
reprinted with minor corrections from IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 47, NO. 8, AUGUST 2000

Second-Order Model of Membrane Electric Field
Induced by Alternating External Electric Fields

Tadej Kotnik and Damijan Mikl avčič
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Abstract—With biological cells exposed to ac electric fields
below 100 kHz, external field is amplified in the cell membrane by
a factor of several thousands (low-frequency plateau), while above
100 kHz, this amplification gradually decreases with frequency.
Below 10 MHz, this situation is well described by the established
first-order theory which treats the cytoplasm and the external
medium as pure conductors. At higher frequencies, capacitive
properties of the cytoplasm and the external medium become
increasingly important and thus must be accounted for. This leads
to a broader, second-order model, which is treated in detail in
this paper. Unlike the first-order model, this model shows that
above 10 MHz, the membrane field amplification stops decreasing
and levels off again in the range of tens (high-frequency plateau).
Existence of the high-frequency plateau could have an important
impact on present theories of high-frequency electric fields effects
on cells and their membranes.

Index Terms—AC electric fields, electric field stimulation, mem-
brane electric field, membrane electrodynamics, transmembrane
voltage.

I. INTRODUCTION

EXPOSURE of biological cells to electric fields can lead to
a variety of biophysical and biochemical responses. Appli-

cations based on these responses can roughly be divided into two
groups. The first group uses electric fields as a tool to modify
various properties of the cells. Herein are the applications that
utilize the increase in membrane permeability caused by electric
fields for introduction of various molecules into cells [1]–[3],
insertion of molecules into cell membranes [4], [5], and fusion
of cells [6], [7]. The second group of applications uses electric
fields and currents as tools to characterize various properties of
biological cells or their constituents, both in suspensions and in
tissues. Among the most important approaches in such charac-
terization is the evaluation of cell’s response to electric fields
at different frequencies. By varying the frequency of the field,
values of the measured parameters form spectra: frequency de-
pendence of bulk dielectric permittivity of a suspension or tissue
constitutes its dielectric relaxation spectrum [8], frequency de-
pendence of the cellular angular velocity in rotating electric
fields forms the electrorotational spectrum [9], and frequency
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dependence of the cellular translational velocity in nonuniform
alternating fields is the dielectrophoretic spectrum [10]. With
these methods, various physical quantities can be determined
that are difficult to assess by direct measurement (e.g., conduc-
tivity and capacitance of the membrane and the cytoplasm).

The basic mechanism underlying majority of these methods
is the inducement of potential difference across the membrane
by the external electric field, which results in the transmembrane
voltage (TMV) and membrane electric field. When induced by
ac fields, these quantities depend on frequency, and the knowl-
edge of this dependence is of significant importance for the un-
derstanding of more complex phenomena, such as the spectra
mentioned above.

The classical theory of transmembrane voltage induce-
ment has been developed in the 1950’s by H. P. Schwan and
co-workers [11], [12]. In this theory, both the cytoplasm and the
extracellular medium are described as purely conductive (i.e.,
having nonzero conductivity, but zero dielectric permittivity),
while the membrane is treated as a lossy dielectric (i.e., having
both nonzero conductivity and permittivity). This leads to
the description of the inducement as a first-order process
characterized by a time constant [12]

(1)

where and are the conductivities of the cytoplasm,
cell membrane, and extracellular medium, respectively,is the
cell radius, is the membrane thickness, and is the
membrane capacitance, with denoting the dielectric permit-
tivity of the membrane.1

This description also allows for the derivation of the TMV
induced by an external ac electric field. Written in the frequency
plane, it reads [13]

(2)

where is the amplitude of the external electric field,is the
polar angle measured with respect to the direction of the field,
and , with denoting the frequency of the field. In (2),

is complex; its absolute value gives the amplitude of the
TMV, while its argument is the directed angle corresponding to
the phase shift between and (a negative value implies a
lag of behind ).

1We use the term “permittivity” for the total permittivity of the material, i.e.,
the product of the relative permittivity of the material (e.g.," �

80:3), and the dielectric constant of the vacuum (" = 8:854�10 As/Vm).
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TABLE I
VALUES USED IN THE CALCULATIONS

We choose for the sake of clarity to henceforth treat the condi-
tions at , where has a peak value. We denote

and (2) becomes

(3)

while the spatial dependence onis restored by simply multi-
plying the result by (this also applies to and , which
will be introduced in the following paragraphs).

