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Effective Conductivity of Cell Suspensions

Mojca Pavlin*, Tomǎz Slivnik, and Damijan Miklav̌cič

Abstract—Using finite-element method (FEM) effective conductivity of
cell suspension was calculated for different cell volume fractions and mem-
brane conductivities. Cells were modeled as spheres having equivalent con-
ductivity and were organized in cubic lattices, layers and clusters. The re-
sults were compared to different analytical expressions for effective conduc-
tivity and they showed that Maxwell theory is valid also for higher volume
fractions.

Index Terms—Cell suspension, effective conductivity, finite-element
modeling, theory.

I. INTRODUCTION

With the development of new methods such as electroporation
[1], [2], theoretical aspects of conductivity of cell suspensions are
becoming more important. In this paper, we introduce a finite-element
model which enables us to calculate the effective (bulk) conductivity
of cell suspensions, cell layers and cell clusters for different values
of cell parameters. Knowledge of effects of the cell organization on
effective conductivity and dielectric constant should also offer better
understanding of bioimpedance measurements, which are difficult
to interpret due to the geometry and nonhomogeneity of measured
tissues.

Effective medium theories give us approximate analytical solutions
for the effective conductivity of a cell suspension, however, they are
exact only for dilute suspension [3]–[7]. Analytical solutions for dense
suspensions and complex structures are not obtainable (with exception
of some special cases) so numerical methods have to be applied. Nu-
merical models of two cells [8] and few connected cells [9], [10] have
been reported in the literature. However, due to complex geometry, nu-
merical modeling with detailed cell structure is limited to problems
with few cells and cannot be extended to tissue like structures. So we
combined numerical modeling and equivalent sphere approach to cal-
culate the effective conductivity of different cell structures like layers
and clusters.

In the first part of our study, we modeled cell suspensions using a
finite-element method (FEM) for different volume fractions, ordering
and membrane conductivity in order to determine the range of cell
volume fraction where the approximate analytical solution are valid.
To examine changes between different arrangements, cells of uniform
size were organized into simple-cubic (sc), body-centred cubic (bcc)
or face-centred cubic (fcc) lattice. In addition, we used FEM to calcu-
late the effective conductivity of cells arranged in layers and clusters
in order to extend this approach to more tissue-like structures and to
estimate the effect of cell organization on the effective conductivity.

The calculation of effective (bulk) conductivity of an inhomoge-
neous medium is theoretically a complex problem due to the mutual
interactions between the particles. The effective medium theories use
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Fig. 1. Maxwell’s derivation of conductivity for a dilute suspension of
particles. (a)N spheres having conductivity� dispersed in a medium with�
induce the same potential in the external field E as (b) one sphere of a radius
D having the effective conductivity�.

an average field and neglect local field effects [3]–[7] to obtain approx-
imate analytical solutions. Maxwell was the first to derive an equation
for the effective conductivity� of a dilute suspension [11]. He real-
ized that the potential due toN spheres placed in the external field
having conductivity�p and dispersed in a medium having conductivity
�e [Fig. 1(a)] is equal to the potential of an equivalent sphere having
the effective conductivity� [Fig. 1(b)]. With this he derived equation
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wheref is the volume fraction of the particles dispersed in the medium
andD denotes the radius of the equivalent sphere.

Bruggeman extended Maxwell’s equation to concentrated suspen-
sions by a mathematical procedure [3]–[5] and obtained the result
known as Bruggeman’s formula
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For a special case of the heterogeneous medium with spherical parti-
cles arranged in a sc lattice, Rayleigh calculated the approximate result
[12]
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wherea is the numerical factor, which according to Rayleigh is 1.65.
Later, Tobias and Meredith obtained the same formula with the value of
the numerical factora being 0.523 instead of 1.65 [5]. All these theories
are exact in the first order off (for dilute suspensions), however, for
higher volume fractions they give only approximate values.

