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Effective-susceptibility tensor for a composite with ferromagnetic
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For calculating magnetic properties of a composite usually effective-medium theories are used.
However, we show that for a composite with ferromagnetic inclusions such theories, in particular,
Maxwell-Garnett equation, give peculiar and unphysical results, such as significant shift of
ferromagnetic-resonance frequency with diminishing volume fraction of ferromagnetic inclusions.
Starting from ferromagnetic theory we derive a simple expression for the calculation of the effective
magnetic susceptibility of a composite and follow with detailed magnetostatic derivation of tensor
equivalent of Maxwell-Garnett equation. By demonstrating the equivalence of both derivations we
confirm the validity of the expression which we obtained from the ferromagnetic theory.
Furthermore, we identify errors leading to unphysical results of effective-medium theories and show
the correct application of these theories. 2004 American Institute of Physics.
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I. INTRODUCTION The aim of this paper is to determine an unambiguous
o ] ) ) expression for the effective permeability of a dilute compos-
_ Determining the mixture properties as a function of Con-jte with ferromagnetic inclusions, valid in whole frequency
stituents’ properties has found use in a range of fields, pakange and correctly reproducing the tensor nature of the fer-
ticularly in the field of electric properties. There are several,magnetic susceptibility. In order to achieve this we first
expressions for evaluating the effective p"z‘rm!tt“"ty,Of_cfm'qualitatively compare the magnetic-susceptibility frequency
posite (here taken as mixture of matrix and inclusiphs spectrum of a dilute composite, calculated from the ferro-
most notably Bruggemann effective-medium thedBMT)  agnetic theory and the Maxwell-Gamett equation. Further,
for denser composites and Maxwell-Garn@G) equation o quantitatively derive our expression for an effective-
for dilute (_nomnltgzractlng composites with spherical inclu-  o,scentibility tensor from the ferromagnetic theory and con-
sions (particleg. ™ In the limit of low volume fraction all e with a derivation of the magnetostatic equivalent of
expressions reduce to the MG equatfon Maxwell-Garnett equation for a susceptibility tensor. We
show that although the Maxwell-Garnett equation as
used>~4is not valid even far from resonance, ferromagnetic
theory and magnetostatics give physically correct expres-
sions, however, the magnetostatic expressions are signifi-
whereF is the volume fraction of particlenclusiong and ~ cantly more complex. Finally, by comparing both expres-
subscriptp refer to particle(inclusion, m to matrix, and eff ~ Sions we conclude that our ferromagnetic expression is more
to effective property. elegant for calculation of an effective susceptibility of dilute
On the basis of equivalence of electric- and magnetic@nd homogeneous composite with ferromagnetic inclusions.
field equations in the absence of the electric charge and cur-

rent sources the same equations can be used also for calcu-
lation of the effective magnetic permeability by simply ! FERROMAGNETIC RESONANCE IN COMPOSITE

Eeff~€m _ _ €p~€m
eeft 2€m gpt2em’

D

exchgngmg perm|tt|V|tys' with permeab|l|t'y p2? Suc;h In the study of ferromagnetic materials one is interested
effective-medium expressions for the effective magnetic pery ot only in the magnetic susceptibility but often even more
meability are widely used in literature’* Yet, as we show it frequency dependence. The frequency dependence of
later they have only little physical relevance in case of COMype magnetic susceptibility of a homogeneous ferromagnetic
posites with ferromagnetic inclusioriparticles, especially  aterial is obtained from the theory of ferromagneti@ny.,
when permeabilitysusceptibility as a function of frequency Ref. 15, with notable exception of a superparamagnetic

is evaluated in the range of the ferromagnetic resonance. single-domain particle, which pose somewhat different and
more complex problente.g., Ref. 16 and shall not be con-
YEmail address: vladimir.bregar@ijs.si sidered here.
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The ferromagnetic susceptibility due to the magnetiza-

tion rotation is a tensor
X — K
X= : 2
K X "
with the following component$® },
B oyl wetiaw+ (N, —Ny)oy] E
X~ wrz—w2+ 2iaw[wo+ (Ny+Ny—2N,) wy/2] '
. 3
. |(1)(1)M
K= wrz—wz-l- 2iaw[ wy,+ (Ny+Ny—2N,) wy/2] '

