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In many electroporation applications mass transport in biological tissue is of primary concern. This paper
presents a theoretical advancement in the field and gives some examples of model use in electroporation appli-
cations. The study focuses on post-treatment solute diffusion.
We use a dual-porosity approach to describe solute diffusion in electroporated biological tissue. The cellular
membrane presents a hindrance to solute transport into the extracellular space and is modeled as
electroporation-dependent porosity, assigned to the intracellular space (the finite rate of mass transfer within
an individual cell is not accounted for, for reasons that we elaborate on). The second porosity is that of the
extracellular space, through which solute vacates a block of tissue.
The model can be used to study extraction out of or introduction of solutes into tissue, and we give three exam-
ples of application, a full account ofmodel construction, validationwith experiments, and a parametrical analysis.
To facilitate easy implementation and experimentation by the reader, the complete derivation of the analytical
solution for a simplified example is presented.
Validation is done by comparing model results to experimentally-obtained data; wemodeled kinetics of sucrose
extraction by diffusion from sugar beet tissue in laboratory-scale experiments. The parametrical analysis demon-
strates the importance of selected physicochemical and geometrical properties of the system, illustrating possible
outcomes of applying themodel to different electroporation applications. The proposedmodel is a new platform
that supports rapid extension by state-of-the-art models of electroporation phenomena, developed as latest
achievements in the field of electroporation.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

As shown by experiments on lipid bilayers, cells in suspensions,
monolayers and biological tissue, electric field can, if of sufficient
strength, cause a significant increase in the conductivity and permeability
of the lipid membrane [1]. This effect is known as electroporation and
has been attributed to creation of aqueous pathways in the lipid bilayer
[2,3]. Throughout this paper we will assume that solute diffusivity in
biological tissue can be enhanced by electroporation bymeans of apply-
ing one or a series of electroporative pulses of a particular amplitude
and duration to the tissue.

Electroporation is studied in a number of diverse fields [4,5], such as
in biomedicine for gene delivery [6–8], electrochemotherapy [9–12],
transdermal drug delivery [13–16], or tumor ablation by irreversible
ologie de Compiègne (UTC),
oire Transformations Intégrées
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fe.uni-lj.si,
electroporation [17,18]; in food engineering and chemistry for increas-
ing extraction yield [19–21], improving the quality of extract [22–24],
or food preservation [25–27]; as well as in environmental sciences for
waste water treatment [28,29], lipid extraction [30], or plant growth
stimulation [31,32]. In all domains we encounter the need for introduc-
ing into or extracting out of the biological cells the solutes of interest.
These range from small chemical compounds such as sucrosemolecules
[33,34] in food processing to larger and more complex drugs for
electrochemotherapy [35] and to still larger lipids [30], and finally to
the very large RNA and DNA molecules in gene therapy research [36].
This variability poses a challengewhen determining parameters of elec-
troporation, and recommended treatment protocols for their respective
applications [37,38], as well as protocol optimization [39], are subjects
of intensive research.

The problem of mass transfer during and after application of
electroporative pulses has been treated both experimentally [40–42]
and theoretically [43–48], and in studies combining both approaches
[49–52], but mainly employing less complex systems, e.g. cell suspen-
sions [43] and monolayers of cells [50,53]. This reservation to systems
of lesser complexity seems to hold particularly true for theoretical
models.
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In many important electroporation applications, e.g. electroche-
motherapy or extraction of valuable compounds from plant tissue, the
object of interest is heterogeneous tissue composed of cells in close
contact that are of variable size [54], shape [55], and that may be inter-
connected via intercellular junctions [56]. These factors influence – to a
varying extent – the electroporation process, electrotransfer and diffu-
sion of solute, both during and after electroporation. Additionally,
membrane contacts of adjacent cells in animal tissues reduce the effects
of the electric field, as shown by studies on dense cell suspensions [57],
while the effects of the cell wall in plant tissues and the porosity of
extracellular space have not yet been evaluated in relation to electropo-
ration. Furthermore, we often come across clearly defined sources and/
or sinks of observed solute. These introduce the need for not only
temporal observation and inclusion of reaction kinetics in the model
[45], but also the need to determine the spatial distribution of solute
concentration in tissue [46].

With respect to electroporation and its effects on cell membrane
transport, we have to examine the nature of solute transported in rela-
tion to the electric pulse parameters and electrical properties of tissue
[58,59], as well as the local electric field distribution [60,61]. Several
mechanisms of transport were reported in addition to free diffusion,
such as electrokinetic effects facilitated by the electric field. The list of
these comprises electrophoresis [45], electroosmosis [47] and FASS
(Field-Amplified Sample Stacking) [45,62], as well as cellular and
membrane processes such as endocytosis [63]. The importance of indi-
vidual mechanisms depends not only on the nature of solute, but also
on the parameters of delivered electric pulses [48,64] and the time of
observation of the system. The time of observation is important since
it delineates two modeling paradigms — we either model periods dur-
ing as well as after electric pulse application with electrokinetic effects,
or we focus on the post-pulse period only, where the dominant mass
transport is by diffusion through long-lived pores [50,59,65].

The model that we present in this paper is an attempt at advancing
the basis of the theoretical modeling of mass transport in electropora-
tion applications. Tissue is modeled as a dual-porosity medium. One
medium is represented by the intracellular and the other by extracellu-
lar space, with cell membrane separating the two media. It has been
developed in order to model experimental results in a particular case
of plant tissue electroporation with purpose of solute extraction, but
can, with modification, also be applied to applications in biomedicine
(e.g. electrochemotherapy) and other fields of electroporation research
where there is a need tomodel solute transport on the level of tissue.
In this first attempt at building a dual-porosity model, we are
concerned only with free diffusion of small molecules (several kDa)
post-pulse, when the effects of the electric field are either no longer
present or are negligible. We have, however, coupled diffusion with
the effects of electroporation through its effects on membrane
permeability.

In ourmodel study, the transportmodeledwill be that of sucrose ex-
tracted from sugar beet tissue. We are including a comparison of model
resultswith experimental data asmodel validation and an illustration of
the model application, while also presenting a parametric study. By
means of the latter we attempt to both analyze the influence of some
of the electroporation parameters on model predictions as well as
gauge the sensitivity of the model to potential errors in parameter
estimation.

Since the model presented is a proof of concept and the interpre-
tation of its results has illustrative value, we have kept the model in
this first account simple enough, so that an analytical solution could
be readily found and discussed. A clear and complete demonstration
of applying the model to problems in a different field of electropora-
tion research, e.g. in electrochemotherapy or intra/transdermal drug
transport, requires and deserves a study and paper of its own. For
brevity, we therefore only present, in theory, the necessarymodifica-
tions to the model, which we believe are necessary to adapt it to
problems of drug diffusion in tissues for biomedical applications.
For a schematic representation on how the paper explores the
dual-porosity modeling paradigm and how its contents are divided
into subsections, see Fig. 1.

2. Theoretical formulation of the problem, model construction, and
its application

2.1. System of solute diffusion equations in a dual-porosity medium

The rationale behind the use of the following model equations
comes from the theory of porous media [66], more precisely from the
observations of liquid flow in soils and fractured rocks. From the
mathematical point of view, we exploit the analogy of fluid flow and
heat transfer in porous media with problems in mass transport by
diffusion [67]. The same (mathematical) treatment is thus applicable
that has been thoroughly studied in problems of heat andmass transfer
in porous media [68,69].

We model a block of tissue as composed of essentially two media,
the extracellular and the intracellular. At their respective volume
fractions, they occupy the same block of tissue, as is illustrated by
Fig. 2. Tissue is modeled as comprising cells' interior volume that collec-
tively forms the intracellular space. The intracellular space is separated
by the cell membrane from the extracellular space, which comprises
primarily the cell wall (in plants) or collagen (e.g. in skin tissue), as
well as miscellaneous and other biomolecules in addition to the
entrapped liquid (and air in plants) in the intercellular compartments.
Electric field primarily acts on membranes, rendering them permeable
thus effectively affecting the porosity of the intracellular space; electro-
poration of membranes is therefore enabling diffusive transport of
solutes through the membrane.

