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In this work, the electroporation phenomenon induced by pulsed electric field on different nucleated
biological cells is studied. A nonlinear, non‐local, dispersive, and space–time multiphysics model based on
Maxwell’s and asymptotic Smoluchowski’s equations has been developed to calculate the transmembrane
voltage and pore density on both plasma and nuclear membrane perimeters. The irregular cell shape has
been modeled by incorporating in the numerical algorithm the analytical functions pertaining to Gielis
curves. The dielectric dispersion of the cell media has been modeled considering the multi‐relaxation
Debye‐based relationship. Two different irregular nucleated cells have been investigated and their response
has been studied applying both the dispersive and non‐dispersive models. By a comparison of the obtained
results, differences can be highlighted confirming the need to make use of the dispersive model to
effectively investigate the cell response in terms of transmembrane voltages, pore densities, and
electroporation opening angle, especially when irregular cell shapes and short electric pulses are
considered. Bioelectromagnetics. 2019;40:331–342. © 2019 Wiley Periodicals, Inc.
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INTRODUCTION

The biomembrane is a critical biological structure
essential for cell function and survival as well as enabling
separation between the cell interior from its extracellular
environment controlling the exchange of molecules and
nutrients. Moreover, it controls the flow of messages
between cells by sending, receiving, and processing
information in the form of chemical and electrical
signals. When biomembranes are exposed to sufficiently
intense pulsed electric fields (PEFs), the formation of
transient aqueous pores improves membrane conductance
and permeability, enhancing the ionic and molecular
exchange between the cell and its environment [Pucihar
et al., 2011; Kotnik et al., 2019]. This non‐thermal
electromagnetic phenomenon, known as electroporation
(EP), is used in medical disease treatment to deliver
drugs, vaccine, genes, and other molecules to mammalian
cells [Yarmush et al., 2014].

The biomembranes’ EP obtained using high
intensity nanosecond PEF (nsPEF) is also used to
disturb internal cellular structures such as nucleus,

mitochondria, and endoplasmic reticulum. Depending
on the duration and magnitude of applied pulses, the
induced EP may cover more of the plasma membrane
than the cell interior or it could affect the intracellular
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membranes more than the plasma one [Kotnik and
Miklavčič, 2006; Pakhomov et al., 2014]. Moreover,
nsPEF induces different physiological changes in
mammalian cells leading to apoptosis in cancer cells
[Xiao et al., 2013], the release of calcium from
endoplasmic reticulum and calcium uptake from mem-
branes outside [Pakhomova et al., 2014], caspase
activation [Vernier et al., 2003a], externalization of
phosphatidylserine (PS) [Vernier et al., 2006], calcium
bursts [Vernier et al., 2003b], cytochrome C release
[Napotnik et al., 2012], and DNA fragmentation [Beebe
et al., 2003]. nsPEF also induces several effects on
the nucleus such as alteration of its morphology
[Napotnik et al., 2016], nuclear envelope damage with
consecutive detachment of telomeres attached to the
nuclear envelope [Stacey et al., 2011], alteration of
nucleoplasm conductivity [Garner et al., 2007], and the
enhancement of small nuclear ribonucleoprotein particle
formation [Chen et al., 2007]. Different mathematical
models of EP have been proposed in the literature to
study pore formation in plasma, nuclear, and membranes
of the organelles. These models can be classified as
nonlinear with cell compartments treated as nondisper-
sive media [Smith et al., 2006; Smith and Weaver, 2008;
Pucihar et al., 2009; Rems et al., 2013; Retelj et al.,
2013; Qiu et al., 2014; Yao et al., 2017] or linear with
cell compartments treated as dispersive media
[Denzi et al., 2013; Denzi et al., 2016]. However,
in nanosecond pulse regime, the frequency‐
dependent dielectric properties of membranes and
intracellular and extracellular media have to be
considered to obtain an accurate and predictive EP
model [Joshi and Hu, 2011; Denzi et al., 2016; Napotnik
et al., 2016]. Moreover, in order to study the pore
creation process inside the membranes, dielectric
dispersion relationships pertaining to the cell media
should be used in conjunction with the electroporation
nonlinear model.