_ _ ) _ . R O 55 6 65 7 75 8
where « is a dimensionless damping coefficient ang Frequency (GHz)

=yH,, oy=7v47Mg with H, denoting static magnetic
field, M the saturation magnetization, andthe gyromag- FIG. 1. Normalized imaginary part of effective susceptibility§) as a

fi tant. Th f is defined b function of frequency, calculated with two expressions for various volume
neuc constant. € resonance irequendyis denne Y fractions of ferromagnetic particles: Maxwell-Garnett equati&g. (5)]

Kittel's equation as (solid lines, and Eq.(13), that we derivedsymbol 9. In the latter case the
2 curves are identical for all volume fractions and equal to Maxwell-Garnett
or=[ws+ (Ny—=Nyoyl[ws+ (Ny—=N,) wy] (4)  curve forF=1. As an intrinsic susceptibility the diagonal susceptibility

) ] ) ) o from Eqg. (3) was taken, using zero demagnetization factors and parameters
and is essentially determined by the static magnetic figlJd  »,=35.2<10° s, «=0.05, andwy =66.3x10° s~ ™.

Equation (3) gives the general form of the susceptibility

components, where the difference between bulk and finite

sample is set with demagnetization factors. Demagnetization i i i i

factors N; are a function of shapée.g., Ny, ,=1/3 for MG equation[Eg. (1)] in case of nonmagnetic matrixuf,

sphere, but for bulk materialN; are not defined and are —1) has the following form for the susceptibilityy

therefore omitted in the expressiolislt is evident that the -1

susceptibility of the bulk material and that of the spherical 3
. . . Xp

particle are equivalent. Also the resonance frequengys Xet=F ——————. (5)

equivalent in both cases. 3+ xp(1-F)

For the demagnetized or partially magnetized partide%ince the spherical shape of the particles was already ac-

the suscep';ibrijlli;)_/lgis also derived from the theory of oo nieq for in derivation of MG equation, one have to insert
ferromagnetism, ™ but the expressions greatly depend ony,q yiagonal component of a ferromagnetic susceptibility for
the geometry and the domain c_onﬁguratlon of the partmlesbulk materia[Eq. (3) with N, =0] as the intrinsic permeabil-
Neverthelgss, there are some simple expressions for the fq{y in the Maxwell-Garnett equatiofEq. (5)]. This gives the
romagnetic permea_lbllltylstensor for a few special cases Ofifociive susceptibility of the composite as a function of fre-
dgmagnenzed_ particlés: These_ permeability tensors are uency, as shown in Fig. 1. The effective susceptibility was
diagonal and, importantly, are going through the resonance alculated with Eq(5) for different volume fractions of mag-

the same frequency as thehmagnetlzeq particle. . netized ferromagnetic particles in composite and divided by
Let us now consider the composite made from well-, 0 o oo oo C L iation.

dispersed spherical ferromagnetic particles surrounded by For volume fractionsF—1 the resonance frequency

nonmagnetic matrix and so dilute that the interparticle inter-matches that of the bulk material. With decreasing volume
actions are negligible. Intuitively, '