If we imagine a sample of tissue of finite thickness (e.g. a few
hundred layers of cells), we can identify two diffusive flows of solute.
Assuming that initially there is a higher concentration of solute within
the cells as compared to the extracellular space, first, the solute has to
diffuse out of individual cells (i.e. from intracellular space) into the
extracellular space. This is the transmembrane flow. Second, the solute
diffuses through the block of tissue via the extracellular route; this
diffusion is driven by the gradient that appears in the block of tissue
due to conditions at the tissue sample boundaries. In extraction applica-
tions, the boundary condition can ideally be assumed constant and
equal to zero (i.e. infinite dilution into surrounding solvent). In
electrochemotherapy or transdermal drug transfer applications, the
boundary condition is non-zero, i.e. constant or time-varying (depending
on application), e.g. a skin reservoir of finite capacity; or a local drug
plasma concentration dependent on locally (un)obstructed blood flow,
etc. The extracellular path results in an extracellular flow in the presence
of concentration gradients imposed by the boundary and initial
conditions. Solute leaving the cells results in a decrease of intracellular
concentration, and an increase in extracellular concentration. On the
other hand, solute leaving the tissue sample in effect decreases extracel-
lular concentration. This gives us, for intrinsic concentration (i.e. concen-
tration averaged over the volume fraction of each phase) in extracellular
space and intracellular space respectively, the following set of partial
differential equations (PDEs):

∂ce z; tð Þ
∂t −Ds;e

∂2ce z; tð Þ
∂z2

−1−ε
ε

k � ci z; tð Þ−ce z; tð Þ½ � ¼ 0 ð1Þ

∂ci z; tð Þ
∂t þ k � ci z; tð Þ−ce z; tð Þ½ � ¼ 0: ð2Þ

In Eqs. (1)–(2), ci and ce denote intrinsic volume-averaged intracel-
lular and extracellular (respectively) molar concentrations in units
mol·m−3, Ds,e is the diffusion coefficient of solute species s in extracel-
lular space with units m2·s−1, z is the spatial coordinate aligned with



Fig. 1. The dual-porosity modeling paradigm as explored in this article.
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(i.e. parallel to) the principal axis of diffusion, and k(ci − ce) is the
volume-averaged flow in units mol·m−3.s−1. This member as well as
the multiplicative factor (1 − ε)/ε will be further deconstructed and
explained during the course of the following analysis. We have sup-
posed only one principal axis of diffusion is relevant, and that is the
axis perpendicular to the largest surface of the tissue sample. In other
words, we have simplified the problem to one spatial dimension, our ra-
tionale supported by an assumption that the thickness of the studied
block of tissue is small as compared to its largest surface. The model as
given by Eqs. (1)–(2) does not account for convective flow or chemical
reactions, but can readily be expanded with additional terms if neces-
sary. The model geometry (as illustrated by Fig. 3) appears in a number
of electroporation applications; in industrial extraction of solutes from
plant tissues, tissue is sliced or grated into thin blocks or cossettes to
facilitate faster diffusion; in transdermal drug delivery, skin patches
can be modeled as thin reservoirs with large surface area in contact
with the skin; while in subcutaneous tumor electrochemotherapy for
example, large tumors not protrudingdeep into the subcutaneous tissue
exhibit properties that can be, by in nomeans excessive stretch of imag-
ination, approximated using the proposed model geometry.
Fig. 2. Schematic representation of biological tissue, before electroporation (left) and after electr
hundred layers of cells.
The given system of model equations describes what is commonly
referred to in the relevant established literature as a LNE (Local Non-
Equilibrium) model. See e.g. [67] for a recent review of LNE models as
applied in theory of mass transport in biological tissue modeled as a
porous medium.

In order to support further theoretical treatment and procurement
of an analytical solution, wemust establish the following set of assump-
tions and simplifications: (i) — as indicated by Eq. (1), diffusion coeffi-
cient of solute in extracellular space is assumed to be constant. For
spatial dependence, the second member in Eq. (1) has to be revised to
∂/∂z[Ds,e∙∂ce(z,t)/∂z], rendering the system complex and cumbersome
for analytical treatment, while for temporal dependence Ds,e = f(t), a
new timescale T has to be introduced, so that dT = f(t) dt. Fortunately,
there are no strong arguments from the physics of the process point of
view that would necessitate taking either spatial or temporal depen-
dence of Ds,e into account; (ii) — the tissue is modeled as consisting of
perfectly spherical cells of radius R, collectively occupying a volume
fraction F of the tissue block and forming the intracellular space. The
rest of the volume is extracellular space, occupying the volume fraction
1− F. Thus, the porosity (ratio of void volume to total volume) denoted
oporation (right). Note that a segment (e.g. block) ofmodeled tissuemay consist of several



Fig. 3. Tissue sample geometry. An oblate spheroid modeling the subcutaneous tumor geometry; and a thin cylinder as a model of a sugar beet tissue sample as used in many laboratory
experiments. The boundary conditions are prescribed either on the both surfaces or on one surface and at the central plane due to symmetry, depending on the modeled system.
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ε is equal to 1− F; (iii)— the electrical field applied to the tissue during
electroporation is assumed spatially homogeneous. This is a valid
assumption for the bulk volume of tissue in an electroporation setup
with parallel plate electrodes, or even a small block of tissue with
an otherwise heterogeneous field distribution (local homogeneity);
(iv) — since all cells are modeled as being of equal size and shape
and the electrical field homogeneous throughout the modeled
block of tissue, application of electroporating pulses to the tissue
inflicts an equal distribution of pores, irrespective of the location of
an individual cell in tissue; (v) — pores created by electroporation
are of various sizes according to some statistical distribution. All
further analysis operates with an average size of a pore created in
the cellular membrane. The same logic of averaging applies to the
number of pores created, which is assumed to be dependent only on
electroporative pulse parameters (e.g. maximum field strength,
number and duration of pulses, etc.) and not on local inhomogeneity
(in either field strength, geometry or conductivity — these are
considered homogeneous throughout the sample).

Returning now to the initial model Equations (1)–(2), we need to es-
tablish howvolume-averaged intra-to-extracellular (i.e. transmembrane/
pore) flow, denoted k(ci − ce), depends on electroporation.We start by
writing Fick's first law of diffusion for flow through pores in membrane
of total (pore) area Ap in spherical geometry of an idealized spherical
cell of radius R

js;p ¼ −Ds;eff Ap
dc
dr

: ð3Þ
Integrating across the membrane where the gradient of concentra-
tion is non-zero, we obtain

js;p

Z Rþdm

R
dr ¼ −Ds;effAp

Z ce

ci

dc

giving

js;p ¼ Ds;effAp

dm
ci−ceð Þ ð4Þ

where dm is membrane thickness on the order of several nanometers,
and Ds,eff is the effective diffusion coefficient of solute species s
through a single pore in the cell membrane, which can be approxi-
mated as

Ds;eff ¼ Ds;0ys ð5Þ

where Ds,0 is the diffusion coefficient of solute species s in water at a
given temperature and ys is the dynamic hindrance coefficient,
accounting for hydrodynamic drag and steric exclusion effects.

The change in concentration of solute in intracellular space is en-
tirely due to the trans-pore flow of solute into the extracellular
space, i.e.

∂ci
∂t ¼ js;p

Vi
: ð6Þ
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If the pore flow js,p is that across a single cell membrane, volume Vi is
that of one cell and equals Vi = 4πR3/3. Since the surface of a single cell
A0 is 4πR2, we can rewrite Eq. (6) as

∂ci
∂t ¼ 3 js;p

A0R
¼ 3Ds;eff f p

dmR
ci−ceð Þ ð7Þ

where fp is the pore surface fraction ratio calculated as Ap/A0. This
formulation using pore surface fraction ratio is useful, as this con-
struct is often encountered in relevant literature (see e.g. [65]).
Note that the pore area Ap is the total pore area per cell, and can be
expressed as Ap = πNprp

2, where Np is the number of pores per cell
and rp the average radius of a single pore.

Comparing now Eq. (2) with Eq. (7), flow coefficient k (also termed
mass transfer coefficient) can immediately be expressed as

k ¼ 3Ds;eff f p
dmR

¼ P
3
R

ð8Þ

where P is themembrane permeability coefficient [70] and the term 3/R
accounts for spatial averaging of transmembrane flow within the
volume of a single cell and its exact value results from the idealized
spherical geometry.

Furthermore, if the volume fraction F of cells in tissue would be ex-
actly 0.5, the transmembrane flow would result in a change in intrinsic
intracellular concentration equal to the change in intrinsic extracellular
concentration. However, since in tissue in general the cells can occupy a
significantly larger (e.g. in plant tissues [71]) or smaller (in e.g. tumor
tissues [72]) volume fraction, as compared to extracellular space, the
flow of solute out of the cells will also cause a significantly larger or
smaller (but proportional) change in intrinsic extracellular concentra-
tion, as compared to the change in intrinsic intracellular concentration.
Neglecting for amoment extracellular diffusion (in Eq. (1)), wewrite an
equation analogous to Eq. (6), but for the extracellular space

∂ce
∂t ¼ js;p

Ve
¼ js;pV i

VeV
¼ V i

Ve
k � ci−ceð Þ ¼ 1−ε

ε
k � ci−ceð Þ ð9Þ

where we have taken into account that in homogeneous tissue, for any
arbitrarily chosen,finite and limited (i.e. on the order of comprising only
several cells) volume of tissue ΔV, intracellular volume Vi to total
volume ΔV ratio can be expressed as F = 1 − ε, and extracellular Ve to
ΔV ratio as 1 − F = ε. Note that if flow coefficient k were defined
using extracellular volume as opposed to the intracellular, the factor
Fig. 4. Effect of steric exclusion and hydrodynamic drag on the dynamic hindrance coefficient ys
λr within the bounds [0.5, 0.9].
(1 − ε)/ε would not be present in Eq. (1). Instead, k would have been
multiplied by ε/(1− ε) in Eq. (2), giving exactly the samemodel results.