Nonlinear dispersive model of electroporation for
a spherical single‐shell cell was discussed in the
literature [Pucihar et al., 2009; Salimi et al., 2013].
Different papers also illustrate the influence of the
irregular shape of the membrane on the electroporation
process [Pucihar et al., 2009; Qiu et al., 2014; Denzi
et al., 2016]. In this paper, a nonlinear dispersive model
of electroporation for nucleated irregular cells is
presented. The nonlinear effect due to pore creation is
considered in accordance to the asymptotic electropora-
tion model based on Smolouchouski partial differential
equation [Neu and Krassowska, 1999; Stewart et al.,
2004; Lamberti et al., 2013]. The dielectric properties
of biological cell media are described using the
multi‐relaxation Debye‐based equation. By using a
finite element‐based technique, quasi‐static Maxwell

equations, and the Smolochowski partial differential
equation and differential equation, relating the electric
and polarization fields are simultaneously solved in the
three‐dimensional space‐time domain. Moreover, the
irregular cell shape has been modeled by Gielis’
superformula [Gielis, 2003; Bia et al., 2015; Mescia
et al., 2016]. Considering two types of nucleated cells,
various simulations have been carried out to analyze the
differences between the nonlinear dispersive and
nondispersive models. By the simulation results,
significant differences between the two analyzed models
have been noticed. In particular, the difference is
relevant in the case of the nucleated cell having an
irregular plasma membrane shape. The noticeable
discordance pointed out by the performed analysis is a
compelling argument for the necessity of employing the
dispersive dielectric properties in the model.

MATHEMATICAL MODELING

SystemGeometry

As illustrated in Figure 1, the biological system
considered in the proposed studies is an axisymmetric
cell constituted by the extracellular electrolyte (Ex),
cytoplasm (Cp), nucleoplasm (Np), plasma (Pm), and

Fig. 1. Sketch of irregular nucleated biological cell exposed
to uniform electric field.

332 Chiapperinoet al.

Bioelectromagnetics



nuclear (Nm) membranes. The applied pulsed electric
field is generated by a couple of ideal planar electrodes
placed on the top and lower ends of the computational
domain. The irregular cell geometry is modeled by
using the so‐called Gielis superformula [Mescia et al.,
2019]. In particular, the radius vectors describing the
nuclear (r1) and plasma (r2) membranes are given by
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2
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with 2, 2∈θ π π[− / / ], m n,i i, i 1, ,4= … , and bj,
j 1, 2= are positive real numbers, ap, p 1, ,4= …
are the strictly positive real numbers, A B,1,2 1,2 are
suitable scale factors.

DIELECTRIC RELAXATION MODEL

Considering that for several PEF applications the
pulse spectral energy becomes significant at frequen-
cies where dispersive effects occur, the developed
numerical model takes into account the dielectric
relaxation due to the time‐dependent response of the
dielectric media [Caratelli et al., 2016]. In particular,
the dielectric properties of cell media are modeled by
the multi‐relaxation Debye dispersion equation:

j1
i

N
i

i1

∑∞ε ω ε
ε

ωτ
˜( ) = +

Δ

+
=

(6)

where ∞ε is the high frequency permittivity, N is the
order of Debye dispersion process, iεΔ is the ith
relaxation amplitude, and iτ is the ith relaxation time.
In detail, a second‐order Debye equation is used to
model the plasma and nuclear membranes, and a first

order Debye equation is implemented to model the
extracellular medium, cytoplasm, and nucleoplasm.
Under the assumption that the coupling between the
PEF and dielectric medium is weak, the linear
response approximation effectively describes the di-
electric polarization. For the homogeneous media
characterizing the cell compartments, the linear
response of the polarization vectors P1 and P2,
corresponding to the first and second order
Debye dispersion model, can be expressed in time
domain as:
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NONLINEAR MODEL

The pore densities for the plasma, NPm, and
nuclear NNm membranes are calculated by using the
asymptotic Smoluchowski equation [Krassowska and
Filev, 2007]. In particular, their temporal evolutions
are modeled by the following first‐order partial
differential equations:
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where α is the rate coefficient describing the pore
creation, ΔΨPm and ΔΨNm are the transmembrane
voltage (TMV) for the plasma and nuclear mem-
branes, respectively, Vep is the characteristic voltage
of electroporation, Neq is the equilibrium pore density,
and q is the EP constant. Considering the application
of short pulses, the pore creation process dominates
the pore expansion one, and the asymptotic model of
electroporation can be used assuming that pores are
created with constant radius of about 0.8 nm [Salimi
et al., 2013].