Throughout the derivation of the TMV, cell membrane is as-
sumed to be homogeneous. Retaining this assumption, the in-
duced membrane electric field can be calculated as

(4)

and the amplification of the external electric field in the mem-
brane is then given by

(5)

If typical values are assigned to the parameters contained
in (1) and (5) (Table I), the magnitude of the amplification

(i.e., the ratio of the amplitudes of and ) and
the phase (i.e., the phase shift between and )
can be plotted as functions of frequency in form of a Bode plot
(Fig. 1).

According to (5), far below thebreakpoint frequency
, which is approximately 100 kHz in physiological

conditions (Table I), the amplification is practically constant
(the low-frequency plateau). Above the breakpoint frequency,

is decreasing, asymptotically approaching a negative
unit slope. The limiting values at and are easily
determined

(6)

(7)

While the situation at low frequencies is not significantly af-
fected by the assumption of purely conductive properties of the
cytoplasm and extracellular medium, it becomes progressively

Fig. 1. Bode plot of the amplification of an external ac electric field in the
membrane according to the established first-order treatment given by (5). Top:
magnitude of the amplification; bottom: phase of the amplification (negative
phase corresponds to a lag of the membrane field behind the external field).
In each graph, the bottom abscissa gives the angular frequency! = 2�f ,
and the top abscissa the corresponding frequencyf . The bold dotted vertical
corresponds to the breakpoint frequencyf = 1=2�� . Parameter values used
in the calculation are given in Table I.

more questionable with increase in frequency, as the capacitive
properties of both the cytoplasm and the extracellular medium
gain importance. In this paper, we reevaluate the process of
TMV and membrane field inducement in ac electric fields, with
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Fig. 2. In the model on which our calculations are based, the cell is a sphere
with radius ofR, enclosed by a membrane of uniform thicknessd. External
electric field is homogeneous and retains its orientation, but its strengthE

varies with time. Conductivities and permittivities are attributed to regions
occupied by cytoplasm(� ; " ), membrane(� ; " ) and extracellular
medium(� ; " ).

each of the regions assigned both a nonzero electric conduc-
tivity and dielectric permittivity. We show that in the submega-
hetz range, predictions of the derived model are very close to
(5), but then start to diverge, quickly leading to significant dif-
ferences between the two models.2

II. M ETHOD OFANALYSIS

A spherical cell surrounded by a medium represents a system
characterized by two geometrical parameters, namely cell ra-
dius and membrane thickness , and three sets of mate-
rial parameters, each describing the properties of an individual
material within the system (the cytoplasm, cell membrane, and
extracellular medium). If the system is exposed to electric fields,
the set of parameters describing a material consists of two quan-
tities—its electric conductivity and dielectric permittivity

. This model is depicted in Fig. 2.
Though treatment of materials as pure conductors is under

some circumstances justified, in reality every material demon-
strates some dielectric permittivity, which affects the electric
field propagation and, more importantly, subsequent electric
field redistribution due to polarization effects. To enable a
treatment similar to that of pure conductors, conductivity and

2Equation (5) is also invalid when cells are suspended in an artificial medium
with a conductivity several orders of magnitude lower than physiological [12].
While this paper focuses on the physiological environment, the process of in-
ducement in general media is treated in detail in [15].

Fig. 3. To determine the time courses of transmembrane voltage and
membrane electric field induced by a time-varying external electric field, the
time course of the external field must first be described in terms of a function
E (t). The Laplace transform then gives the correspondingE (s). The
product ofE (s); F (s); R andcos � represents the induced transmembrane
voltage in complex-frequency space,U (s), while an additional division by
d gives the induced membrane field,E (s). The inverse Laplace transform
casts both results into the time domain. Due to the linearity of the system, the
blocks of the system can be distributed in several equivalent ways, with this
particular arrangement showingG (s) as a compact subsystem.

permittivity of the material are combined into theadmittivity
operator[14]

(8)

To avoid the use of differential operators, the analysis is trans-
ferred from the time domain into the complex-frequency do-
main, where becomes

(9)

with denoting the complex frequency.
Replacement of the differential terms with pure algebraic ex-

pressions considerably simplifies the analysis and thus allows
for treatment of structured systems consisting of several mate-
rials, such as the system in Fig. 2. Pursuing this approach, the
induced transmembrane voltage is given by [14]

(10a)

where is the Laplace (Heaviside) transform of the time
course of the electric field strength , and is given by
(10b), shown at the bottom of the page, with and
denoting the admittivity operators of the cytoplasm, cell mem-
brane, and extracellular medium, respectively.