What remains is to explain the behavior of the dynamic hindrance
coefficient ys. This coefficient captures the effects that hinder solute dif-
fusion through an aqueous pore due to comparable size of the solute
molecule to that of the pore as well as any effects of electrical forces
due to net surface charges on pore walls and the solute. A number of
models have been proposed to describe hindered diffusion through
aqueous pores, and comprehensive reviews were published by Deen
[73] and Dechadilok and Deen [74]. The suitability of a particular
model depends on the application, due to the varying physicochemical
properties of the solute of interest that are of primary importance. For
the model study with sucrose that we present later on in this paper,
we follow a recent study by Liesche and Shulz [75], who modeled
sucrose diffusion through plasmodesmata and used a model already
proposed in [74], which is based on a modified model previously
described by Higdon and Muldowney [76]. According to this model, if
λr is the solute to pore ratio, λr = rs/rp, the hindrance coefficient ys as
a function of λr can be given as

ys λrð Þ ¼ 1þ 9
8
λr lnλr−1:56034λr þ 0:528155λr

2 þ 1:91521λr
3

−2:81903λr
4 þ 0:270788λr

5 þ 1:10115λr
6−0:435933λr

7
:

ð10Þ

A slightly simpler but comparable alternative is the Renkin equa-
tion [77], given by

ys λrð Þ ¼ 1−4:1λr þ 5:2λr
2−0:01λr

3−4:18λr
4 þ 1:14λr

5

þ 1:9λr
6−0:95λr

7
: ð11Þ

Both functions, plotted for λr within the interval [0, 1] and within
[0.5, 0.9], are presented in Fig. 4. As evident, the difference in model
results for λr ≥ 0.3 is practically insignificant.

In order to determineDs,e, the solute diffusion coefficient in extracel-
lular space, in general we would have to consider the tortuosity of the
extracellular pathways as well as the porosity. However, since we are
operatingwith intrinsic concentrations ci and ce, and not concentrations
averaged to the total tissue volume (see [67], Section 3.2.1.1 for a de-
tailed explanation of the difference), Ds,e is not a function of porosity.
It is, however, reduced considerably and to a non-negligible extent
due to the tortuosity of the extracellular pathways. In our simplified
model of spherical cells, the solute has to diffuse, in order to move a
net distance dz along z in the extracellular space, around the model
spherical cell. On the level of a single cell, to diffuse by one cell diameter
of solute through a pore in themembrane-model comparison. The insert is a closer look for



1955S. Mahnič-Kalamiza et al. / Biochimica et Biophysica Acta 1838 (2014) 1950–1966
2R along z, it has to cover a total distance of πR along the hemi-sphere.
The tortuosity τ then equals τ = πR/2R = π/2. The extracellular
diffusion coefficient, if intrinsic concentrations are observed, is then
Ds,e = Ds,0/τ = Ds,0·2/π, where Ds,0 is the diffusion coefficient of solute
species s in water at a given temperature.

2.2. Analytical solution

In some, albeit few, electroporation applications we are operating
with a more or less homogeneous tissue that can also be relatively ho-
mogeneously treated with electroporation due to the particular
implementation of the treatment application. Such is the case in some
industrial applications of electroporation (e.g. extraction, drying, im-
pregnation). This makes coefficients Ds,e and k constant in space and
time-invariant. Under such conditions, an analytical solution of the
dual-porosity model can be obtained. The complete derivation is given
in Appendix A.

In order to solve the system of Eqs. (1)–(2), we need to define initial
and boundary conditions. To demonstrate the use of the dual-porosity
model andprovide validation,wewill study sucrose extraction fromveg-
etable (sugar beet) tissue. For the purposes of this study, wewill model a
thin slice of tissue pretreated with electroporation and suspended into a
diffusion chamber in a prescribed solid-to-liquid volume ratio, and the
liquid medium well stirred. Such setups can readily be found described
in the literature, e.g. in [20–22]. The geometrical data for the tissue sam-
ples can be found in the table of parameters, Table 1.

We assume that sucrose is initially homogeneously distributedwith-
in the intracellular phase and within the extracellular phase (but not
necessarily equal in the two media), giving initial conditions

ce z;0ð Þ ¼ ce0 ð12Þ

ci z;0ð Þ ¼ ci0: ð13Þ

During the modeled diffusion experiment, a tissue sample is sub-
merged in distilledwater which is constantly agitated. The setup allows
us to model one half of a tissue sample due to symmetry. We have the
following boundary conditions (BC) for extracellular concentration
(l is the thickness of the tissue sample)

∂ce tð Þ
∂z j

z¼0
¼ 0 ð14Þ

ce tð Þjz¼l=2 ¼ 0: ð15Þ

The BC for intracellular concentration at the plane of symmetry
(mid-section of tissue block at z= 0) also equals 0 (no-flux boundary)

∂ci tð Þ
∂z j

z¼0
¼ 0 ð16Þ

while the BC for intracellular concentration at the sample surface is not
immediately apparent. It is governed by Eq. (2), and can easily be
determined due to the homogeneous BC just given by Eq. (15). Writing
Eq. (2) for z = l/2, we get an ordinary differential equation

dci tð Þ
dt

� �
z¼l=2

þ k ci tð Þ½ �z¼l=2 ¼ ce tð Þ½ �z¼l=2 ¼ 0 ð17Þ

with initial condition as already given by Eq. (13). The solution of this
ordinary differential equation, as can easily be verified, is

ci tð Þjz¼l=2 ¼ ci0e
−kt

: ð18Þ
The system of Eqs. (1)–(2) with initial and boundary conditions as
defined above represents a mathematical model of solute diffusion
according to the theory of mass transfer in porous media.

The solution of the PDE system is

ce z; tð Þ ¼ 4ci0
π

X∞
n¼0

−1ð Þn
2nþ 1

cos λnzð Þ Cn;1e
γn;1t

γn;1

k
þ 1

� �
þ Cn;2e

γn;2t
γn;2

k
þ 1

� �� �

ð19Þ

ci z; tð Þ ¼ 4ci0
π

X∞
n¼0

−1ð Þn
2nþ 1

cos λnzð Þ Cn;1e
γn;1t þ Cn;2e

γn;2t−e−kt
� �

þ ci0e
−kt

ð20Þ

where

Cn;1 ¼
ce0
ci0

−1
� �

k−γn;2

γn;1−γn;2
ð21Þ

Cn;2 ¼
1− ce0

ci0

� �
kþ γn;1

γn;1−γn;2
ð22Þ

and

γn1;2
¼

− δþ 1ð Þkþ λn
2Ds;e

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δþ 1ð Þkþ λn

2Ds;e

� �2−4kλn
2Ds;e

r
2

ð23Þ

where for the sake of algebra we have set (see also Appendix A)

δ ¼ 1−ε
ε

:

The eigenvalues λn equal λn = (2n + 1)·π/l.
Observing Eqs. (19) and (20) we notice that process kinetics is

determined entirely by the roots of the characteristic polynomial
(given by Eq. (23)) of the hyperbolic equation (see Eq. A.15). If there
is no electroporation and k → 0, Eq. (23) can be simplified and gives
γn,1 → 0 and γn,2 → −λn

2Ds,e. At these conditions, diffusion kinetics is
governed entirely by the rate of diffusion in extracellular space, i.e. Ds,e,
and there is no transmembrane flow (since k → 0). Eq. (1) becomes
an ordinary one-dimensional diffusion equation, whose solution is
well-known and can be found in e.g. [69]:

ce z; tð Þ ¼ 4ce0
π

X∞
n¼0

−1ð Þn
2nþ 1

exp −
Ds;e 2nþ 1ð Þ2π2t

l2

 !
cos

2nþ 1ð Þπ
l

z
� �

:

ð24Þ

We should point out however that the analytical solution given by
Eqs. (19)–(20) becomes extremely unstable during numerical evalua-
tion for k → 0. As k decreases, numerical errors due to finite machine
precision (32- or 64-bit floating point representation and operations)
are amplified and the model results become unstable. For machine
precision on the order of 10−16, this effect becomes observable around
k=10−13 and the results become completely unusable for k b 10−14. At
these extreme conditions however, there is no justification for use of the
dual-porosity model whatsoever, and analysis of free diffusion in extra-
cellular space is well described by a much simpler model, such as given
by Eq. (24).

At the other extreme, for highly electroporated tissue (fp→ 1), for fp
values above approximately 10−3, the membrane appears to disinte-
grate, i.e. to lose its barrier function for solute diffusion. In Eq. (23) we



Table 1
Parameters used for model validation and the parametric study of the model.