Whenever the electroporation occurs, the forma-
tion of the pores in the cell membranes increases their
conductivity. In particular, the average membrane
conductivity is given by the sum of static membrane
conductivity and contribution due to the electropo-
rated part:
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where Pm0,σ and Nm0,σ are the static plasma and nuclear
membrane conductivity, p Pm,σ and p Nm,σ are the
conductivity of the solution inside the pore for the
plasma and nuclear membranes, respectively, rp is
the pore radius, w0 is the pore energy barrier, η is the
relative entrance length of pores, and Pmν and Nmν are
the non‐dimensional TMV for the plasma and nuclear
membranes calculated using the following equations:

q
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ELECTROMAGNETIC MODEL

The electric potential ϕ and electric field E are
computed by neglecting time‐variation of the mag-
netic field and solving in each cell subdomain the
Laplace equation

t
P 00∇ ⋅

∂

∂
∇ ∇ ⋅ ∇ε ϕ σ ϕ( − ) + = (20)

in conjunction with the Equations (7–19) and the
equation:

E ∇ϕ= − (21)

Moreover, the plasma TMV is calculated as the
difference between the electric potential on the
interior (i) and outer (o) sides of the plasma
membrane:

x y t x y t x y t, , , , , ,Pm Pm Pmi, o,ϕ ϕΔΨ ( ) = ( ) − ( )

(22)

The nuclear envelope is composed of two
concentric lipid bilayers, forming the inner and outer
nuclear membranes, separated by a perinuclear space
of about 30‐nm thickness. Moreover, the fluid in
the perinuclear space can be considered to have
conductivity value similar to that of the electrolyte in
the cytoplasm. The inner and outer membranes are
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thus electrically connected in series and taking into
account that the cytoplasm conductivity is much
higher than the membranes’ conductivity, the voltage
drop across the perinuclear space is negligible. By
virtue of such matters, in our computations the nuclear
envelope has been modeled as two lipid membranes in
close contact between each other, each one having a
thickness half of the nuclear envelope one. Moreover,
we assumed that both membranes have the same
electrical properties [Rems et al., 2013, Retelj et al.,
2013]. In this way, the TMV is equally distributed
between both membranes, allowing calculation of the
TMV across one of the nuclear membranes as

x y t
x y t x y t

, ,
, , , ,

2
Nm

Ne Nei, o,ϕ ϕ
ΔΨ ( ) =

( ) − ( )

(23)

where ϕi,Ne(x,y,t) and ϕo,Ne(x,y,t) are the electric
potential on the interior and outer sides of the nuclear
envelope, respectively.

The electrical boundary conditions pertaining to
the source and sink electrodes were set to V tϕ = ( )
and 0ϕ = , respectively, V(t) being the PEF signal
constructed using smoothed piecewise function con-
sisting of unipolar pulse. The study was performed
using a direct solver managing a large sparse linear
system of equations with good memory efficiency.
The solver uses LU decomposition to compute the
system solution and a pre‐ordering algorithm that
permutes the columns of the system matrix mini-
mizing the number of non‐zeros in the L and U
factors. A free time‐stepping algorithm was utilized to
enable the solver to freely select the time steps during
the computation (Table 1).

NUMERICAL RESULTS AND DISCUSSION

The model has been validated by comparing
the results concerning the nucleated spherical cell
simulations with the literature ones. In particular,
the temporal evolution of plasma membrane ΔΨm
and pore density shown in Figure 2 have been
compared with the corresponding curves reported in
Lamberti et al. [2013]. In the comparison analysis a
pore radius rp = 3.5 nm has been considered. More-

over, with the aim to perform a right validation test
the cell biological media are non‐dispersive as in
Lamberti et al. [2013]. Figure 2a shows the
temporal evolution of the plasma membrane ΔΨm
at the top of the cell (θ = 90°) when a PEF having
amplitude E = 2.5 MV/m, pulse duration T = 50 ns,
rise time tr = 30 ns, and fall time tf = 30 ns is applied
to the external electrodes. In Figure 2b the time
behavior of the plasma membrane pore density at

TABLE 1. Definition of Acronyms

Abbreviations Definition

EP Electroporation
PEF Pulsed electric field
EPRL Electroporation relative length