. . one WOUId_ expegt that Mfraction the resonance frequency of the composite increases
an assembly of identical ferromagnetic particles without iN-2nd approaches the following limit:

terparticle interactions every particle is subjected to the same
magnetic field, being equal to the external magnetic field. w0 F_ 0= wo( o+ wy/3). (6)
Hence, also the resonance of the magnetization in particles
occurs at the same magnetic-field frequefigsonance fre- Here we must recall previous statement that in dilute com-
quency of a single particleand to distant observer the mag- posite with vanishing interparticle interactions the resonance
netization of the whole composite sample would have thdrequency of individual spherical particles should be given
resonance at the resonance frequency of an individual paby Kittel's equation. In ferromagnetic theory both bulk reso-
ticle, given by Kittel's equatior(4). This argument applies nance frequencyK—1) and that of the free spherical par-
for all types of ferromagnetic particles that can be used irticle (F—0) are equal and any resonance-frequency shift
composites, namely, demagnetized, partially magnetized, aould occur only due to the interparticle interactions in the
magnetizedmagnetized with external static magnetic field intermediate region of. So, instead of resonance frequency
or single-domain particles approaching the resonance frequency of an individual par-
Alternatively, the frequency dependence of the permeticle (o, = w,) the Maxwell-Garnett equatiofd) gives a dif-
ability in such composite is frequently calculated with theferent resonance-frequency lifiq. (6)] having no physical
effective-medium equationgmagnetostatic cagé * The  meaning.
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To resolve this apparent discrepancy we analyzed in de- To determine the effective susceptibility of a composite
tail both ferromagnetic and magnetostatic approach for calfrom the above equations, we follow Maxwell’s derivatidn
culation of the effective susceptibility. and again consider a sphere of dilute composite with

spherical particles, which are made of identical ferromag-

netic material and sufficiently separated to neglect interac-
Ill. FERROMAGNETIC DERIVATION OF THE tion§. The rf magnetic fieId_ or, equivqlently, .rf magnetic po-
EEEECTIVE SUSCEPTIBILITY tentlgl outs!de the corr!posne sample is obta.uned by summing

the dipole fieldgpotentia) of every particle with rf magnetic

The dynamics of the magnetization veckérin the mag- ~ dipole momenju,=mV,. However, at sufficiently large dis-
netized ferromagnetic material is based on the well-knowriance this dipole field is equal to the dipole field of a homo-

equation of motiort? geneous spherical body with an effective rf magnetic dipole
M . momentues=2um, . Thus, by writing an equation equivalent
— = y(MXH,)— —Y[M X (MXH)], (7) 1o Eq.(11) for the effective magnetic dipole of the composite

dt M| sphere, one can define the effective-susceptibility tensor of

where the magnetic fieltH is internal magnetic field, in the cOmpositexe:

mﬁmte sample_ belng equal to the external_ f|el_d. In the small- Peti= XeftV sampiblext
signal approximation the static magnetization equals the

saturation magnetization. Hereafter we will adopt the usual :2 _ (2 v
denotation where the saturation magnetization, which defines Po=X P

thez axis, and the static magnetic fiett}, are parallel, with .0 Eq.(12) we can obtain an explicit expression for the

the excit'ation rf fieldh in the perpendicular directio@,y). effective-susceptibility tensor of the compositg, as a lin-
Solving of Laplace equation and boundary conditions on, 5, tnction of particle susceptibility tensgr
the ellipsoid gives the internal magnetic field in terms of

external magnetic field, magnetization, and the demagnetiza- (

. L A ' : = V V =Fx. 1

tion factors. Hence, in derivation of the ferromagnetic sus- Xer=| 2 p) XV sampi=F X (13
ceptibility of ellipsoid Kittel added demagnetization fields to From this equation it is evident that the resonance frequency

both static and rf components of the external magnetic ie composite is identical to that of the individual particle,

hext- (12)

field: 20 without any frequency shift. This is in line with arguments
Hi=H,—N,Mjq, presented in the preceding section.
In special case of composite with single-domain par-
hi=heyx— N-m. @) ticles but without strong static external magnetic field the
Separating the static and rf components of magnetization angfatic magnetization and hence the lozaixis can be arbi-
magnetic field, trarily oriented. Consequently, the effective dipole moment

of the sample sphere is a sum of particles’ dipole vectors and

M=Mge, + (mye+mye)e', the effective susceptibility is obtained by averaging over ori-