Parameter Symbol Value

Diffusion coefficient — sucrose in water at 20 °C Ds,0 4.5 × 10−10 m2 s−1 [34]
Hydrodynamic radius of sucrose molecule rs 0.4 to 0.5 × 10−9 m [59,78]
Average stable pore radius rp 0.5 × 10−9 m [27,79]
Cell membrane thickness dm 5 × 10−9 m [80]
Long-lasting pore surface fraction ratio for one 100 μs pulse fp 1.4 × 10−6 [65]
Sucrose initial concentrationa ce0, ci0 1 mol m−3

Volume fraction of cells F 0.6 to 0.8 [71]
Diffusion coefficient of sucrose in extracellular spaceb Ds,e Ds,e = Ds,0/τ = Ds,0·2/π
Average cell size (radius) R 2.5 × 10−5 m [81]
Tissue sample size (cylinder radius) ρ 0.0125 m
Tissue sample size (thickness) l 0.002 m

a The absolute value of initial concentration is irrelevant for model analysis, since the model is linear and thus the resulting profiles of concentration kinetics are linearly scalable.
b Diffusion in extracellular space is assumed to occur at the rate of diffusion in water but reduced by the factor of tortuosity of the extracellular space. See the last paragraph of Subsec-

tion 2.1 for a detailed explanation.
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then have (δ + 1)k N N λn
2Ds,e. This results in extremely fast kinetics

(|γ2|≈ (δ+ 1)k N N 1) of transmembrane transport and instantaneous
diffusion of solute from the intracellular into the extracellular space,
provided there is a concentration gradient. This is again unrealistic
and outside the scope of the model, as the finite rate of intracellular
diffusion is not captured by model equations. The other exponential
however, C1exp(γ1t), is governed primarily by Ds,e, which limits diffu-
sion out of the tissue block through the extracellular space. Since
C1 N N C2 this results in almost identical diffusion kinetics in extracellu-
lar space as in non-electroporated tissue, butwith comparatively higher
concentrations at a given time. This is as expected, since the extracellu-
lar space has to facilitate vacation of not only the solute initially present
in the extracellular phase, but of the solute present within the cells as
well (determined by the initial condition for intracellular concentration).

As emphasized by this analysis, there are limitations of the proposed
dual-porosity model and its analytical solution. These limitations must
be kept in mind during experimentation with the model, and one
should maintain a critical view at the results in light of these observa-
tions to avoid analysis under unrealistic or extreme conditions.
2.3. Parameters and experimental methodology for the model study of
sugar extraction and the parametric study

To provide model validation, we performed diffusion experi-
ments with sugar beet tissue pretreated with electroporation. The
experimental setup was then modeled by the dual-porosity model
and results were compared with experimental measurements. We
also present a parametric study (see Results and discussion), by
means of which we evaluate the sensitivity of the model to five param-
eters. Table 1 summarizes the parameters of the model that were used
in the model study for validation of the model and for the (purely
theoretical) parametrical study. The references are given in square
brackets where applicable.

A brief note on the initial concentration; the parameters presented
in Table 1 will be used for parametrical model analysis in the special
case of plant tissue electroporation, and since we start observing diffu-
sion in tissue about two to threeminutes after the electric pulse applica-
tion, we believe this pause is long enough to assume that initial
concentrations inside and outside the cells are equal at the beginning
of simulation. This initial state is supposed to result from release of in-
tracellular fluid from electroporated cells containing solute of our inter-
est (among other dissolved substances) into the extracellular space, a
process that begins after applying electroporative pulses, presumably
leading to local equilibrium in concentration before the start of the sim-
ulated diffusion experiment. Note that this supposition is only valid if
treatment is applied to the sample. In a non-electroporated sample,
we would have to suppose an initial imbalance between the intra- and
extracellular concentration.

The details of the experimental setup have been previously de-
scribed elsewhere [22], though some important differences do exist
in the particularities of the geometry and experiment execution.
Cylindrical samples (disks) of sugar beet tissue were obtained from
5mm thick sugar beet slices. The samples measured 25 mm in diam-
eter. Each individual sample was electroporated by applying 400 V
between parallel plate electrodes at 5 mm distance (sample thick-
ness). Bipolar pulses rectangular in shape, of 100 μs duration each
and pulse repetition frequency of 1 kHz were delivered within each
train of 8 pulses. Two such trains were delivered with a pause of
one second between the two trains. The samples were removed
from the treatment cell, after which the surfaces of the disks were
dried with absorbent paper to remove sugary liquid on the surfaces.
This liquid is present due to cutting and possibly due to electro-
osmotic or pressure-change effects that occur during the electropo-
ration treatment. Note that had this step been omitted, the surface
liquid would cause an immediate increase in sucrose concentration
in the solution at the beginning of the experiment, an effect which
is not captured by the model. The surface-dried samples were then
placed into a flask with a magnetic stirrer. The liquid was constantly
agitated and sampled at regular intervals; sucrose concentration was
analyzed with a digital refractometer. The liquid-to-solid ratio was
2:1.

The quantity measured by the digital refractometer is sugar con-
centration in liquid with unit degrees Brix (°B). One degree Brix is 1 g
of sucrose in 100 g of solution and represents the concentration of
the solution as percentage by weight (% w/w). If we know the
initial sugar content of the aqueous solution (°Bx0) and the final con-
tent (°Bxd) – which in an ideal situation would be equal to the total
sugar content in a tissue sample – we can define normalized degree
Brix at time t — i.e. B(t), as

B tð Þ ¼
BBx tð Þ−BBx0
BBxd−BBx0

: ð25Þ

Normalized Brix will be our measure for the amount of solute (e.g.
sugar) that has diffused out of the tissue sample in time t. It takes the
values 0≤ B(t)≤ 1 and is dimensionless. It is obtained by a trivial calcu-
lation from measurements with the refractometer, according to
Eq. (25). To arrive at the same quantity from the spatio-temporal
intra- and extracellular concentration profiles given by the model (see
Fig. 7), these profiles must be integrated on the spatial coordinate z to
obtain the observable and measurable bulk concentration of sucrose in
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the solvent outside the tissue samples. The total mass left in the sample
equals

m tð Þ ¼ 2πρ2 ε
Zl=2
0

ce z; tð Þdzþ 1−εð Þ
Zl=2
0

ci z; tð Þdz

2
64

3
75: ð26Þ

On the other hand, the total initial mass of solute is equal to

m0 ¼ m 0ð Þ ¼ πρ2l εce0 þ 1−εð Þci0½ �: ð27Þ

Normalized Brix for the solution intowhich the sample is submerged
is then

B tð Þ ¼ 1−m tð Þ
m0

¼ 1−

2 ε
Zl=2
0

ce z; tð Þdzþ 1−εð Þ
Zl=2
0

ci z; tð Þdz

2
64

3
75

l εce0 þ 1−εð Þci0½ � : ð28Þ

A subtraction ofm(t)/m0 from 1 is necessary since we are interested
in the extracted solute and not the amount remaining in the sample.

2.4. The dual-porosity model of tissue electroporation in biomedicine —

model generalization

To demonstrate the universal applicability of the dual-porosity
model in modeling tissue electroporation, we describe in this section
the necessary modifications to the model that are required to study
transport phenomena in two biomedical applications of electropora-
tion: electrochemotherapy (ECT) [10], and trans- or intradermal drug
transport [16].

The objective of ECT is to facilitate introduction of chemotherapeutic
drugs into tumor cells by applying electroporation [82]. The two most
commonly used drugs in ECT are bleomycin and cisplatin. Bleomycin
is a highly potent drug that binds to DNAwhere it causes DNA cleavage
resulting in eventual cell death at mitosis; it however poorly permeates
the intact cellularmembrane. Electroporation enhances the druguptake
and thus low local or systemic drug concentrations can be used for
effective local chemotherapy. As a model example, we examine the
situation illustrated by Fig. 5. The subcutaneous tumor is modeled as
anoblate spheroid embedded into the subcutaneous tissue immediately
under the skin layer. In this model configuration, the tumor is separated
from the surrounding tissue by two interfaces; the tumor–subcutaneous
tissue boundary surface and the tumor–skin boundary surface. For the
purposes of further analysis, we establish the following set of assump-
tions: a) In our example, bleomycin is given intravenously, not
intratumorally. Due to interstitial fluid pressure that is present inside
the tumor before electroporation [83,84], the initial drug concentration
inside the tumor region for both intra- and extracellular spaces is zero,
as the drug cannot extravasate into the tumor region; b) If surface-
applied plate electrodes are used, the skin is electropermeabilized
along with the tumor, the resulting vascular lock [85,86] and damage
due to irreversible electroporation in the dermiswarrant the supposition
that skin presents a negligible sink or source of bleomycin, i.e. from the
point of view of pharmacokinetics, the skin does not represent a com-
partment; c) Provided the perfusion of subcutaneous structures remains
unaffected by electroporation, it can be represented, locally, as an infinite
reservoir of bleomycin, since the localized drop in concentration due to
cellular uptake is immediately replenished via convective transport by
the vascular system; d) If the drug has difficulties entering tissue (e.g.
due to interstitial fluid pressure), its concentration locally may be low
within the tumor region. In those areas, bleomycin that is reacting with
the DNA and is getting used up decreases the drug concentration,
which may be important. We thus include in the model the bleomycin
reaction rate RB, where RB b 0; e) Achieving local tumor coverage with
fields above the threshold of reversible electroporation is critical for
permeabilizing the cells and facilitating bleomycin uptake. Electrode
configuration, placement, pulsing protocol, and tissue electrical proper-
ties determine field distribution and the energy delivered. These factors
should not be neglected as the research field is highly advanced on this
subject and importance of local field distribution has been strongly
emphasized in numerous works, see e.g. [87–89].