Fig. 2. Temporal evolution of (a) plasma membrane TMV at
the top of the nucleated spherical cell ( 90θ = °) for r 3.5 nmp = .
Applied voltage signal having amplitude E 2.5MV m= / , pulse
duration T 50 ns= , rise time t 30 nsr = , and fall time
t 30 nsf = . Temporal evolution of (b) plasma membrane pore
density at the top of the nucleated spherical cell ( 90θ = °) for
r 3.5 nmp = , when three different voltage signals are applied:
E 2.5MV m= / , pulse duration T 50 ns= , rise time t 30 nsr = ,
and fall time t 30 nsf = ; E 1.5MV m= / , pulse duration
T 50 ns= , rise time t 18 nsr = and fall time t 18 nsf = ;
E 1MV m= / , pulse duration T 50 ns= , rise time t 12 nsr = ,
and fall time t 12 nsf = .
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the top of the cell is reported when the previous
voltage signal and two further voltage stresses with
the following pulse parameters are applied: E = 1.5
MV/m, pulse duration T = 50 ns, rise time tr = 18 ns,
and fall time tf = 18 ns; E = 1 MV/m, pulse duration
T = 50 ns, rise time tr = 12 ns, and fall time tf = 12
ns. The obtained results are in good agreement with
the corresponding ones reported in Lamberti et al.
[2013], which in turn have been used to provide an
exhaustive explanation of the experimental results
concerning the effects induced by nsPEF on Jurkat
cells. In fact, the pore density relative error between
the literature and the present models is about 5% for
all the pulse voltages. The differences between the
two models could be mainly due to the different
time domain solvers, time step, and spatial dis-
cretization of the computational domain. The model
has also been validated using preliminary experi-
mental results pertaining to real cells exposed to a
rectangular unipolar pulse having voltage amplitude
of 60 V and duration of 100 µs. Figure 3a shows the
temporal evolution of pore density evaluated at the

corresponding maximum points for the three
different real cells. In particular, the electroporated
cells resulting from the numerical investigation
correspond to those observed experimentally by
detecting the red and green fluorescence (see Fig.
3c) due to the influx of calcium in the cytoplasm. In
particular, by an inspection of Figures 3a and c, it is
worthwhile to note that cell 1 and cell 2 are both
electroporated and cell 3 does not appear in
microphotograph since it is not electroporated. As
result, a good agreement between the numerical and
experimental results can be inferred. Instead, Figure
3b shows all the cells before electroporation.
Furthermore, the present model has also been
previously validated for the case of spherical non‐
nucleated cells [Mescia et al., 2018]. Using the
numerical model previously described, the electro-
poration process has been studied for two types of
cells: prolate spheroid and muscular‐like. The cells
are bounded by a cylindrical computational domain
having radius and height equal to 100 μm. Table 2
summarizes the polarization, geometric, electric,

Fig. 3. (a) Temporal evolution of pore density evaluated in the points of maximum for three
different real cells. Images regarding the experimental results: (b) cells before
electroporation, (c) electroporated cells. Rectangular unipolar pulse type, voltage
amplitude 60 V, duration T 100 s= μ , time windows 0.1 s.
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and electroporation parameters used in numerical
simulations. Our computations and data plots have
been performed using COMSOL Multiphysics 5.3
(COMSOL, Stockholm, Sweden) and MATLAB
R2018b suite software (MathWorks, Natick, MA).

The first type of cell has a prolate spheroid shape
(see Fig. 4a), characterized by semi‐axis a1= 2 μm
and b1= 7.5 μm, for the plasma membrane, and semi‐
axis a2= 0.75 μm and b2= 1.5 μm, for the nuclear
membrane. The thickness of plasma membrane and
nuclear envelope are hPm= 5 nm and hNe= 10 nm,
respectively. In physiological conditions the nuclear

envelope has a relatively high conductivity value
compared to that of the plasma membrane. This is to
be expected because of the large number of electro-
lyte‐filled nuclear pores that penetrate the inner and
outer nuclear membranes. So, in our calculation the
plasma and nuclear membrane conductivities are

9.5 10Pm
0

9σ = × − S/m and 1 10Nm
0

4σ = × − S/m, re-
spectively. The cells are exposed to a PEF having
rectangular shape with amplitude E= 100 kV/cm,
duration T= 10 ns, rise time tr= 0.9 ns, and fall time
tf= 0.9 ns. All results refer to both plasma dispersive
(DPm) and nuclear dispersive (DNm) membranes as

