would expect that
an assembly of identical ferromagnetic particles without
terparticle interactions every particle is subjected to the sa
magnetic field, being equal to the external magnetic fie
Hence, also the resonance of the magnetization in parti
occurs at the same magnetic-field frequency~resonance fre-
quency of a single particle! and to distant observer the ma
netization of the whole composite sample would have
resonance at the resonance frequency of an individual
ticle, given by Kittel’s equation~4!. This argument applies
for all types of ferromagnetic particles that can be used
composites, namely, demagnetized, partially magnetized
magnetized~magnetized with external static magnetic fie
or single-domain particles!.

Alternatively, the frequency dependence of the perm
ability in such composite is frequently calculated with t
effective-medium equations~magnetostatic case!.3–14 The
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MG equation@Eq. ~1!# in case of nonmagnetic matrix (mm

51) has the following form for the susceptibility (x5m
21):

xeff5F
3xp

31xp~12F !
. ~5!

Since the spherical shape of the particles was already
counted for in derivation of MG equation, one have to ins
the diagonal component of a ferromagnetic susceptibility
bulk material@Eq. ~3! with Ni50] as the intrinsic permeabil
ity in the Maxwell-Garnett equation@Eq. ~5!#. This gives the
effective susceptibility of the composite as a function of fr
quency, as shown in Fig. 1. The effective susceptibility w
calculated with Eq.~5! for different volume fractions of mag
netized ferromagnetic particles in composite and divided
volume fraction for normalization.

For volume fractionsF→1 the resonance frequenc
matches that of the bulk material. With decreasing volu
fraction the resonance frequency of the composite increa
and approaches the following limit:

v r
2uF→05vo~vo1vM/3!. ~6!

Here we must recall previous statement that in dilute co
posite with vanishing interparticle interactions the resona
frequency of individual spherical particles should be giv
by Kittel’s equation. In ferromagnetic theory both bulk res
nance frequency (F→1) and that of the free spherical pa
ticle (F→0) are equal and any resonance-frequency s
could occur only due to the interparticle interactions in t
intermediate region ofF. So, instead of resonance frequen
approaching the resonance frequency of an individual p
ticle (v r5vo) the Maxwell-Garnett equation~5! gives a dif-
ferent resonance-frequency limit@Eq. ~6!# having no physical
meaning.

FIG. 1. Normalized imaginary part of effective susceptibility (xeff9 ) as a
function of frequency, calculated with two expressions for various volu
fractions of ferromagnetic particles: Maxwell-Garnett equation@Eq. ~5!#
~solid lines!, and Eq.~13!, that we derived~symbol •!. In the latter case the
curves are identical for all volume fractions and equal to Maxwell-Garn
curve for F51. As an intrinsic susceptibility the diagonal susceptibilityx
from Eq. ~3! was taken, using zero demagnetization factors and parame
vo535.23109 s21, a50.05, andvM566.33109 s21.
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To resolve this apparent discrepancy we analyzed in
tail both ferromagnetic and magnetostatic approach for
culation of the effective susceptibility.

III. FERROMAGNETIC DERIVATION OF THE
EFFECTIVE SUSCEPTIBILITY

The dynamics of the magnetization vectorM in the mag-
netized ferromagnetic material is based on the well-kno
equation of motion:15

dM

dt
5g~M3H i !2

ag

uM u @M3~M3H i !#, ~7!

where the magnetic fieldH is internal magnetic field, in
infinite sample being equal to the external field. In the sm
signal approximation the static magnetization equals
saturation magnetization. Hereafter we will adopt the us
denotation where the saturation magnetization, which defi
the z axis, and the static magnetic fieldHo are parallel, with
the excitation rf fieldh in the perpendicular direction~x,y!.

Solving of Laplace equation and boundary conditions
the ellipsoid gives the internal magnetic field in terms
external magnetic field, magnetization, and the demagne
tion factors. Hence, in derivation of the ferromagnetic s
ceptibility of ellipsoid Kittel added demagnetization fields
both static and rf components of the external magn
field:15,20

Hi5Ho2NzMs ,

hi5hext2N"m. ~8!

Separating the static and rf components of magnetization
magnetic field,

M5MSez1~mxex1myey!eivt,

Hext5Hoez1~hxex1hyey!eivt, ~9!

wherev is a frequency of the rf magnetic field, and combi
ing with Eqs.~7! and~8! gives the relation between the tran
versal ~x, y! components of the magnetizationm and the
external rf magnetic fieldh. This relation can be conve
niently written by introducing the susceptibility tensor

m5x"hext, ~10!

where tensor and its components are given by Eqs.~2! and
~3!. Here it is essential that the susceptibility tensorx is
defined with a relation between the rf magnetization and
externalrf magnetic field.15,16

By noting that rf magnetic dipole moment is defined
mp5mVp , multiplying Eq. ~7! with Vp on both sides and
again going through derivation of Eq.~10!, it is straightfor-
ward to see that similar equation connects also the rf m
netic dipole moment of a particle and the external rf ma
netic field:

mp5xVphext. ~11!