The model equations for tumor intra- and extracellular concentra-
tions ci and ce, respectively, are

∂ci
∂t þ k ci−ceð Þ−RB ¼ 0 ð29Þ

∂ce
∂t þ∇ � −DB;e∇ � ce

� �
−1−εt

εt
k ci−ceð Þ ¼ 0 ð30Þ

where DB,e is the bleomycin diffusion coefficient in the extracellular
space and εt is the porosity of tumor tissue. Note that in
Eqs. (29)–(30) the concentrations are functions of all 3 spatial
coordinates and time. RB is the reaction rate of bleomycin as it binds
to DNA. There is also a difference in the flow coefficient k as compared
to the expression previously given by Eq. (8). In Eqs. (29)–(30) above,

k t; Eð Þ ¼ 3DB;eff f p tð Þ
dmR

� u Eð Þ ð31Þ

where

u E r
*
� �			 			� �

¼
1 ; E r

*
� �			 			NErev

0 ; E r
*
� �			 			bErev :

8<
: ð32Þ

The introduced function u(E) is a unit step that models the effects of
the inhomogeneous electric field established in tissue and is a time-
invariant function of local maximal electric field strength distribution.
Erev is the reversible field strength threshold (scalar value) that must
be reached locally to successfully permeabilize the cells [61,90].
Additionally, the pore surface fraction fp of long-lasting pores is now
time-dependent to capture the effects of pore resealing [59]. Due to the
interstitial fluid pressure within the tumor (see model assumption a),
initial conditions are:

ci0 ¼ ci t ¼ 0ð Þ ¼ 0 ð33Þ

ce0 ¼ ce t ¼ 0ð Þ ¼ 0 ð34Þ

and boundary conditions (according to model assumptions b and c) are

ce½ �S1 ¼ ce
s tð Þ ð35Þ

∂ce
∂ r

*

� �
S2

¼ 0 ð36Þ

∂ci
∂ r

*

� �
S1

¼ ∂ci
∂ r

*

� �
S2

¼ 0 ð37Þ

where S1 is the tumor–subcutaneous tissue boundary surface and S2
the tumor–skin boundary surface (see Fig. 5). For intracellular
bleomycin concentration, both boundaries are reflective (no-flux),
while for the extracellular concentration the tumor–skin boundary
surface is reflective and the tumor-subcutaneous tissue boundary
surface has a prescribed time-dependent concentration ce

s(t). This
is the extracellular concentration of bleomycin in the subcutaneous



Fig. 5.Model of a subcutaneous tumor.
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tissue (comprising fat and muscle tissue, and the vascular system)
and is determined by the amount of drug given intravenously, the
bodymass of the animal and the time passed since themoment of in-
jection. Solving the system of Eqs. (29)–(37) is out of the scope of
this paper and requires a numerical approach. Finite element soft-
ware supporting immediate and direct implementation and analysis
of this exemplary model is readily available on the market (e.g.
COMSOL Multiphysics, COMSOL AB, Sweden).

In the second example of applying the dual-porosity model in the
biomedical fieldwe examine the trans- and intradermal drug transports
[16]. For transdermal drug transport, perhaps themost interesting effect
of electroporation application to the skin is the disruptive effect of elec-
tric pulses to the skin's most protective barrier layer — the stratum
corneum (SC). Due to formation of the so-called local transport regions
(LTRs) [14,15] during electroporation, the permeability to molecules of
the skin's outermost protective layer can be increased by orders of
magnitude. During electroporation, this occurs rather rapidly and as
subsequently the electrical resistance of the SC drops, this allows for
electroporation of underlying skin layers (see Fig. 6). The disruption of
the barrier function in SC facilitates diffusion of molecules with
molecular weight even greater than 7 kDa, though the process is
Fig. 6. The conceptual skin model for the
relatively nonspecific and dose control difficult [16]. To enhance
the passive transport, application of low-voltage electrophoretic
pulses after high-voltage electroporation has been proposed and is
a subject of recent studies [91]. If the therapeutic molecules (e.g. DNA
material, or fentanyl [92]) are present in the dermis, electroporation fa-
cilitates uptake of these molecules by viable electroporated cells of the
dermis and/or underlying tissues [16]. This is the intradermal applica-
tion, used, in example, for intradermal gene transfection for DNA vacci-
nation [93]. Given the structure of the skin (stratum corneum, viable
epidermis, dermis, follicles, etc.) there are several routes available
for transport. Which route is more important depends on the treat-
ment protocol and the properties of the drug (charge, size, partition
coefficient). In example, lipophilic molecules can permeate via the
transcellular route, while hydrophilic molecules generally do not. If
the epidermal cells are electroporated however, the hydrophilic
molecules can enter the cells of the epidermis with expressed
therapeutic effect.

To model this situation with the dual-porosity model, we examine
the situation conceptualized with the help of Fig. 6. A patch (reservoir)
containing the therapeutic drug is placed on the electroporation-
treated section of the skin, and we are interested in the amount of
transdermal drug delivery example.
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drug reaching the bottom-most layer, i.e. the basal layer, of viable epi-
dermis. Following the model of SC permeabilization established by
Becker [15], we write, for the SC layer,

∂cSC

∂t ¼ 1
τSC

∇ � DL∇cSC
� �h i

ð38Þ

where cSC is the intrinsic (not accounting for porosity!) drug concen-
tration in the lipid pathways between corneocytes in the SC and τSC
is the tortuosity of the SC phase. DL is the effective diffusion coeffi-
cient of the permeating drug in the porous lipid-filled spaces be-
tween the corneocytes in the SC layer. Assuming the SC layer is
homogeneous and the patch containing the drug as well as the
electroporated area are large as compared to the thickness of the
SC layer, only the gradient along the principal axis of diffusion can
be considered and diffusion coefficient moved out of the gradient op-
erator, yielding

∂cSC

∂t ¼ DL

τSC

∂2cSC

∂z2
ð39Þ

with initial condition cSC(z, 0) = 0, and boundary conditions

cSC
h i

S1
¼ cR tð Þ ð40Þ

cSC
h i

S2
¼ cEe
h i

S2
ð41Þ

εSCDL

τSC

∂cSC

∂z

" #
S2

¼ εEDE

τE

∂cEe
∂z

" #
S2

ð42Þ

where εSC is the porosity of the SC layer, εE and DE are the porosity
and effective drug diffusion coefficient in the epidermis, respective-
ly, cR is the reservoir (drug patch) concentration that can bemodeled
as constant if the drug is poorly permeable and the reservoir volume
large, ceE is the epidermis extracellular intrinsic concentration, and τE
is the tortuosity of the lipid-filled pathways in the epidermal layer. If
the cells of the epidermis are electroporated and this significantly
influences the drug's ability to enter viable cells, we can now write
the dual-porosity model equations for the epidermis

∂cEe
∂t −DE

τE

∂2cEe
∂z2

−1−εE
εE

kE cEi −cEe
� �

¼ 0 ð43Þ

∂cEi
∂t þ kE cEi −cEe

� �
−Rd ¼ 0 ð44Þ

where ci
E is the epidermis intracellular intrinsic concentration, Rd

the reaction rate of the drug species d as it reaches its intracellular
target, and kE the epidermis permeabilization coefficient calculated
according to Eq. (8). The rest of the boundary conditions, in addition
to Eqs. (41)–(42) are all homogeneous Neumann (i.e. no-flux)
boundaries

∂cEi
∂z

" #
S2

¼ ∂cEi
∂z

" #
S3

¼ ∂cEe
∂z

" #
S3

¼ 0 ð45Þ

and initial conditions are ce
E z;0ð Þ ¼ ci

E z;0ð Þ ¼ 0.
If the finite dimensions (capacity) of the drug patch are not negligi-

ble, i.e. the emptying of the reservoir is significantly fast due to high rate
of trans- or intradermal diffusion, we have to account for the fact the
patch concentration of drug cR is time-dependent. In this case, the
concentration cR can be expressed according to the law of mass conser-
vation as

cR tð Þ ¼ cR0−
DSC

dR

Z t

0

∂cSC

∂z j
S1
dT ð46Þ

where dR is the thickness of the patch or more precisely, the patch vol-
ume to SC-patch contact surface ratio, DSC is the effective drug
diffusion coefficient where the complete SC layer is taken into account
(DSC = DLεSC/τSC), and cR0 is the reservoir initial drug concentration.

The two examples given above illustrate how the dual-porosity
model can be incorporated into or coupled with existing models devel-
oped within their respective fields of biomedical electroporation appli-
cations. Further development of these models, parameter estimations
and validation extendbeyond the scope of this paper and are the subject
of our future work.