Amplification of the external field in the membrane at
is then

(11)

The basic principle of the method can be illustrated by a
block diagram shown in Fig. 3. The external electric field rep-
resents the “input” or the “excitation” of the system,
plays the role of a transfer function, while the induced trans-
membrane voltage and membrane field are the “outputs” or the

(10b)
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“responses.” For any given time course of the external electric
field, this method gives the time course of the TMV, as well as
of the membrane field.

While the use of this approach in the analysis of transients is
described elsewhere [14], this paper focuses on the analysis of
membrane fields induced by ac (sinusoidal) fields at different
frequencies. With a sinusoidal time course of the external field
with frequency , the complex frequency becomes
purely imaginary, and the admittivity operatorsare replaced
by theadmittivities,

(12)

whereby is transformed into .

III. RESULTS

By inserting (10b) into (11) and replacing , and by
, and , respectively, one gets (13), shown at the bottom

of the page. The limiting values of at and
are derived in the Appendix, and under physiological conditions
they can be approximated by

(14)

(15)

With typical parameter values (see Table I), one gets
3000 and 15. Thus, the mem-

brane field strength induced at very high frequencies still
exceeds the external field strength by more than one order of
magnitude.

A stable amplification at high frequencies is not anticipated
by the first-order model, as (7) testifies. Also, the first-order
model predicts the phase lag to asymptotically approach90 ,
while according to (15), and are again close to syn-
chronization at very high frequencies. Absence of the high-fre-
quency plateau in the classical treatment originates from the
assumption of purely conductive cytoplasm and extracellular
medium; namely, if and are set to zero, the amplification
given by (15) is easily shown to become zero—the value pre-
dicted by (7).

Using the same numerical values as in Fig. 1, Bode plot
of given by (13) is depicted in Fig. 4 by a solid line,
while the one predicted by (5) is drawn in dashed line. The
two models agree at low frequencies, but while (5) prognosti-
cates a continuing decrease of magnitude and phase stabilized
at 90 , (13) exhibits a second breakpoint frequency, where
the magnitude stabilizes at thehigh-frequency plateau. Also

Fig. 4. Bode plot of the amplification of an external ac electric field in
the membrane according to the second-order treatment given by (13) (solid
line), and the predictions of the first-order model (dashed). The two bold
dotted verticals correspond to the first (left) and the second (right) breakpoint
frequency:f = 1=(2�� ) andf = 1=(2�� ). Parameter values used
in the calculation are given in Table I.

due to the second breakpoint frequency, the phase does not
approach 90 , but reaches a peak level, and then gradually
falls back toward zero.

Though (13) allows for analytical derivation of the limiting
values, as well as numerical calculation of the whole frequency
dependence of , it does not in itself clearly reveal the
behavior of demonstrated in Fig. 4. Though both the
numerator and the denominator of (13) are of second order,
making membrane field inducement asecond-order process,
Fig. 4 clearly implies that this process can be approximated as
first-order. This is to say that both the numerator and denom-
inator of (13) act approximately as if they were of first order
(unlike this, the classical model given by (5) has a first-order
denominator, but the numerator is frequency-independent, i.e.,

(13)
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Fig. 5. Nyquist (Cole-Cole) plot of the amplification of an external electric
field in the membrane according to the second-order (solid line) and the
first-order model (dashed). (a) Linear magnitude scale. (b) Logarithmic
magnitude scale. For used parameter values, see Table I and caption of Fig. 4.

of zeroth order). Sections A and B of the Appendix are dedi-
cated to an in-depth analysis and elucidation of this behavior
demonstrated by .

Another customary representation of the frequency depen-
dence is a Nyquist (Cole-Cole) plot, which shows the tra-
jectory of the amplification in the complex plane. Fig. 5
compares the Nyquist plots of given by (13) and (5).
When a linear magnitude scale is used, the distinctions are
hardly visible, thus confirming a good agreement between
the two equations [Fig. 5(a)]. With a logarithmic magnitude
scale, the differences at higher frequencies are emphasized
[Fig. 5(b)].