Maxwell’s equation (1) can also be used to obtain equivalent con-
ductivity of a cell cluster. From the Maxwell’s theory of polarization,
it follows that the field outside the equivalent sphere will be the same
as that of the cluster. For this reason, a cluster can be replaced with an
equivalent sphere having the conductivity�c determined by Maxwell’s
equation

�e � �c

2�e + �c
= fc

�e � �p

2�e + �p
; fc =
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D3
(4)

whereD is the cluster radius andN the number of the particles ag-
gregated in the cluster. The volume fractionfc of particles aggregated
in the cluster is calculated according to the above expression.To model
the suspension of heterogeneous particles, an equivalent conductivity
of the particle has to first be determined. A biological cell is an example
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Fig. 2. Unit cells for (a) sc, (b) bcc, and (c) fcc lattices.A is the length of the unit cell side shown in Fig. 1(a).

of such a heterogeneous particle having different values of dielectric
constant and conductivity of membrane compared to cytoplasm. By
solving Laplace equation for a cell surrounded with the membrane
Pauly and Schwan [13] were first to derive analytical solution for the
potential and the polarization of a spherical cell in the external field.
With the assumption that the membrane thickness –d is much smaller
than the cell radius–R (valid for biological cells) the solution is simpli-
fied to some extent. If the cell has the conductivity of a membrane�m
and the conductivity of a cytoplasm�i it follows that the field outside
the cell will be the same as the field of a homogeneous sphere with the
equivalent conductivity�p

�p = �m
2(1� �)�m + (1 + 2�)�i
(2 + �)�m + (1� �)�i

� =
1� d

R

3

: (5)

From this equation, one can obtain the equivalent conductivity of the
cell which is�p = 2� 10�4 S/m for physiological values of param-
eters (�m = 10�7 S/m,�i = 0.5 S/m). However, the increase of the
membrane conductivity due to the electroporation causes an increase
of the equivalent conductivity [14], [15]. DC conductivity of a cell sus-
pension can be calculated combining (5) and (1), whereas for the calcu-
lation of frequency-dependent conductivity the conductivity has to be
replaced with complex conductivity [16]:�� = �+ j !". However, in
many low-frequency measurements of bioelectric phenomena second
term in (6) is much smaller than the first one, and in the special case of
astatic direct current (dc) problems we simply deal with the first term,
whereas the second term influences only the transition phenomenon.
In this paper, we shall limit ourselves only to the analysis of conduc-
tivity for the static direct current, which holds also for low frequencies
(under 1MHz).

II. M ETHODS OFANALYSIS

An idealised model of biological cell is a sphere consisting of a
cell cytoplasm surrounded by a very thin, low conducting membrane,
which is placed in a conductive medium. Under normal conditions
membrane conductivity is many orders smaller than that of the ex-
ternal medium and, therefore, normal cells were modeled as noncon-
ductive spheres. However, for the increased membrane conductivity,
which models changes due to electroporation, cells were modeled as
spheres having value of the “equivalent” conductivity calculated from
(5); for�m = 10�4 S/m and�i = 0.5 S/m is�p = 0.143 S/m. We used
two values for the conductivity of external medium: 1.2 S/m for physi-
ological saline and 0.01 S/m for the low conductive medium, which is
often used to reduce the heating of the medium [17].

In the first part of the study, a finite-element model of cell suspension
was developed. Cells were organized either into sc, bcc, or fcc lattice
shown in Fig. 2. Maximum volume fractions for hard spheres are 0.52
for sc, 0.64 for bcc, and 0.74 for fcc lattice.

Using the symmetry of cubic lattices and applying appropriate
boundary conditions, we were able to model infinite cubic lattices
with a model of a primitive cell [18]. In all our models, voltageV
was applied on the face normal toz axis. Varying sphere radius

Fig. 3. Cells arranged in (a) layers parallel and (b) perpendicular to the external
electrical field.

Fig. 4. Hexagonal-close packing of spheres in clusters of (a) 13 and (b) 47
spheres having volume fractionsf = 0.4367 andf = 0.334, respectively.

calculations were performed for different cell volume fractionf ,
wheref = 4�=3N(R=A)3,A is the length of the unit cell side shown
in Fig. 3(a) andN number of the spheres in the unit cell.