3. Results and discussion

3.1. The intra- and extracellular concentration profiles — visualization of
model results

All of the following figures were made with MATLAB version 2012a
(MathWorks,Massachusetts, USA), an engineering software package by
means of which the analytical solution was implemented in computa-
tional terms, and built-in functions provided by this package were
used to draw the calculated results. The meshing coefficient (number
of vector elements for space and time) was 100 in all cases, providing
good spatial and temporal resolutions. Fig. 7 presents the extracellular
(Fig. 7a, c) and intracellular (Fig. 7b, d) concentrations as a function of
space and time, obtained via the analytical calculation for the set of pa-
rameters presented in Table 1 (upper limit values were used where a
range is given). In terms of the spatial dimension, only one half of
the tissue slab is modeled since we have assumed symmetry along
the central plane (see Fig. 3). We can observe (Fig. 7a, b) that while
in intact tissue solute diffuses out of the extracellular space and
into the space surrounding the tissue block relatively unhindered
at a rate determined by Ds,e, it is mostly retained in the intracellular
space. This is consistent with observation, since the surface fraction
ratio of pores close to 1.4 × 10−6 corresponds to a single 100 μs
pulse of amplitude that is generally considered insufficient to
successfully permeabilize the membrane [49,65,94].

Fig. 7c–d shows the results for a situation very similar to that illus-
trated in Fig. 7a–b, but with a change in onemodel parameter. To obtain
results given by Fig. 7c–d, we have made an increase in value of fp from
1.4 × 10−6 to 2.5 × 10−5, effectively increasing the pore surface fraction
(and thus k) by about an order of magnitude. As a result, solute diffuses
noticeably from both the intracellular space as well as the extracellular
space. Notice that the extracellular concentration at the end of the sim-
ulation (7200th second, Fig. 7d) is higher than the corresponding con-
centration in Fig. 7a due to the contribution of intracellular solute
diffusing out of the cells.

Fig. 8 shows intracellular intrinsic concentration calculated analyti-
cally for n = 0 (Fig. 8a), n = 0…3 (Fig. 8b) and n = 0…10 (Fig. 8c)
for the same set of parameters used to obtain Fig. 7d, where n is the
index of the infinite series in Eqs. (19)–(20). Fig. 8 demonstrates rapid
convergence of the series given by Eq. (19). If we look carefully at
Fig. 8a, we may observe a slight overestimate of concentration near
z= 0, which is almost completely gone if we account for 4 members
of the series (Fig. 8b) and for even higher accuracy, becomes impossible
to detect by merely examining concentration profiles, as is evident in
comparing Fig. 8b and 8c. This rapid convergence makes the analytical
model highly suitable for use in optimization algorithms, in which
optimal values of parameters may be determined given a set of
experimentally-obtained data. Note that the boundary condition for ex-
tracellular concentration in combination with constant initial condition



Fig. 7.Results of the calculation of concentration in ourmodel study for parameters given in Table 1. The spatio-temporal dependence of intrinsic concentration in the extracellular (a) and
in the intracellular space (b) for one 100 μs pulse (almost intact tissue). Results after increase of the pore surface fraction fp by about one order of magnitude; extracellular (c) and intra-
cellular (d) intrinsic concentration.
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(an artifact ofmodeling only for the steady-state conditions) results in a
sharp discontinuity at z= l/2. Thismakes the series in Eq. (20) converge
rather poorly. To overcome this limitation, we calculate intracellular
concentration first according to Eq. (19), then perform (numerically)
differentiation, multiplication and addition according to Eq. A.1 (see
Appendix A) to obtain extracellular concentration, avoiding the use of
the poorly convergent infinite series (Eq. (20)) altogether.

3.2. Model study with extraction experiments — model validation

In this section we evaluate how well the described model per-
forms at the task of modeling a particular process and explaining
Fig. 8. Analytical solution for intracellular concentration according to the dual-porosi
experimentally obtained data. The details of the experiment have
been previously described in the literature [22]. Important devia-
tions from the published setup were described in Section 2.3 of this
paper. Data obtained during the course of these experiments was used
for the purposes of the following analysis.

In the experiments, cylindrical blocks of sugar beet tissue were
pretreated with electric field according to a protocol ensuring a low
degree of membrane permeabilization (see section 2.3). Following
the electroporation treatment, samples were placed into a diffusion
chamber. In the literature where such or similar experiments have
been described, quantitative analysis of the results is often done by
fitting the experimental data to the model of diffusion kinetics in a
ty model. (a) For n = 0 (see Eq. (19)); (b) for n = 0…3; and (c) for n = 0…10.
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homogeneous plane sheet of uniform thickness, found in e.g. [69]
and obtainable by integration of Eq. (24) (see section 2.2). The nor-
malized Brix according to this model is

B ¼ 1− 8
π2

X∞
n¼0

1
2nþ 1ð Þ2 exp

−Deff 2nþ 1ð Þ2π2t
l2

 !
ð47Þ

where l is, contrary to the definition in [69], the total sample thick-
ness (not half-width) as defined and used in this paper. Note that
Deff in Eq. (47) is the effective diffusion coefficient in the (homoge-
neous!) material forming the plane sheet, and must not be confused
with the effective pore diffusion coefficient Ds,eff as defined earlier in
this paper. As the series in Eq. (47) converges rapidly for large values
of time, about five of the first members of the series are usually
accounted for to find the effective diffusion coefficient by fitting
the model to the experiment with the least-square error method.
In doing so however due to the nature of the one-exponential
model we sacrifice a good fit for either low or for high values of
time. In Fig. 9, we show experimental data and three results of
modeling. Two were obtained using Eq. (47) and the third is a result
of parametrical optimization on the dual-porosity model. From com-
parison of all three model results (RMSD equal to 0.173 and 0.092 for
model in Eq. (26) using Deff = 0.15 × 10−10 and Deff = 0.34 × 10−10

m2s−1, respectively; and to 0.014 for the dual-porosity model) it is
evident that the dual-porosity model provides for a superior fit and
can explain what the one-exponential model of homogeneous mate-
rial cannot; that is the approximately linear increase in sucrose con-
centration during the experiment (except at the very beginning), as
a result of hindered diffusion of the sucrose deposited in the intracel-
lular space leaving the tissue block via the extracellular route. The
model as given by Eq. (47) is insufficient to capture this phenome-
non as it has been derived for a sheet of homogeneous material
with one effective and constant rate of diffusion (governed by Deff).
The dual-porositymodel however offers this possibility since its tempo-
ral solution is based on a description of the systemvia a 2nd order hyper-
bolic differential equation (see Appendix A). This means we have, in
terms of kinetics, two additive exponential members in the solution de-
termined by the parameters of electroporation and its impact on the po-
rosity of the membrane separating the two phases. According to the
theory of electroporation and our understanding of its effects on cells
Fig. 9. Fitting the model to experimental data. The experimentally obtained data and the
best-fit dual-porosity model results are given along with two plots of Eq. (47) using
different value of parameter Deff. The two values were selected in order to obtain a good
agreement either during the initial 1000 s or towards the end of the experiment. Parameters
of the dual-porosity medium used (those that differ from Table 1): fp = 0.9 × 10−5,
l = 0.005 m. HM in figure legend stands for homogeneous material.
in tissue, such amodel is needed to capture the contribution of presum-
ably faster extracellular diffusion and that of slower, hindered diffusion,
out of electroporated cells through a semi-permeable membrane.What
is even more important is that the effective diffusion coefficient as ob-
tained from fitting experimental data by Eq. (47) has no physiological
meaning. It is purely phenomenological, as it does not equal either the
rate of extracellular diffusion, neither the rate of transmembrane
diffusion, nor the solute diffusion coefficient in the liquid medium (i.e.
water). On the contrary, all of the parameters used in the dual-
porosity model reflect properties of the tissue before or after electropo-
ration treatment. The parameter values are either obtained from or
estimated based on published literature.

A note about themethod used for initial estimation of fp, the fraction
of long-lived pores, used tomodel experimental data as shown in Fig. 9.
Table 1 gives fp determined based on experiments as described in [65],
where the authors give an estimation of the fraction of long-lived pores
for a single 100 μs pulse of 860 V/cm, aswell as a train of 2, 4 and 8 such
pulses. Since we used a similar protocol, applying 800 V/cm in two
trains of 8 pulses (details can be found in Section 2.3), we linearly
extrapolated the results of the cited study, and we arrived to an initial
estimate for pore surface fraction on the order of 10−5. However, via
model simulation and optimization of results to match the experimen-
tal data, we had to reduce this estimate by 10% to 0.9 × 10−5, in order to
obtain the best agreement between the model and the experimental
results.

Also note that since the experimental data used to evaluate the
model in this specific example was obtained at a relatively low de-
gree of membrane electroporation (disintegration index Z [38]
equal to about 0.35), the potential for quantitative analysis of this
model cannot be accurately assessed from a single experimental
study alone. The low degree of permeabilization also results in a
higher discrepancy between the dual-porosity model results and re-
sults of the model of homogeneous material, thus demonstrating the
better performance of the dual-porosity model under such condi-
tions. During experiments at various treatment intensities (pulse
number and duration) we observed that as tissue is being treated
by electroporation of ever increasing intensity, it also tends to be-
have more and more as though it were a homogeneous material.
Thus, further work is needed in order to evaluate the model in
relation to experimental results, especially at higher degrees of
membrane electroporation.

