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We report calculations of the anisotropy ratio of the electrical conductivity of a simple model of a

loose connective biological tissue described as a random assembly of multiscale undeformable

core-shell and controlled polydisperse spherical structures. One can estimate a 10% increase in the

anisotropy ratio due to the application of electric field (duration 100 lm) above the electroporation

threshold (40 kV m�1) up to 120 kV m�1. These findings are consistent with the experimental data

on the field-induced anisotropy dependence of the electrical conductivity due to cell membrane

electroporation. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767450]

There has been a long-standing difficulty to model the

interaction of large electric fields with biological tissues.1–3

The reason is that treating all degrees of freedom in these mul-

tiscale systems with strongly correlated cells is a daunting

task. In a previous Letter, we have shown by computational

means that despite differences in length scales and density,

random ternary core-shell sphere packings with different spa-

tial scales can provide a basis for detailed analysis of the elec-

troporation (EP) of tissues.4 A particularly interesting feature

of this method is that it allows for efficient evaluation of tem-

poral evolution of the electrical conductivity of these packings

during application of an electric field with magnitude either

below or above the value leading to cell membrane EP. It has

been pointed out that it predicts a sigmoidal electric field-

dependent fraction of electroporated cells which is consistent

with what is observed experimentally.

So far, the bulk of theoretical and experimental efforts

along these lines has focused on using scalar permittivity

and electrical conductivity. Very little is known at this point

about the anisotropy properties of biological tissues. The

number of reported experimental studies of permittivity and

electrical tensors of biological tissues is not large, e.g., see

Refs. 5–7. Much attention has been focused on high-

resolution microelectrode arrays that allow electrical charac-

terization of tissues noninvasively with large spatiotemporal

resolution.7 Tuch and co-workers8 showed how the electrical

conductivity tensor of tissue can be quantitatively inferred

from the water self-diffusion tensor as measured by diffusion

tensor magnetic resonance imaging (MRI). Recent advances

in transport measurements, coupled to the development of

models, revealed the existence of a small anisotropy in the

conductivity above a threshold value of the induced trans-

membrane voltage (ITVth). In fact, the authors reporting con-

ductivity anisotropy results noted a �10% difference

between two perpendicular electric field orientations.5,6

The aim of the simulations described in this letter was to

search for estimating the anisotropy ratio of the conductivity

tensors of such biological materials. As well as being impor-

tant in their own right, our analysis also provides a useful

testbed for identifying important features of EP, determining

what causes it, and finding the range of parameters over

which it applies.

We performed a set of numerical experiments based on

the asymptotic DeBruin-Krassowska (DBK) model of EP for

a single cell based on the Smoluchowski equation.6,9 Though

we lack a general microscopic theory linking transport prop-

erties and the hierarchy of the cell’s microstructure, this

approach not only has the virtue of being very general but is

also able to describe the electric shock-induced changes in

transmembrane potential, which is of crucial importance for

EP. Here and throughout the letter, we will restrict attention

to undeformable spherical cells modelled as a core-shell

(CS) structure. Schwan10 laid the groundwork in understand-

ing the properties of such CS models of cells with known

size, shape, and distribution of charges. Representative val-

ues for the primary parameters defining the assembly of CS

structures and the cell and tissue EP are identical to those of

Table I in Ref. 11. The geometry we consider is depicted

schematically in Fig. 1(a). The self-consistent method we

use to characterize transport properties has been extensively

described in the literature (see, e.g., Refs. 2–4 and references

therein) and details will not be given here, except where cru-

cial. We consider the case where a uniform external electric

field pulse (100 ls), with magnitude E and rise time

tr¼ 0.1 ls, is applied along the x-axis. Since the conductivity

r$ tensor is independent of the precise boundary conditions

imposed on the electrical potential, we can choose those con-

ditions such that r$ ¼
rxx 0 0

0 ryy 0

0 0 ryy

2
4

3
5, in the Cartesian

coordinate system defined by the dielectric axis. We have

performed finite element simulations of the rxx and ryy com-

ponents of r$ . To obtain ryy, a perpendicular electric field

pulse (100 ls) in the y direction is superimposed to the field

in the x direction. Typical results of these simulations are

shown in Figs. 2 and 3. To be specific, the cell is modelled

by using a simple CS structure with membrane thickness of

5 nm, membrane conductivity of 5� 10�7 X�1m�1,a)E-mail: brosseau@uiv-brest.fr.
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intracellular conductivity of 0.2 X�1m�1, and extracellular