TABLE 2. Polarization, Electric, Geometrical and Electroporation Parameters

Symbol Value Description

Pm
1τ s3 10 9× − First relaxation time of plasma membrane [Klosgen et al., 1996]
Nm
1τ s3 10 9× − First relaxation time of nuclear membrane [Klosgen et al., 1996]
Pm
2τ s4.6 10 10× − Second relaxation time of plasma membrane [Klosgen et al., 1996]
Nm
2τ s4.6 10 10× − Second relaxation time of nuclear membrane [Klosgen et al., 1996]
Exτ s6.2 10 12× − Relaxation time of extracellular medium [Kotnik and Miklavčič, 2000]
Cpτ s6.2 10 12× − Relaxation time of cytoplasm [Kotnik and Miklavčič, 2000]
Npτ s6.2 10 12× − Relaxation time of nucleoplasm [Kotnik and Miklavčič, 2000]
Pm
1εΔ F m2.3 10 11× /− First relaxation amplitude of plasma membrane [Klosgen et al., 1996]
Nm
1εΔ F m2.3 10 11× /− First relaxation amplitude of nuclear membranes [Klosgen et al., 1996]
Pm
2εΔ F m7.4 10 12× /− Second relaxation amplitude of plasma membrane [Klosgen et al., 1996]
Nm
2εΔ F m7.4 10 12× /− Second relaxation amplitude of nuclear membrane [Klosgen et al., 1996]
ExεΔ F m5.9 10 10× /− Relaxation amplitude of extracellular medium [Kotnik and Miklavčič, 2000]
CpεΔ F m5.9 10 10× /− Relaxation amplitude of cytoplasm [Kotnik and Miklavčič, 2000]
NpεΔ F m5.9 10 10× /− Relaxation amplitude of nucleoplasm [Kotnik and Miklavčič, 2000]

∞ε F m13.9 10 12× /− High frequency permittivity [Klosgen et al., 1996]
0ε F m8.85 10 12× /− Dielectric permittivity of vacuum
r
Exε 72 Relative permittivity of extracellular medium [Salimi et al., 2013]
Pm
0ε 5 Static relative permittivity of plasma membrane [Salimi et al., 2013]

r
Cpε 72 Relative permittivity of cytoplasm [Salimi et al., 2013]
Nm
0ε 7 Static relative permittivity of nuclear membrane [Rems et al., 2013]

r
Npε 72 Relative permittivity of nucleoplasm [Rems et al., 2013]
Exσ S m1.2 / Conductivity of the extracellular medium [Salimi et al., 2013]
Pm
0σ S m9.5 10 9× /− Passive conductivity of the plasma membrane [Salimi et al., 2013]
Cpσ S m0.3 / Conductivity of cytoplasm [Salimi et al., 2013]
Nm
0σ S m1 10 4× /− Passive conductivity of the nuclear membrane [Rems et al., 2013]
Npσ S m0.6 / Conductivity of nucleoplasm [Rems et al., 2013]

p
Pmσ S m0.6492 / Conductivity of the solution inside the pore for the plasma membrane [Rems et al., 2013]

p
Nmσ S m0.4328 / Conductivity of the solution inside the pore for the nuclear membrane [Rems et al., 2013]

rp nm0.8 Pore radius [Salimi et al., 2013]
α m s109 2 1− − Pore creation rate density [Salimi et al., 2013]
Vep mV224 Characteristic voltage of electroporation [Salimi et al., 2013]
Neq m3.3 106 2× − Equilibrium pore density [Salimi et al., 2013]
w0 3.2 Energy barrier inside the pore [Salimi et al., 2013]
η 0.15 Relative length of pore entrance area [Salimi et al., 2013]
q 1 EP constant [Salimi et al., 2013]
qe C1.65 10 19× − Electron electric charge
K J K1.38 10 23× /− Boltzmann constant
T K295 Temperature
hPm nm5 Plasma membrane thickness [Rems et al., 2013]
hNe nm10 Nuclear envelope thickness [Rems et al., 2013]
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well as to plasma non‐dispersive (nDPm) and nuclear
non‐dispersive (nDNm) membrane models. Figures 4b
and c show the time response of the TMV and pore
density at the top of the spheroidal cell. As shown in
Figures 4b and c and in accordance with results
reported in Salimi et al. [2013], the increase of the
TMV and resulting activation of electroporation occur
faster in the dispersive model. This is due to the
membrane‐charging time constants, characterizing the
dispersive model, which are significantly smaller than
that of the non‐dispersive one. As a consequence of
the external pulse application, the TMV on the plasma
and nuclear membranes increases approximately to
1.4 V, both for the dispersive and non‐dispersive
model. However, the enhancement of pore density in
the plasma and nuclear membranes generates a fast
increase of membrane conductivity leading to a TMV
decrease. For both the dispersive and non‐dispersive