IV. DISCUSSION

Two principal aims of this section are 1) to discuss the limita-
tions of the presented model and 2) to contemplate on possible

implications of the high-frequency plateau, which is overlooked
by the classical first-order model.

A. Limitations of the Model

It has been shown that with intercellular distance several
times larger than cell radius, the effect of neighboring cells
on induced transmembrane voltage is negligible [16]. All the
expressions presented in this paper are therefore valid for a
single cell and also for dilute cell suspensions, but they fail to
provide a reliable quantitative analysis for tissues, where cells
are densely packed. Nevertheless, the qualitative predictions of
the second-order model—the second plateau of the membrane
field and its synchronization with the external field at high
frequencies—also apply to tissues.

While (5) accurately describes membrane field amplification
up to ca. 10 MHz, with (13) the upper frequency limit of validity
is increased by at least an order of magnitude. As the frequency
exceeds several hundreds of megahertz, the finite mobility of
molecular dipoles starts to weaken the polarization processes.
This shows as a decrease in the permittivities of the materials
and a coupled increase in their conductivity, known as dielectric
relaxation. For frequencies above 100 MHz, (12) must thus be
reformulated to give aneffective admittivity

(16)

which has a more intricate dependence upon frequency than
(12). By implementing effective admittivities into (13), the de-
scription of the field amplification is extended to the frequencies
where the dielectric relaxation occurs.

For estimative calculations, dielectric properties of the ex-
tracellular medium can be well approximated by those of the
physiological NaCl solution at 35C, for which precise data
on dielectric relaxation are available [17]. On the other hand,
the established techniques are very difficult to implement on
anisotropic materials, and data on relaxation of lipids remain
very scarce. Results have been published on dielectric spec-
troscopy of colloidal suspensions of phospholipid vesicles [18],
and more recently of multilamellar bilayers [19]. To our knowl-
edge, no measurements have yet been reported directly on unil-
amellar lipid bilayers, or cell membranes. An alternative ap-
proach is offered by the measurements of lipid headgroup ro-
tation obtained by P-NMR andH-NMR [20], [21]. In general,
dielectric relaxation of water and aqueous ionic solutions be-
comes pronounced at GHz frequencies, while the relaxation of
bilayer lipids occurs at hundreds of megahertz, thereby setting
the upper limit for validity of the presented second-order treat-
ment at approximately 100 MHz.

B. Effects of the High-Frequency Plateau

In the two paragraphs that follow, we shortly discuss possible
effects of the high-frequency plateau on two well-known phe-
nomena caused by the exposure to ac electric fields: 1) elec-
tric power dissipation, which occurs in every material and is
greatly enhanced at high frequencies, and 2) electropermeabi-
lization (electroporation), a field-induced increase of cell mem-
brane permeability and conductivity. Both electric power dis-
sipation and electropermeabilization lead to alterations in the
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structure and properties of cellular molecules, thus affecting the
cellular functions. The effects of both phenomena can be re-
versible, with exposed cells recovering from the damage, or ir-
reversible (in general, at larger perturbations), leading to cell
death. In the next paragraphs, we consider the relevance of each
of the two phenomena at high frequencies.

1) High-Frequency Power Dissipation:Power dissipation
per unit volume of a material is given by [22]

(17)

where is the strength of the ac electric field with the
angular frequency , and is the effective conductivity of
the material at this angular frequency. Above the relaxation
frequency, the effective conductivity of a given material
increases significantly, which according to (17) leads to a
proportional increase of power dissipation (the effect widely
exploited in the microwave ovens). The dielectric relaxation
of the lipid bilayer occurs in the 100-MHz range, while in
the aqueous media it only becomes expressed above 1 GHz
(hence, the use of 2.45 GHz in the microwave ovens). Due to
the high-frequency plateau, the membrane field is stable in
this frequency range, and this implies that between 100 MHz
and 1 GHz, power dissipation in the membrane increases
significantly. Due to the small membrane thickness, the
elevated power dissipation probably cannot lead to significant
temperature increase within the membrane, but it might result
in nonthermal effects. The distributed power dissipation at
high frequencies is explored in detail in [23].