Hou= Hoez+(hxex+hyey)eiwt (9) entation distribution:
wherew is a frequency of the rf magnetic field, and combin- _ Vp J' 0 o)F(0.0)ded(sin 14
ing with Egs.(7) and(8) gives the relation between the trans- Xeft Vsample x(0,9)1(6,¢)dod(sing). (14

versal (x, y) components of the magnetization and the
external rf magnetic fielch. This relation can be conve-
niently written by introducing the susceptibility tensor

m:X'hext! (10)

where tensor and its components are given by Ezjsand
(3). Here it is essential that the susceptibility tengoiis
defined with a relation between the rf magnetization and the  The derivation of Maxwell-Garnett equation is based on
externalrf magnetic field'>1® magnetostatic calculations for a spheridérrojmagnetic

By noting that rf magnetic dipole moment is defined asparticle in an external magnetic field, i.e., on solving the
po=mV,, multiplying Eg. (7) with V, on both sides and Laplace equation for the magnetic potenti&-?*The mag-
again going through derivation of E¢LO0), it is straightfor-  netic potential outside the particle is calculated as a function
ward to see that similar equation connects also the rf magef the permeability of the particle and the composite’s poten-
netic dipole moment of a particle and the external rf mag-ial is again obtained by a summation of the single-particle
netic field: potentials. Similarly, a spherical composite sample can be

_ viewed as an effective magnetic sphere with an effective

Pp=XVphext: (11) permeability and it's magnetic potential is given as a func-
whereV, is a particle volume ang is the particle suscepti- tion of this effective permeability. Equating this potential
bility given by Eqgs.(2) and(3) with appropriate demagneti- with the sum of single-particle potentials gives the Maxwell-
zation factors. Garnett equatiofEq. (1)].

Although significantly more complex, the above principles
should apply also for the case of the demagnetized or par-
tially magnetized particles.

IV. MAGNETOSTATIC DERIVATION OF EFFECTIVE
SUSCEPTIBILITY
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This approach neglects one crucial characteristic of the 1
ferromagnetic material. Unlike dielectric material, in the fer- Ger= 10¢ | 3)2 4 ( K152
romagnetic material Eq7) nonlinearly couples the compo- Xeit eff
nents of the magnetization and the external magnetic field, (X% +3) xS+ (k552 — 3k
both static and dynamic. So, the tensor form of susceptibility X 3,10 (%4 3) /%4 (1992
(permeability should be used in magnetostatic calculations, Keff Xeff ™ 2) Xeff T L Keff
as suggested also by other authdr$® In addition, the ten- (21)
sor components depend on the stad#i@xis) magnetic field
and so the magnetostatic calculation faxis should also be For sufficiently large distance from the effective sphere the
taken into account. dipole contribution to the effective potential is equal to the

However, one should be aware of an additional aspecg§um of dipole potentials dN equal spheres,

In magnetostatic calculation the magnetic-flux denbijtyn-

. . L. . . ’ 3 3
side the ellipsoid is expressed with tleecal magnetic field Rett _ R_
h; inside the partic/é® Geirz | Next F=N| G 1| e 1 (22)
bi= po(hitm)=po(hi+xi-hi), From Eq.(22) a tensor variant of the MG equation is ob-

(15  tained, combining local effective-susceptibility tensﬂfﬁC

X Tk and local susceptibility tensoy, ,

K| Xi

Xi=

. - Gel XS kS =FG(x1 1)), 23
where we introduceg; as local susceptibility tensor connect- eff Xef - Kef) (k) @3

ing rf magnetization and local rf magnetic field: whereG, has the same form & from Eq.(18) and volume

m=x;-h;. (16) fraction of particles is given b = NR3/Rgﬁ. Expressing the
effective-susceptibility tensor components as a function of
This local susceptibility isnot equal to the susceptibility local susceptibility from Eq(23) is not trivial. Only at fre-
from Eq. (10), given by Egs(2) and(3), since the suscepti- quencies far from resonance,(~0) this expression simpli-
bility from Eq. (10) connects the rf magnetization and the fies to the MG equation
external rf magnetic field.