models, the nuclear membrane is electroporated
before the plasma membrane. The explanation of
this phenomenon is related to the fact that the
charging time constant of nuclear membrane is less
than that of the plasma membrane [Schoenbach et al.,
2007]. This effect is more prominent when shorter
pulses are used, as in our case. Figure 4d reports
the pore density around the cell perimeter at time
instant t= 20 ns, and a relevant difference is evaluated
between the dispersive and non‐dispersive model. In
particular, the electroporation relative length (EPRL),
i.e., the ratio between the length of the electroporated
region and the total length of the cell membrane,
pertaining to the plasma membrane and calculated
using the dispersive model, is about 2.5% higher
than that calculated using a non‐dispersive one.
Moreover, the EPRL of the nuclear membrane
calculated using the dispersive model is about

Fig. 4. Nucleated biological cell with prolate spheroidal shape (a), results for plasma (Pm)
and nuclear (Nm) membranes obtained using the dispersive (D) and non‐dispersive (nD)
model: (b) Temporal evolution of TMVand (c) pore density at the top of the cell ( 90θ = °),
(d) pore density versus the polar angle at t 20 ns= . Pulse amplitude and duration equal to
100 kV cm/ and 10 ns, respectively.
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7.3% higher than that calculated using the non‐
dispersive one. To evaluate the EPRL, the
cell membranes are considered to be significantly
electroporated when the pore density reaches a value
of 1014 m−2 [Retelj et al., 2013].

The second analyzed nucleated cell is the
muscular‐like one reported in Figure 5a. For this
type of cell, the shape of the plasma membrane has
been modeled using the Gielis superformula para-
meters m1=m2= 2, n1= n2= 0.8, d1= d2= 1,
b1= 0.6 [Mescia et al., 2018]. The spatial scale
factors are A1= 4 μm and B1= 7.5 μm. The nucleus
has prolate spheroid shape with semi‐axis a2= 0.75
μm and b2= 1.5 μm and center shifted of s= 1 μm in
respect to the origin. Figures 5b and c show the time
response of the ΔΨm and pore density at the angular
place θ= 75° for both plasma and nuclear membranes,
obtained using the dispersive and non‐dispersive

model. Also in this case, the activation of electro-
poration occurs faster in the dispersive model. In
accordance with the nucleated prolate spheroidal cell,
also for the nucleated muscular‐like cell, the nuclear
membrane is electroporated before the plasma mem-
brane for both the dispersive and non‐dispersive
model. However, with respect to the prolate spheroid
cell a different angle at which the results are shown is
considered. In fact, as shown in Figure 4d, in the
prolate spheroid cell the plasma membrane is not
significantly electroporated for θ= 75°. Instead, the
electroporation is maximal for θ= 90°, corresponding
to the plots of Figures 4b and c, in both nuclear and
plasma membranes. On the contrary, in the muscular‐
like cell the plasma membrane is not electroporated
for θ= 90° and exhibits the maximum electroporation
value at the angle θ= 75°, corresponding to the plots
of Figures 5b and c. For this reason, we analyzed

Fig. 5. Smooth muscular cell with shifted nucleus (a), results for plasma (Pm) and nuclear
(Nm) membranes obtained using the dispersive (D) and non‐dispersive (nD) model: (b)
Temporal evolution of TMVand (c) pore density for 75θ = °, (d) pore density versus the
polar angle at t ns20= . Pulse amplitude and duration equal to 100 kV cm/ and 10 ns,
respectively.
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the results at different angles. Again, as shown in
Figure 5b, the TMV curves have a very different
behavior. In fact, due to the different shape, size, and
thickness as well as the different conductivity and
permittivity of the nuclear and plasma membranes,
they are stimulated in a different way by the electric
pulse. As reported in Figures 5c and d, a significant
difference is evaluated between the two analyzed
models. For this type of cell, the difference between
the two models is magnified by the irregular
geometrical shape of the plasma membrane. At
θ= 75° only the nuclear membrane is significantly
electroporated for both dispersive and non‐dispersive
models. From Figure 5d, a significant absolute
difference between the dispersive and non‐dispersive
EPRL for both the membranes can be inferred. In
particular, the EPRL difference is about 26.7% for the

plasma membrane, and about 7.1% for the nuclear
membrane.