In the second part of our study, infinite layers of cells were modeled
(Fig. 3). Cells were arranged in sc lattice and while the distancel be-
tween the layers was varied, the volume fraction was kept constant. In
this way, it was possible to examine the effects of the cell arrangement
at the same volume fraction.

Furthermore, cells arranged in clusters were modeled. We chose
hexagonal-close packing of spheres to form clusters of 13 (fc = 0.437)
and 47 spheres (fc = 0.334), respectively (Fig. 4). In hexagonal
close packing, layers of the spheres are packed so that the spheres in
alternating layers overlie one another. As for fcc packing, in hexagonal
close packing each sphere is also surrounded by 12 neighboring
spheres. The cluster was enclosed in a cubic box, which due to the
same reasons as above (periodic boundary conditions) produces an
infinite suspension of clusters. By increasing cube length we simulated
increasing distance between clusters. In the limit of largeA with
respect toD, we, thus, have a case of an isolated cluster.

Numerical calculations were performed by the commercial finite-el-
ement modeling software EMAS (Ansoft, Pittsburgh, PA) using FEM.
Details of this program and FEM method are described elsewhere [9],
[10]. FEM solves partial differential equation by dividing the volume
into smaller elements and solving differential equation on the elements.
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Fig. 5. Comparison of FEM results with analytical solution of Maxwell,
Rayleigh, Tobias, and Bruggeman. The normalized effective conductivity
�=� of cell suspension for different values of volume fractionf is shown.
Different lines represent theoretical curves; numerical calculations for sc, bcc,
and fcc lattices are represented with symbols.

These elements have various shapes and sizes so that complex geome-
tries can be modeled. The static current flow analysis was chosen to cal-
culate the current density distribution for the geometries described in
the above section. The effective conductivity was obtained using Ohms
law: � = j=E.

III. RESULTS

We used FEMs to calculate the effective (bulk) conductivity of cell
suspensions. In Fig. 5, results for the normalized effective conductivity
�=�e of the FEM model for the cells ordered into the sc, bcc, and fcc
lattice are compared to the different analytical expressions. As stated
before, the analytical theories are exact for smaller values off , how-
ever, we can see larger deviations for higher volume fractions. For the
cells arranged in the sc lattice, FEM results are closest to the predicted
values of Tobias and Rayleigh formulae. In general, FEM results lay
closest to the Tobias’s and Maxwell’s theoretical curves. The differ-
ence between different lattices modeled is expected since sphere ar-
rangement affects mutual interactions between the cells due to different
numbers of nearest neighbors which are six for sc, eight for bcc, and 12
for fcc lattice. In general, our FEM results show good agreement with
experimental results performed on different model systems [3]. In the
case of the ordered spheres of uniform sizes, the experimental results
fit best to Maxwell’s and Tobias’s equations.

Furthermore we analyzed the effective conductivity of the cells
having the increased membrane conductivity. In Fig. 6, the results
for the suspension of the cells arranged in fcc lattice having the
increased membrane conductivity is shown for two different external
mediums: physiological saline (a) (�e = 1.2 S/m) and (b) low
conductive medium (�e = 0.01 S/m). It can be seen for the later
case [Fig. 6(b)] that Rayleigh’s solution fails at high volume fraction
and that Maxwell’s solution is closest to our FEM results. For the
physiological conditions, all theories are fairly close to our FEM
results.

Results obtained in the case of the cells arranged in the infinite layers
are shown in Fig. 7. Since the conductivity mainly depends on the cell
volume fractionf , we changed the distancel between the layers while
keeping the parameterf constant. In layers of cells perpendicular to
the electric field, the effective conductivity is reduced whereas in the
case of parallel layers the conductivity is increased.

Fig. 6. Comparison of FEM results for fcc lattice with analytical solution of
Maxwell, Rayleigh, Tobias and Bruggeman. The effective conductivity�=�
for suspension of cells arranged in fcc lattice having the increased membrane
conductivity (� =10 S/m) � = 0.143 S/m) is shown for two different
external mediums: physiological saline (a)� = 1.2 S/m and (b) low conductive
medium� = 0.01 S/m.