Application of the local susceptibility tens¢Eq. (15)] X% Xi | 24
in the magnetostatic equations gives after lengthy but X!sof?Jrs— X'+3|K|ﬁo'

straightforward calculation the following expression for the

rf magnetic potential outside the particfe: .
However, one can relate the unknown coefficiegtand
3

R with the susceptibility componentg and « from Eg. (10).
¢=| ~ld+G 5 |hex T, (17 By writing Eq. (16),
1 (XI"_:'B)XI"_Kl2 — 3k m:XI'h|:X°hext
G="—"77"2 2|
(xi+3)°+ 3k n+3)xi+ i 19 and substituting internallocal) field with external field

through Eq.(8) the following expression is obtained:

where Id is identity matrix,r distance to the observation

point, andR radius of the particle. The first part on right side (Id+xi-N)-m=xq- hey.

of Eq. (17) is the potential of the external field and the sec- ) ) o i

ond part is the potential due to the magnetic dipole of thedY USing Eq.(10) to substitute magnetizatiom with x-he
particle. Far from the ferromagnetic resonance off-diagona)’€ €xPressed the susceptibility tengowith components of
elementx, vanishes and Eq17) transforms into equation (he local susceptibility tensog, :

for a potential of the particle with scalar susceptibility, iden-

2
tical to the one in the derivation of the original Maxwell- _ ; (t3)x+ — 3K
Garnett equation, X a3y Kf 3k (xi+3)x+«f
X1 r =3G. (25)
¢=—hey I+ Y1 +3 Rghext' 3 (19

Analogous expressions can be written also for rf magnetiza-
As before, the procedure is repeated for the effective spher#on of the effective sphere,
(of composite having larger radiuR. and effective suscep-
tibility tensor xet, thus giving the expression for potential of meﬁzxfﬁc. h= Xeft* Next
the effective sphere:
3 from which we obtained the expression for the effective sus-
R }h ceptibility tensor xe as a function of local effective-

ext' I (20)

ff
—1d+Gej—3- S
eff 3 susceptibility tensox'%,

Pett=
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3 transform the susceptibility expressions found in literature to
Xeff= 7 _Toc_ a2 10, 2 the local susceptibility and then solve tensor equati2®).
(Xeff+3) +(Keff) . . g . .
This is simplified at frequencies far from the ferromagnetic
XS+ 3) X%+ (k%2 —3k% resonance; however, the resonance is usually of importance
3Kl§f? (Xg)f?Jr 3)X§§+(KE§)2 in ferromagnetic materials. On the other hand, by the ferro-

magnetic approach we derived a simple explicit equation
=3Gg. (26) (13), valid in the whole frequency range and utilizing the
susceptibility expressions from literature. The simplicity of
our ferromagnetic derivation is most evident when analyzing
composites with demagnetized or partially magnetized par-
Xefi=3Ge=3(FG)=Fy. (27)  ticles. In view of this we propose the use of HG3) for
calculation of the ferromagnetic effective susceptibility in

With this we obtained an expression identical to Ef3), . ) . o
; . . dilute and homogeneous composites with ferromagnetic in-
which we derived from the ferromagnetic theory. Thus, WeFIusions

demonstrated the equivalence of both approaches and vali

dated our derivation of a simple explicit expression for the

effective ferromagnetic susceptibiliffeq. (13)]. Surface and Colloid Sciencedited by S. S. Dukhin and E. Matijévie
As before, the presented arguments are valid also for the (Wiley-Interscience, New York, 1971

demagnetized or partially magnetized particles, but the exaciEmuIsion Sciencedited by T. Hanai and P. Sherméhcademic Press,

. . . . . London, 1968
magnetostatic calculation for a multidomain particle pose &R G. Geyer, J. Mantese, and J. Baker-Jarvis, NIST Technical Note 1371,

By combining this expression with ER3) and(25) one can
write
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