To investigate the influence of the nucleus shift
on the EP process, a parametric study has been carried
out. The aim of this study is to evaluate the
electroporation phenomenon in a more complicated
geometrical configuration and to emphasize that the
discrepancy between the dispersive and non‐disper-
sive models is further magnified by this new geometry
framework. Also in this case, the analysis has been
performed for plasma and nuclear membranes, using
both the dispersive and non‐dispersive models.
Figures 6a and b illustrate, respectively, the EPRL
for plasma and nuclear membranes as functions of the
nucleus shift s, calculated using the dispersive (D) and
non‐dispersive (nD) model. The plasma EPRL
calculated using the dispersive model changes within

Fig. 6. Nucleus decentralization parametric study: (a) EPRL for plasma membrane (Pm)
and (b) EPRL for nuclear membrane (Nm) versus the nucleus decentralization parameter s,
obtained using the dispersive (D) and non‐dispersive (nD) model. Absolute difference
between the dispersive and non‐dispersive EPRL versus the nucleus decentralization
parameter s for (c) plasma membrane and for (d) nuclear membrane. Computations
performed at time instant t = 20 ns.
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limited values ranging from 25% to 27%. Instead, the
plasma EPRL evaluated using the non‐dispersive
model is zero for s ranging from −1.5 μm to 1.5 μm
and increases to about 8% moving the nucleus towards
the electrodes. Thus, the plasma EPRL evaluated
using the non‐dispersive shows a dependence on the
position of the nucleus. In particular, with respect to
the non‐dispersive model, lower high‐frequency
membrane permittivity characterizing the dispersive
model results in a higher TMV. As a consequence, in
the non‐dispersive case a lack of plasma electropora-
tion for s ranging from −1.5 µm to 1.5 µm occurs. For
the nuclear membranes, the EPRL calculated using the
dispersive and non‐dispersive model is quite constant
and equal to about 58% and 51%, respectively. As
shown in Figure 6c, the absolute difference between
EPRL of plasma membrane calculated using the
dispersive and non‐dispersive models has a minimum
of about 17.2% at s=±3 μm reaching the maximum
value of about 27.2% close to s=±1.5 μm. A local
minimum of about 25.8% is evident at s= 0 μm.
Figure 6d shows that for the nuclear membrane, the
absolute difference between the dispersive and non‐
dispersive EPRL changes in the range 7%/7.3%.

CONCLUSION

In this paper, a nonlinear dielectric dispersion
mathematical model of electroporation for real‐like
shape nucleated cells is developed. The presented
model solves Maxwell’s equations in conjunction with
the Smolouchouski partial differential equation, which
describes the nonlinear pore dynamics creation. The
dielectric dispersion properties of each cell compart-
ment are considered using the Debye dispersion
model. Finally, the Gielis superformula has been
integrated in the model to describe the irregular
geometry of the cell to analyze.

Considering the nucleated prolate spheroidal cell
and smooth muscular cell with shifted nucleus,
various simulations have been performed with the
aim to investigate the differences between the non-
linear dispersive model and nonlinear non‐dispersive
model. Starting from the prolate spheroidal cell, an
absolute difference between the dispersive and non‐
dispersive EPRL of 2.55% for the plasma membrane
and 7.33% for the nuclear membrane are obtained.
This difference increases with the irregular geome-
trical shape of the plasma membrane.

In particular, for the muscular‐like cell with the
nucleus shifted along the y axis of s= 1 μm, EPRL is,
respectively, 26.70% for the plasma membrane and
7.10% for the nuclear membrane. Finally, a para-
metric analysis has been carried out, to evaluate the

absolute difference between the dispersive and non‐
dispersive EPRL as functions of the shift parameter s.
A ΔEPRL ranging between 17.25% and 27.24% for
the plasma membrane and between 7.07% and 7.31%
for the nuclear membrane is obtained. However, by an
inspection of the obtained results it is possible to
conclude that for real‐like cells, a relevant difference
is observed between the nonlinear dispersive model
and nonlinear nondispersive model. Then, the pre-
sented numerical model combining the real geometry
description, accurate dielectric dispersion response of
the exposed cell, and nonlinear behavior of the EP
process provides a realistic and detailed analysis of
electroporation process.
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