conductivity of 0.127 X�1m�1. These numbers are compara-

ble to related theoretical calculations.2–4,6,9,10 To model sim-

ply a tissue as a random assembly of multiscale CS spherical

structures, we have considered three cell radii 8, 10, and

12 lm. These values are consistent with the cell size distribu-

tion observed in reflectance in biological tissues.12 The cubic

computational domain (condenser) is filled by a homogene-

ous medium (whose dielectric properties are assimilated to

water) in which nonoverlapping spherical cells are distrib-

uted randomly but uniformly. In the actual numerical calcu-

lations, the volume fraction of cell is held constant and is set

to 33 vol. %. Because of the large computational effort for

modelling three dimensional heterostructures, we limit our-

selves to study five realizations of the random assembly of

cells. The average computational time of a typical simulation

of the multicellular tissue model shown in Fig. 1(b) is about

1 h. Most computational parameters are the same as those

used in our earlier work.4 As long as the quasistatic approxi-

mation is valid, all of the tensor components are calculable

in this continuous effective medium approach. We use finite

element as implemented in COMSOL MULTIPHYSICS,13 using a

80� 80� 80 lm3 computational domain with electrically

insulated boundary conditions for the x-y and x-z planes

(conservation of the electric current density). The average

cell number is 82 for the 5 realizations of the model and the

density is 1.6� 1014 cells/m3.

Experimental measurement of the anisotropy ratio of the

conductivity tensor using magnetic resonance electrical im-

pedance tomography (MREIT) was also performed. MREIT

is based on reconstructing images of true conductivity with

high spatial resolution by obtaining current density informa-

tion using magnetic resonance imaging (MRI) and measuring

surface voltage potential.14–16 Even though reconstructed

conductivity images are mostly assessed by multiple injec-

tions of low current, it was showed recently that single elec-

troporation pulses are also applicable for reconstruction.17

We performed ex vivo measurement on fresh chicken liver

tissue obtained from a slaughterhouse (Perutnina Ptuj, d.d.,

Ptuj, Slovenia) which operates in accordance to Slovenian

law (Ur.l. RS, N. 5/2006). We placed cylindrically shaped

tissue samples inside an Oxford 2.35 T horizontal bore super-

conducting magnet (Oxford instruments, U. K.) and expose

it to 1.5 ms long electric pulses with amplitude of 1400 V

using an electroporator Jouan GHT 1287 (Jouan, France). Ex

FIG. 1. (a) A single cell in the computational domain. (b) Illustrating the

random ternary CS sphere packings studied, with three cell radii 8, 10, and

12 lm, corresponding to a volume fraction of cell inside the computational

domain set to 33 vol. %.

FIG. 2. (a) Simulation results for the electrical conductivity of a single cell

as a function of time for the electroporated (solid line) and non-

electroporated (dashed line) cell membrane subjected to the applied electric

field. (b) Same for the effective conductivity. The field duration is 100 ls.

FIG. 3. Same as in Fig. 2 for the average of five realizations of the random

ternary CS sphere packing with different spatial scales modelling a tissue.

The volume fraction of cell inside the computational domain is set to 33 vol.

%. The field duration is 100 ls.
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vivo tissue samples were exposed to electric field with

strength ranging from 20 kV m�1 up to 250 kV m�1 in areas

which were distant to, or near, the electrodes, respectively.

MRI of current induced magnetic field changes inside tissue

sample was acquired using the two-shot RARE CDI

sequence.17 Afterwards, we reconstructed electrical conduc-

tivity using MREIT J-substitution algorithm which is based

on solving iteratively Laplace’s equation. More details on

the methodology can be found in Ref. 17. Measurements

were repeated ten times and each sample was replaced with

a fresh one after each electroporation pulse delivery to

ensure identical initial conditions.