whereVp is a particle volume andx is the particle suscepti
bility given by Eqs.~2! and~3! with appropriate demagneti
zation factors.
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To determine the effective susceptibility of a compos
from the above equations, we follow Maxwell’s derivation1,2

and again consider a sphere of dilute composite withn
spherical particles, which are made of identical ferroma
netic material and sufficiently separated to neglect inter
tions. The rf magnetic field or, equivalently, rf magnetic p
tential outside the composite sample is obtained by summ
the dipole fields~potential! of every particle with rf magnetic
dipole momentmp5mVp . However, at sufficiently large dis
tance this dipole field is equal to the dipole field of a hom
geneous spherical body with an effective rf magnetic dip
momentmeff5Smp . Thus, by writing an equation equivalen
to Eq.~11! for the effective magnetic dipole of the composi
sphere, one can define the effective-susceptibility tenso
the compositexeff :

meff5xeffVsamplehext

5( mp5xS ( VpDhext. ~12!

From Eq.~12! we can obtain an explicit expression for th
effective-susceptibility tensor of the compositexeff as a lin-
ear function of particle susceptibility tensorx:

xeff5S ( VpDx/Vsample5Fx. ~13!

From this equation it is evident that the resonance freque
of the composite is identical to that of the individual partic
without any frequency shift. This is in line with argumen
presented in the preceding section.

In special case of composite with single-domain p
ticles but without strong static external magnetic field t
static magnetization and hence the localz axis can be arbi-
trarily oriented. Consequently, the effective dipole mome
of the sample sphere is a sum of particles’ dipole vectors
the effective susceptibility is obtained by averaging over o
entation distribution:

xeff5
Vp

Vsample
E x~u,w! f ~u,w!dud~sinw!. ~14!

Although significantly more complex, the above principl
should apply also for the case of the demagnetized or
tially magnetized particles.

IV. MAGNETOSTATIC DERIVATION OF EFFECTIVE
SUSCEPTIBILITY

The derivation of Maxwell-Garnett equation is based
magnetostatic calculations for a spherical~ferro!magnetic
particle in an external magnetic field, i.e., on solving t
Laplace equation for the magnetic potential.1,2,21,22The mag-
netic potential outside the particle is calculated as a func
of the permeability of the particle and the composite’s pot
tial is again obtained by a summation of the single-parti
potentials. Similarly, a spherical composite sample can
viewed as an effective magnetic sphere with an effect
permeability and it’s magnetic potential is given as a fun
tion of this effective permeability. Equating this potenti
with the sum of single-particle potentials gives the Maxwe
Garnett equation@Eq. ~1!#.
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This approach neglects one crucial characteristic of
ferromagnetic material. Unlike dielectric material, in the fe
romagnetic material Eq.~7! nonlinearly couples the compo
nents of the magnetization and the external magnetic fi
both static and dynamic. So, the tensor form of susceptib
~permeability! should be used in magnetostatic calculatio
as suggested also by other authors.23–25 In addition, the ten-
sor components depend on the static~z-axis! magnetic field
and so the magnetostatic calculation forz axis should also be
taken into account.

However, one should be aware of an additional asp
In magnetostatic calculation the magnetic-flux densitybi in-
side the ellipsoid is expressed with thelocal magnetic field
hi inside the particle26

bi5mo~hi1m!5mo~hi1xl•hi !,
~15!

xl5Uxl 2k l

k l x l
U,

where we introducexl as local susceptibility tensor connec
ing rf magnetization and local rf magnetic field:

m5xl•hi . ~16!

This local susceptibility isnot equal to the susceptibility
from Eq. ~10!, given by Eqs.~2! and~3!, since the suscepti
bility from Eq. ~10! connects the rf magnetization and th
external rf magnetic field.

Application of the local susceptibility tensor@Eq. ~15!#
in the magnetostatic equations gives after lengthy
straightforward calculation the following expression for t
rf magnetic potential outside the particle:22

f5F2Id1G
R3

r 3 Ghext•r , ~17!

G5
1

~x l13!21k l
2 U~x l13!x l1k l

2 23k l

3k l ~x l13!x l1k l
2U,

~18!

where Id is identity matrix, r distance to the observatio
point, andR radius of the particle. The first part on right sid
of Eq. ~17! is the potential of the external field and the se
ond part is the potential due to the magnetic dipole of
particle. Far from the ferromagnetic resonance off-diago
elementk l vanishes and Eq.~17! transforms into equation
for a potential of the particle with scalar susceptibility, ide
tical to the one in the derivation of the original Maxwe
Garnett equation,

f52hext•r1
x l

x l13
R3hext•

r

r 3 . ~19!