In Fig. 8, FEM results of the effective conductivity�=�e of the cells
packed in the clusters of 13 and 47 spheres (Fig. 4) are shown. Curves in
Fig. 8 represent Maxwell’s solution for a suspension of the clusters re-
placed by the equivalent spheres. The two equivalent conductivities�c
of these spheres (representing the clusters) havingfc 0.4367 (N = 13)
and 0.334 (N = 47) were calculated using (6).

IV. DISCUSSION

We studied the effective (bulk) conductivity of cell suspensions an-
alytically and numerically. The aim of our study was to compare FEM
results with the approximate analytical for different volume fractions
and for increased cell membrane conductivity. Furthermore, the depen-
dency of the effective conductivity on cell arrangements was studied. In
order to study the effect of cell organization on effective conductivity,
cells arranged in layers and clusters were modeled.

For a suspension of cells arranged into an sc, a bcc, and a fcc lat-
tice, theories of Maxwell, Rayleigh, Tobias, and Bruggeman show good
agreement for the range of volume fraction up to 0.74. Our results
agree with the experimental results of other authors where measured
values are somewhere between Maxwell’s and Bruggeman’s theory
[3], [5]. As expected the effective conductivity mainly depends on the
cell volume fraction. From this, we conclude Maxwell’s theory can be
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Fig. 7. Results obtained in the case of the cells arranged in the infinite layers.
Keeping the volume fraction –f constant, the distance –l between the layers
was increased. As expected, the layers of the cells perpendicular to the electric
field reduces the effective conductivity whereas it is increased for those laying
parallel to the electric field.

Fig. 8. Finite-element solutions calculated for clusters of 13 and 47 cells are
presented with symbols. Curves in the figure represent Maxwell’s solution for a
suspension of the clusters replaced by the equivalent spheres. Conductivities for
the two equivalent conductivities� of spheres having radiusD (representing
the clusters) were calculated using (4). Results indicate that cells aggregated
in clusters can be replaced by equivalent spheres having conductivity� as
predicted by Maxwell’s theory.

successfully used for the explanation of conductivity measurements in
cell suspensions. This is in agreement with the measurements of Cole
[19] who found that Maxwell’s theory could predict the low-frequency
conductivity of suspension of the nonconductive cells for the volume
fractions as high as 0.8. Our results also showed that for the increased
membrane conductivity of few orders Maxwell’s and Tobias solutions
are good approximation for higher values off .

For the cells arranged into the infinite layers, we found that the ef-
fective conductivity is either increased or decreased depending on cell
arrangements. Results for the cells arranged in the clusters indicate that
a cells cluster can be replaced by an equivalent sphere having conduc-
tivity predicted by Maxwell’s theory similarly as shown by Raicuet al.
[20], except that they used Bruggeman’s theory to calculate equivalent
conductivity.

Our approach enables modeling of infinite cell suspensions or com-
plex structures and cells of arbitrary shapes with different cell parame-
ters. In presented models, cells were approximated with spheres, how-

ever, for many kinds of cells, such as plated cells, cells in tissues and
rod-shaped bacteria the real shapes of cells should be modeled.

The drawback of our approach is that it does not enable modeling of
a realistic suspension of infinite number of randomly dispersed cells.
We believe that the random or ordered arrangement does not signifi-
cantly affect the effective conductivity, but for calculations of the in-
duced transmembrane voltage this could be of some importance. Still,
by modeling a finite number (a few hundred) of randomly positioned
cell, this drawback can also be overcome.

Finally, we showed that by using the concept of an equivalent sphere
one can calculate FEM models of many cells with high geometrical
complexity by replacing a heterogeneous cell with an equivalent
sphere. Our approach, thus, overcomes the limitations of the analytical
solutions and the numerical calculations to simple geometries and low
densities or models of only few cells.
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