We start by discussing the simpler case of a single cell

(Fig. 1(a)). The results are summarized in Fig. 2. In this fig-

ure, two curves are shown for the effective conductivity

below (20 kVm�1) or above (100 kVm�1) the EP threshold

(40 kVm�1). Below the EP threshold, the results yield super-

imposable conductivity values (solid and dotted lines) plot-

ted as a function of time. When a perpendicular field is

applied above the EP threshold, our simulations predict dis-

crimination compared to the conductivity obtained from the

parallel case. These results were also obtained in Ref. 6 and

are qualitatively similar to those of Huclova and co-

workers.18

We now consider random ternary CS sphere packings

with different spatial scales, as shown in the illustrative case

of Fig. 1(b). We are faced with two serious challenges: first,

the spatial heterogeneity of the random distribution of cells

within the computational domain must be dealt with. Second,

an ensemble average is taken over many different realiza-

tions that have the same boundary conditions. We are, how-

ever, able to circumvent these issues by using the analysis

described in Ref. 4. The results are summarized in Fig. 3 for

the average conductivity of the random ternary CS sphere

packings. In Fig. 3, we present data showing the evolution of

the average electrical conductivity as a function of time

below or above the EP threshold. The anisotropy that we

describe in Fig. 3 is a statistical property of an ensemble of

realizations, whereas the behavior shown in Fig. 2 is the

manifestation of this anisotropy for a single cell. It is also

worth observing that the initial spikes observed in Figs. 2

and 3 correspond to the capacitive term of the current. Their

amplitude gets more pronounced with shorter rise time of

applied electric pulses.19

Fig. 4 further illustrates the effects of raising electric

field amplitude on anisotropy ratio of the electrical conduc-

tivity defined as Dr ¼ ðrxx � ryyÞ=rxx for our model of tis-

sue. It can be immediately seen that as electric field

increases from 40 to 160 kVm�1, the ratio increases from

�0% to 14% monotonically with a significant upturn at 60

kVm�1. The question that remains now regards the mecha-

nism promoting the field-induced anisotropy, whether it is

driven by the anisotropy intrinsic to the individual cell, or

that related to the randomness and connectedness of the tis-

sue. The small anisotropy, �3%, observed in Fig. 2 immedi-

ately suggests that the electric field dependence of the

anisotropy ratio is mainly determined by the collective

behavior associated with the cell membrane EP of dense

cell suspensions. One additional observation is worthy of

note. Fig. 4 shows also the dimensionless parameter

dr ¼ ðrE � rE0
Þ=r

E0
, which concerns the sole application of

an electric field along the x-axis, and where E0 denotes a ref-

erence value for the nonelectroporated state (20 kVm�1),

and the fraction of electroporated cells p obtained in Ref. 4

for cell density of 33 vol. %. We observe that even if all cells

are electroporated at a field magnitude of 90 kVm�1, dr still

grows in field, indicating the increase of the electroporated

cell’s area fraction. It is noted that the anisotropy ratio Dr
observed for electroporated states is significantly smaller

than the field ratio dr.

Fig. 5 shows the measured anisotropy ratio of the elec-

trical conductivity Dr ¼ ðrxx � ryyÞ=rxx for liver tissue in

the electric field range between 20 kVm�1 and 120 kVm�1.

It should be noted that the effect of electric field amplitude

on Dr can be evaluated and compared with simulation

results even though the cylindrical geometry of imaging tis-

sue, the electrode type, and the measurement configuration

FIG. 4. The anisotropy Dr ¼ ðrxx � ryyÞ=rxx (full circles) and field dr
¼ ðrE � rE0

Þ=r
E0

(full squares) ratios of the averaged electrical conductiv-

ity tensor components for random ternary CS sphere packing as a function

of the applied electric field (left axis). rE and rE0 are, respectively, the

conductivities calculated with an electric field (in the x-direction) of magni-

tude set to E and to E0, respectively. Fraction of electroporated cells p, as a

function of electric field magnitude E (right axis, from Ref. 4). The volume

fraction of cell inside the computational domain is set to 33 vol. %.

E0¼ 20 kV m�1. The results are the averages of 5 realizations of the ter-

nary CS tissue model. The field duration is 100 ls.

FIG. 5. The anisotropy ratio Dr of the averaged electrical conductivity ten-

sor components for a chicken liver tissue. The results (full circles) are the

averages of measurements on 10 liver samples. The solid (red) line is a

guide to the eyes.
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(4 needle electrodes) introduces conditions which differ

from the numerical experiment where the electric field was

uniformly applied along either the x- or the y-axis. Remark-

ably, the electric field dependence of the measured Dr
shown in Fig. 5 reproduces the simulated one in Fig. 4.

Observe that Dr remains practically constant below �50

kVm�1. In contrast, at higher electric field amplitudes, the

data show strong scatter. The observed value of �50 kVm�1

is also similar to the reversible electroporation threshold of

rabbit liver determined in an earlier study.18

Importantly, the presence of anisotropy in the conduc-

tivity agrees qualitatively well with conductivity measure-

ments on single cell.6 Our results are also in qualitative

agreement with recent studies of Gilboa et al.5 using micro-

electrode arrays where they conclude that the tissue con-

ductivity should present a smooth tensor field. More

importantly, the analysis method of this work can serve as

an opportunity to understand the EP mechanisms of biolog-

ical tissues.

In summary, the primary motivation in this study was to

analyze a particular model of connective biological tissue

described as a random assembly of undeformable core-shell

and controlled polydisperse spherical structures. We have

applied a methodology that circumvents the numerical diffi-

culties of modeling multiscale media by using three cell

radii. We note that the anisotropy ratio of the electrical con-

ductivity does not reach substantial amplitude in simulations,

except for electric field magnitude which will eventually

compromise the viability of the tissue. The conclusions

reached here with regards to the EP properties of tissues are

consistent with current and previous experimental

investigations.5

While the question of generality of the current model-

ling approach for a tissue remains open, the present results

will both motivate further studies and also serve as an impor-

tant anchor in future discussions of EP. One immediate

extension of our study would be to consider a wider range of

random filling of the computational domain. We certainly

acknowledge that there are subtleties due to the randomness

of dense sphere packings; for example, the impact of con-

nectedness and clustering of spheres.20 Nevertheless, the cur-

rent results suggest that the current model may be a good

approximation of biological tissues, and we take this oppor-

tunity to remind the reader that extensive discussions of the

effective conductivity tensor of random two-component in-

homogeneous materials have appeared in the literature.20,21

In this respect, we expect that the results presented in this let-

ter will stimulate further work on the applicability of this

model to open problems in EP of biological tissues, e.g.,

relating ITV measurements to the electrophysiological state

of cells in the tissue.
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