3.3. Parametrical study — analysis of model behavior and sensitivity

We begin by analyzing the influence of pore surface fraction, fp.
Fig. 10a gives B(t) for a number of values of this parameter, equally
spaced on a logarithmic scale. We observe that for very low values
of pore surface fraction, B reaches the value 0.2, which is the volume
fraction of extracellular space used in this model study (Table 1).
This makes sense, as only the solute present in the extracellular me-
dium is extracted. For highly porous membranes on the other hand,
the final B is just below 0.7, a consequence of simulation time
which is not long enough (relative to the extracellular diffusion
rate and sample dimensions) to allow for all the solute to vacate
the tissue sample completely (see Fig. 7). In between these two ex-
tremes, the total yield of solute at simulation end changes rapidly for
pore surface fractions between 10−6 and 10−4. This is clearly demon-
strated in Fig. 10b, where the value of B at simulation end is plotted for
sixteen (arbitrarily chosen number) distinct values of fp in the range
2.5 × 10−10 ≤ fp ≤ 7.5 × 10−3.

Next, we analyze the impact of varying λr, the solute to pore radius
ratio. This is perhaps the most difficult and problematic of the parame-
ters of themodel we present, since it displays a strong nonlinearity (see
Eqs. (10)–(11) and Fig. 4) and very rapidly approaches 0 as the radius of
solute becomes comparable to the radius of an average pore, which is
our case since the sucrose hydrodynamic radius of about 0.4 nm is



Fig. 10. (a) Normalized Brix as a function of time for six distinct values of pore surface
fraction. (b) Normalized Brix at the end of simulation for sixteen values of pore surface
fraction — note the sharp increase around fp = 10−6.
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comparable to a 0.5 nm radius of a stable electro-pore. Often the solute
radius is unknown and pore size is hard to determine, but even at best it
is always a result of a statistical model or estimation based on particular
experiments. The value used in this study (λr = 0.85) is based on rough
estimates of both the solute and average pore size from literature and
should be understood as a best guess that enables this model to present
results and the parametric study consistent with literature. A detailed
analysis and development of the model in this direction are matters
of future research. The impact of λr on the effective pore diffusion co-
efficient is already given in Fig. 4. We varied this parameter linearly
within the range 0.05 ≤ λr ≤ 0.95 and the effect on normalized Brix
is shown in Fig. 11a.

In Fig. 11b we examine the impact of volume fraction ratio of cells in
tissue F, as defined in section 2.1 (see model assumptions). The fraction
ratio is very important for extraction dynamics since it defines the
porosity of tissue ε (where ε = 1 − F), and porosity determines the
macroscopically observable rate of diffusion, as viewed within the con-
text of the complete block of tissue. If rate of diffusion is averaged over
the entire volume of the tissue sample, the extracellular diffusion coef-
ficient is dependent on the extracellular porosity, Ds,e = ε/τ·Ds,0, and
thus on the volume fraction of cells in tissue. However, the effects of
electroporation on these parameters, or indeed on the porosity, are
not well known and will have to be evaluated in the future. We have
included this parameter in the analysis, since experimental and theoret-
ical evidences exist that the cell volume fraction ratio is a function of
electroporation [95,96]. The effective change (an increase) of cell
volume ratio has been observed to occur in animal tissues due to
colloid-osmotic swelling [95] andpresumably cell shrinkage in plant tis-
sue due to loss of turgor [96] during and after electroporation causes an
effective decrease of the cell volume fraction. Moreover, with very high
degrees of damage to tissues in extraction processes, a fraction of cells
may be irreversibly electroporated. Irreversible electroporation leads
to cell lysis, and we can reasonably assume that after the complete
loss of the barrier function of the cell membrane, we can no longer con-
sider the space previously occupied by the cell as intracellular space.We
also need to consider that cell volume fraction ratio is dependent on the
tissue sample and origin, as it varies between species of animal or
plant whose tissue we are subjecting to the electroporation treat-
ment. Plant tissues, in example, exhibit various volume fractions by
virtue of natural diversity alone, among different species and even
samples taken from a single species, depending on growing, harvest,
and storage conditions [71].

Since some of the processes in electroporation-facilitated mass
transfer also occur at temperatures higher than room temperature,
e.g. in extraction of compounds from plant tissues, a combination of
electroporation and temperature as high as 80 °C is used [22,97] and
for clinical electrochemotherapy the temperature is that of the patient's
body, we present model results at different temperatures by means of
varying the diffusion coefficient Ds,0 (see Fig. 11c). The diffusion coeffi-
cient at various temperatures was recalculated frommeasurements re-
ported in the literature [34] with the help of the Einstein–Stokes
relation and data on viscosity ofwater as a function of temperature [98].

Fig. 11d shows the influence of themore realistic assumptions about
initial extracellular concentrations for low degrees of membrane
permeabilization. To obtain Fig. 10a, we assumed that initial intrinsic
concentrations are equal in the extracellular space and the intracellular
space, i.e. ci0= ce0. The rationale is that since some time passes between
the electrical treatment of a sample and the beginning of a diffusion
experiment, for high degrees of electroporation the intra- and extracel-
lular concentrations equilibrate. At low permeability of the cell mem-
brane however, this assumption is no longer valid. We therefore
illustrate extraction kinetics if at fp = 1.4 × 10−6 the ce0/ci0 ratio varies
within the range [0.2, 1].

Notice that λr (Fig. 11a) does not dramatically decrease the
speed of diffusion at around the value of 0.20, but has a very strong
impact at values of 0.45 and above, where the transmembrane
through-pore flux due to constriction is brought almost to a halt.
This is explained by the highly nonlinear relation between λr and
the effective diffusion coefficient, as previously shown by the insert in
Fig. 4. An interesting point is made by interpreting the results at very
low values of λr. Under these conditions, we have low permeabilization
(fp = 1.4 × 10−6) but a high yield of solute that has diffused out of the
tissue.We can suppose the transportmodeled at these parameter values
is that of small molecules (much smaller than sucrose) and that of ions.

Not surprisingly, the dependence on volume fraction of cells
(Fig. 11b) shows a linear dependence on extracted solute yield due to
low pore surface fraction used in simulation (see Table 1), resulting in
the bulk of diffused (extracted) solute being the solute found initially
in the extracellular medium.

Results in Fig. 11c quantify the effect of increasing the temperature
of extraction if only the thermal effects on diffusion rate are supposed,
with no influence of heat on cell or tissue structure. The values of Ds,0

used correspond to 20, 30, 40, 50, 60 and 80 °C.
Themodel results given by Fig. 11d confirmour expectations and are

in accordance with performed diffusion experiments (as published in
the literature, see e.g. [22]). If membrane permeabilization is low or
nil, only extracellular sucrose diffuses and as the sucrose is primarily
stored in the intracellular vacuoles, the final yield is low. Note that the
range of values on the ordinate axis is [0, 0.5].



Fig. 11. Parametrical analysis of the model. (a) Varying the solute to pore radius λr. (b) Varying the cell volume fraction F. (c) Effect of temperature through its influence on diffusion
coefficient of sucrose. (d) Varying ce0/ci0 at no membrane permeabilization, i.e. fp ≈ 10−8.
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4. Conclusions

This paper gives an account of the development of a dual-porosity
model of solute diffusion in tissue treated with electroporation. The
fundamental assumptions in developing this model are based on
phenomenological observations of liquid flow in porous media
such as fractured rocks and soils. The model is designed as an at-
tempt to provide a framework for future work in both computer
modeling and experimental design. We demonstrated how it can
be applied to a typical problem of solute extraction by diffusion in
tissue that has been pretreated with electroporation, and we illus-
trated how it can be adapted to model mass transport phenomena
in a disparate field of biomedical electroporation applications. We
are confident that the dual-porosity model can be further improved
and adapted to solve problems in mass transfer in many applications
of electroporation, whether we are observing animal or plant tissue,
whether we are interested in extraction of solute from the cells or in-
troduction of solute into the cells, and even whether our species of
interest are small ions or large organic compounds. The basic physical
phenomena underlying the processes after application of electropora-
tion treatment exhibit differences predominantly in details, which
renders a general approach such as described by this paper, possible.
The main focus of future work on the model will be verification by
further experimentation, consolidation, as well as further inquiry
designed to determine the influence of four important factors: pore
evolution in number and size as a function of time; solute diffusivity
through permeated membrane with pores evolving according to a
model of electroporation; effect of net electric charge of solute and the
effects of electroosmosis and electrophoresis; and the impact of electrical
tissue damage to the effective cell volume fraction and consequent effect
on the porosity of biological tissue, which influences the rate of solute
diffusion within the extracellular phase. The model is easy to adapt and
extend and can be thus further enhanced, albeit at the cost of losing
the possibility of obtaining an analytical solution and having to solve
the model numerically.

Acknowledgements

The authors appreciate the financial support from the French
Ministry of Research and Higher Education (PhD scolarship grant
for SMK) and the Slovenian Research Agency (projects of the
research programme P2―0249: Electroporation in biology, biotech-
nology and medicine). This research was in part made possible
due to networking activity of COST TD1104 Action (www.
electroporation.net). We (DM and SMK) would also like to thank
Dr. Sid Becker from the University of Canterbury, New Zealand, for
the fruitful discussion on the theory of porous media as applied to
problems in tissue electroporation.