2) High-Frequency Electropermeabilization:According to
the established theory, electro-permeabilization is a nonthermal
phenomenon [24], [25]. It only occurs if the transmembrane
voltage (and hence the membrane electric field) exceeds a cer-
tain threshold value, which according to different authors ranges
between 0.250 V and 1 V [26]–[28]. For a cell with m,
transmembrane voltage of 1 V is induced by an external field of

V/cm, provided that the reciprocal of the pulse dura-
tion lies within the low-frequency plateau (which is true for the
typical pulses used for electropermeabilization, ranging from
tens of microseconds to tens of milliseconds). Such a field
is generated by applying approximately 67 V to a 1 mm po-
ration cuvette, or by a voltage of 268 V with a 4-mm cuvette.
As is two orders of magnitude lower than , elec-
tropermeabilization by nanosecond pulses would demand volt-
ages hundred times larger, and is thus practically unachievable
with current technology. Possibility of electropermeabilization
occurring accidentally due to the exposure to high-frequency
sources such as cellular phones or radio-frequency emitting an-
tennas can thus also be excluded beyond any reasonable doubt.

APPENDIX

A. Exact Formulations of

By expanding both the numerator and denominator of (13), a
rational function is obtained

(A1)

where

(A2a)

(A2b)

(A2c)

(A2d)

(A2e)

and

(A2f)

Both the polynomial in the numerator and the polynomial in the
denominator of (A1) are of second order, giving the process of
membrane field inducement the second-order nature.

Equation (A1) can be rewritten as

(A3)

where the constants are given by

(A4a)

(A4b)

(A4c)

(A4d)

(A4e)

Alternatively, (A1) can also be reformulated as a sum of partial
fractions

(A5)

where

(A6a)

— (A6b)

— (A6c)

and and aregiven by (A4b) and (A4c), respectively.
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The first summand in (A5) represents the synchronous (in-
phase) part of the response, while the other two are lagging re-
sponses, each characterized by a time constant.

B. Simplifications

To elucidate the properties of shown in Fig. 4, one
has to consider the realistic physiological conditions, where two
relations build a basis for simplifications:

• membrane conductivity, , is more than five orders of
magnitude smaller than the conductivities of the cyto-
plasm, , and the extracellular medium, (see Table I);
therefore, by disregarding where it appears in sum
with or , the obtained result differs from the exact
value by several parts in a million.

• membrane thickness,, is at least three orders of magni-
tude smaller than cell radius,; by approximating

, one commits an error in the range of at most sev-
eral parts in a thousand.

It should be stressed that with terms that include both conductive
and dimensional parameters, the first of the above mentioned
relations has to be considered before the second one, as the
error committed by the first approximation is far smaller than
the one introduced by the second. Furthermore, disregarder of
the membrane conductivity often leads to cancellation of addi-
tional terms, including the ones that contain parametersand
, as becomes apparent in the calculation of and

presented later.
Applying the rules set above to the terms (A2a)–(A2f), one

gets

(A7a)

(A7b)

(A7c)

(A7d)

(A7e)

and

(A7f)

As these expressions are inserted into (A4a)–(A4e), the re-
sulting constants read

(A8a)

(A8b)

and

(A8c)

This sheds some light on the behavior of shown in Fig. 4.
As the three time constants and are very close to-
gether (with realistic parameter values, the difference between
them never exceeds one part in a thousand), they can be approx-
imated as equal. This cancels out two of the multiplicands in
(A3), leading to the first-order expression

(A9)

with time constants given by (A8b) and (A8c). Expression
(A8b) equals the first-order time constant given by (1), i.e.,

, thus confirming once again the validity of the
established predictions of low-frequency behavior. The recip-
rocals of the two time constants of (A9), and ,
correspond to the two breakpoint frequencies in the Bode plot
in Fig. 4.

Equations (A7a)–(A7f) also allow (A6a)–(A6c) to be approx-
imated as

(A10a)

(A10b)

and

(A10c)

Equation (A10c) reflects the fact that with physiological param-
eter values, is more than nine orders of magnitude smaller
than both and , making the second lagging response neg-
ligible in any practical context, and validating the approximation
of membrane field inducement by

(A11)

with and given by (A10a) and (A10b), respectively.

C. Limits and

The low-frequency limit of is obtained by inserting
into (13). This leads to (A12), shown at the bottom of

the page. Since , we approximate . We
then obtain an expression which depends only on the geometric
parameters of the cell

(A13)

In a similar manner, the limit at reads as (A14), shown
at the top of the next page. Since no conductivities appear in
this expression, simplification is based on the relation ,
which we approximate with 0. This leads to an expression
which depends only on the material parameters of the cell

(A15)

(A12)
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(A14)
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