As before, the procedure is repeated for the effective sph
~of composite! having larger radiusReff and effective suscep
tibility tensorxeff , thus giving the expression for potential o
the effective sphere:

feff5F2Id1Geff

Reff
3

r 3 Ghext•r , ~20!
e

d,
y
,
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Geff5
1

~xeff
loc13!21~keff

loc!2

3U~xeff
loc13!xeff

loc1~keff
loc!2 23keff

loc

3keff
loc ~xeff

loc13!xeff
loc1~keff

loc!2U.
~21!

For sufficiently large distance from the effective sphere
dipole contribution to the effective potential is equal to t
sum of dipole potentials ofN equal spheres,

FGeff

Reff
3

r 3 Ghext•r5NFG
R3

r 3 Ghext•r ~22!

From Eq. ~22! a tensor variant of the MG equation is ob
tained, combining local effective-susceptibility tensorxeff

loc

and local susceptibility tensorxl ,

Geff~xeff
loc ,keff

loc!5FG~x l ,k l !, ~23!

whereGeff has the same form asG from Eq.~18! and volume
fraction of particles is given byF5NR3/Reff

3 . Expressing the
effective-susceptibility tensor components as a function
local susceptibility from Eq.~23! is not trivial. Only at fre-
quencies far from resonance (k l→0) this expression simpli-
fies to the MG equation

xeff
loc

xeff
loc13

5F
x l

x l13U
k l→0

. ~24!

However, one can relate the unknown coefficientsx l andk l

with the susceptibility componentsx and k from Eq. ~10!.
By writing Eq. ~16!,

m5xl•hl5x"hext

and substituting internal~local! field with external field
through Eq.~8! the following expression is obtained:

~ Id1xl•N!•m5xl•hext.

By using Eq.~10! to substitute magnetizationm with x"hext

we expressed the susceptibility tensorx with components of
the local susceptibility tensorxl :

x5
3

~x l13!21k l
2 U~x l13!x l1k l

2 23k l

3k l ~x l13!x l1k l
2U

53G. ~25!

Analogous expressions can be written also for rf magnet
tion of the effective sphere,

meff5xeff
loc
•h5xeff•hext,

from which we obtained the expression for the effective s
ceptibility tensor xeff as a function of local effective-
susceptibility tensorxeff

loc ,
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xeff5
3

~xeff
loc13!21~keff

loc!2

3U~xeff
loc13!xeff

loc1~keff
loc!2 23keff

loc

3keff
loc ~xeff

loc13!xeff
loc1~keff

loc!2U
53Geff. ~26!

By combining this expression with Eq.~23! and~25! one can
write

xeff53Geff53~FG!5Fx. ~27!

With this we obtained an expression identical to Eq.~13!,
which we derived from the ferromagnetic theory. Thus,
demonstrated the equivalence of both approaches and
dated our derivation of a simple explicit expression for t
effective ferromagnetic susceptibility@Eq. ~13!#.

As before, the presented arguments are valid also for
demagnetized or partially magnetized particles, but the e
magnetostatic calculation for a multidomain particle pos
considerable task even for known domain configuration.

V. DISCUSSION AND CONCLUSION

There are two reasons why the widely used effecti
medium theory, valid for dielectric materials, cannot be e
ily applied in case of ferromagnetic materials. First, the m
netic susceptibility has a tensor form and so the effecti
medium theory has to be modified for tensor calculati
Even though the modification is not challenging by itself, E
~23! yields a set of two nontrivial implicit equations for th
evaluation of the effective-susceptibility tensor componen
This tensor-form modification limits the use of the Maxwe
Garnett equation to frequencies far-off the ferromagne
resonance, as seen from Eqs.~23! and ~24!.

Second, the components of the magnetic susceptib
depend on the static magnetic field in thez direction, which
is perpendicular to the excitation rf field. This introduc
marked difference between local susceptibilityxl used in
magnetostatic derivation and external susceptibilityx used in
ferromagnetic derivation. Because of this difference the s
ceptibility expressions from literature~e.g. Refs. 15, 20! can-
not be used in Maxwell-Garnett equation. However, this
frequently done in literature5–9,11,13,14in combination with
application of MG equation near the resonance frequenc
is this combination of errors that yields the unphysical
sults, presented in Fig. 1.

Although both ferromagnetic and magnetostatic deri
tions give the physically correct results if properly applie
there is a vast difference between the complexity of the
sulting expressions. In magnetostatic equation one ha
li-

e
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transform the susceptibility expressions found in literature
the local susceptibility and then solve tensor equation~23!.
This is simplified at frequencies far from the ferromagne
resonance; however, the resonance is usually of importa
in ferromagnetic materials. On the other hand, by the fer
magnetic approach we derived a simple explicit equat
~13!, valid in the whole frequency range and utilizing th
susceptibility expressions from literature. The simplicity
our ferromagnetic derivation is most evident when analyz
composites with demagnetized or partially magnetized p
ticles. In view of this we propose the use of Eq.~13! for
calculation of the ferromagnetic effective susceptibility
dilute and homogeneous composites with ferromagnetic
clusions.
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