Appendix A. Derivation of the analytical solution for constant
coefficients k and Ds,e

In this Appendix we give a complete and detailed derivation of
the analytical solution, given by Eqs. (19)–(23) in the main body
of the paper, as it is derived from model Eqs. (1)–(2) taking appro-
priate initial and boundary conditions (Eqs. (12)–(18)) into the
account.
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We begin by joining the two first-order PDEs, Eq. (1)–(2), into one
second-order PDE for solute concentration in intracellular space. From
Eq. (2), we express ce as

ce ¼
1
k
∂ci
∂t þ ci ðA:1Þ

and carry this into Eq. (1), obtaining

∂
∂t

1
k
∂ci
∂t þ ci

� �
−Ds;e

∂
∂z

∂
∂z

1
k
∂ci
∂t þ ci

� �� �
−1−ε

ε
k ci−

1
k
∂ci
∂t þ ci

� �� �
¼ 0

ðA:2Þ

and after rearrangement, multiplication by k and on introducing δ=
(1 − ε)/ε

∂2ci
∂t2

þ δþ 1ð Þk ∂ci∂t −Ds;e
∂3ci
∂t∂z2

−Ds;ek
∂2ci
∂z2

¼ 0: ðA:3Þ

To resolve the inhomogeneous boundary condition (Eq. (18)), we
introduce a new function ψ(z,t) as

ψ ¼ ci−ci0e
−kt ðA:4Þ

with boundary conditions

∂ψ
∂z jz¼0

¼ ∂
∂z ci−ci0e

−kt
� �� �

j
z¼0

¼ ∂ci
∂z jz¼0

¼ 0 ðA:5Þ

ψjz¼l=2 ¼ cijz¼l=2−ci0e
−kt ¼ ci0e

−kt−ci0e
−kt ¼ 0 ðA:6Þ

and initial condition

ψ0 ¼ ψ0 z;0ð Þ ¼ ci0−ci0e
−kt

� �
j
t¼0

¼ ci0 z;0ð Þ−ci0 ¼ 0: ðA:7Þ

Inserting A.4 and its temporal derivatives into A.3 following rear-
rangement, yields

∂2ψ
∂t2

−Ds;e
∂3ψ
∂t∂z2

−Ds;ek
∂2ψ
∂z2

þ δþ 1ð Þk ∂ψ∂t ¼ δci0k
2e−kt

: ðA:8Þ

We proceed with separation of variables on the homogeneous form
of Eq. A.8, and assemble the complete solution as

ψ z; tð Þ ¼ ψh z; tð Þ þ ψp tð Þ ðA:9Þ

where the homogeneous solution ψh(z,t) is a solution of

∂2ψ
∂t2

−Ds;e
∂3ψ
∂t∂z2

−Ds;ek
∂2ψ
∂z2

þ δþ 1ð Þk ∂ψ∂t ¼ 0: ðA:10Þ

According to themethod of separation of variables, we represent the
solution of a PDE as a product of two constituents, one a function of z
and the other of t

ψ z; tð Þ ¼ Z zð Þ � T tð Þ: ðA:11Þ

We insert Eq. A.11 into Eq. A.10 and after rearrangement, separating
the two functions and their derivatives, we obtain

Z00

Z
¼ T 00 þ δþ 1ð ÞkT 0

Ds;eT
0 þ Ds;ekT

: ðA:12Þ
Eq. A.12 can only hold if both sides are equal to a constant. For the
sake of subsequent algebra we set the constant to−λ2. For z, we obtain

Z00

Z
¼ −λ2 ðA:13Þ

of which the solution is a linear combination of trigonometric functions

Z zð Þ ¼
X∞
m¼1

Am sin λmzð Þ þ Bm cos λmzð Þ ðA:14Þ

while the right-hand side of A.12 can be written as

T 00 þ δþ 1ð Þkþ λ2Ds;e

� �
T 0 þ λ2Ds;ekT ¼ 0 ðA:15Þ

of which the characteristic polynomial is

γ1;2 ¼
− δþ 1ð Þkþ λ2Ds;e

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δþ 1ð Þkþ λ2Ds;e

� �2−4λ2kDs;e

r
2

ðA:16Þ

finally giving the solution

T tð Þ ¼ K1e
γ1t þ K2e

γ2t : ðA:17Þ

The complete solution is thus

ψh z; tð Þ ¼ Z zð Þ � T tð Þ
¼
X∞
m¼1

Am sin λmzð Þ þ Bm cos λmzð Þð Þ K1e
γ1t þ K2e

γ2t
� �

: ðA:18Þ

Note that since γ1 and γ2 are functions of λm, they get updated as
well with every increment in the summation indexm.

We now look for the particular solution of the inhomogeneous PDE,
Eq. A.8, via the method of undetermined coefficients, of which the
details we will omit. The particular solution is

ψp tð Þ ¼ −ci0e
−kt

: ðA:19Þ

We can now complete Eq. A.9 to obtain ψ(z,t)

ψ z; tð Þ ¼
X∞
m¼1

Am sin λmzð Þ þ Bm cos λmzð Þð Þ K1e
γ1t þ K2e

γ2t−ci0e
−kt

� �
:

ðA:20Þ

Next, we turn to the boundary conditions to determine coefficients
Am, Bm and eigenvalues λm. The following must be met

Am sin λmzð Þ þ Bm cos λmzð Þð Þjz¼l=2 ¼ 0 ðA:21Þ

Amλm cos λmzð Þ−Bmλm sin λmzð Þð Þjz¼0 ¼ 0 ðA:22Þ

from Eq. A.21 follows that Am equals 0, while from Eq. A.22 we get λm

λn ¼ 2nþ 1ð Þπ
l

ðA:23Þ

where summation indexmwas replacedwith n, the latter running from
0 to infinity. The coefficient Bn can be calculated via the general formula
for Fourier series coefficients

Bn ¼ 2
l=2

Zl=2
0

cos
2nþ 1ð Þπ

l
z

� �
dz ¼ 4

π
−1ð Þn
2nþ 1

: ðA:24Þ
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Inserting Bn into Eq. A.20 and setting An to 0, we obtain

ψ z; tð Þ ¼ 4
π

X∞
n¼0

−1ð Þn
2nþ 1

K1e
γ1t þ K2e

γ2t−ci0e
−kt

� �
cos

2nþ 1ð Þπ
l

z
� �

:

ðA:25Þ

For K1 and K2, we need two algebraic equations. One is immediately
evident from Eq. A.7

ψ z;0ð Þ ¼ 4
π

X∞
n¼0

−1ð Þn
2nþ 1

K1e
γ10 þ K2e

γ20−ci0e
−k0

� �
cos

2nþ 1ð Þπ
l

z
� �

¼ 0

ðA:26Þ

resulting in

K1 þ K2 ¼ ci0 ðA:27Þ

while the other equation introduces the extracellular concentration ini-
tial condition into the solution for the intracellular concentration. We
recall Eq. A.1, andwrite it by replacing ci with the correct expression fol-
lowing from Eq. A.4, giving

ce ¼
1
k
∂
∂t ψþ ci0e

−kt
� �

þ ψþ ci0e
−kt

� �
¼ 1

k
∂ψ
∂t þ ψ: ðA:28Þ

Carrying out the differentiation and writing Eq. A.28 for t = 0 gives
the second equation for K1 and K2

K1
γ1

k
þ 1

� �
þ K2

γ2

k
þ 1

� �
¼ ce0: ðA:29Þ

Solving the system of Eqs. A.27 and A.29 determines K1 and K2 as

K1 ¼ ci0

ci0
ce0

−1
� �

k−γ2

γ1−γ2
ðA:30Þ

K2 ¼ ci0

1− ci0
ce0

� �
kþ γ1

γ1−γ2
: ðA:31Þ

Taking the constant ci0 out of the summation and inserting the solu-
tion for ψ into Eq. A.4, we finally obtain the expression for intracellular
intrinsic solute concentration ci(z,t), already given in the main body of
this paper (see Eqs. (19)–(23)).

In order to obtain the extracellular intrinsic solute concentration,we
must perform a time derivative on Eq. (20), multiply it by 1/k and add
the product to Eq. (20) (in accordance with Eq. A.1). These operations
yield

ce z; tð Þ ¼ 4ci0
π

1
k

X∞
n¼0

−1ð Þn
2nþ 1

cos λnzð Þ Cn;1γn;1e
γn;1t þ Cn;2γn;2e

γn;2t þ ke−kt
� �

−ci0ke
−kt

" #
þ

þ 4ci0
π

X∞
n¼0

−1ð Þn
2nþ 1

cos λnzð Þ Cn;1e
γn;1t þ Cn;2e

γn;2t−e−kt
� �

þ ci0e
−kt

:
ðA:32Þ

We see that the exponentials ci0exp(−kt) subtract to 0. Joining the
summative members with same constants together into one infinite se-
ries after dividing the first series by k, we finally obtain for extracellular
intrinsic solute concentration the equation already given as Eq. (19) in
the main body of this paper.
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