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Abstract The plasma membrane of a biological cell is a complex assembly of lipids and 
membrane proteins, which tightly regulate transmembrane transport. When a cell is exposed to 
strong electric field, the membrane integrity becomes transiently disrupted by formation of trans-
membrane pores. This phenomenon termed electroporation is already utilized in many rapidly 
developing applications in medicine including gene therapy, cancer treatment, and treatment of 
cardiac arrhythmias. However, the molecular mechanisms of electroporation are not yet sufficiently 
well understood; in particular, it is unclear where exactly pores form in the complex organization 
of the plasma membrane. In this study, we combine coarse-grained molecular dynamics simula-
tions, machine learning methods, and Bayesian survival analysis to identify how formation of pores 
depends on the local lipid organization. We show that pores do not form homogeneously across the 
membrane, but colocalize with domains that have specific features, the most important being high 
density of polyunsaturated lipids. We further show that knowing the lipid organization is sufficient to 
reliably predict poration sites with machine learning. Additionally, by analysing poration kinetics with 
Bayesian survival analysis we show that poration does not depend solely on local lipid arrangement, 
but also on membrane mechanical properties and the polarity of the electric field. Finally, we discuss 
how the combination of atomistic and coarse-grained molecular dynamics simulations, machine 
learning methods, and Bayesian survival analysis can guide the design of future experiments and 
help us to develop an accurate description of plasma membrane electroporation on the whole-cell 
level. Achieving this will allow us to shift the optimization of electroporation applications from blind 
trial-and-error approaches to mechanistic-driven design.

Introduction
The plasma membrane of a cell is a complex assembly of hundreds of different types of lipids and 
membrane proteins, which tightly regulate transmembrane trafficking and participate in cell signalling 
(Krapf, 2018; van Meer et al., 2008). The molecular organization of the plasma membrane and its 
integrity are essential for the life of the cell. However, when the cell is exposed to external forces, 
the membrane integrity can become transiently disrupted by formation of transmembrane pores. 
Such disruption can be useful in many clinical applications, for example when nucleic acids need to 
be delivered across the plasma membrane into the cell interior, where they can carry out their tasks 
(Gary and Weiner, 2020; Glass et al., 2018). Various physical methods can induce transmembrane 
pores, including ultrasound, light, electric field, and mechanical deformation (stretching/squeezing) 
(Gurtovenko et al., 2010; Ding et al., 2017; Yang et al., 2020; Schneckenburger, 2019). In terms of 
clinical applications, poration by the application of electric fields or electroporation is the most widely 
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used method. It is approved for treatment of solid tumours, and it is being tested in clinical trials for 
gene therapy, vaccination against cancer and infectious diseases, and for cardiac ablation (Campana 
et al., 2019; Geboers et al., 2020; Algazi et al., 2020; McBride et al., 2021).

One of the bottlenecks of electroporation is that its protocol, especially the parameters of the 
applied electric pulses (amplitude, duration, number, repetition rate), needs to be optimized for each 
specific application and also for each specific cell/tissue type (Cemazar et al., 2009; Rols and Teissié, 
1998; Hunter et al., 2021). When using electroporation for intracellular delivery of nucleic acids, the 
cells need to survive the treatment to be able to express the transgene. On the contrary, when using 
electroporation as an ablation modality, the cells need to die. Any electroporation-based treatment 
thus needs to be designed to either avoid or reach the point of no return leading to cell death. At 
present, the understanding of this point of no return is very limited (Batista Napotnik et al., 2021). 
One of the main reasons for this is our insufficient understanding of the molecular mechanisms that 
govern the increased cell membrane permeability induced by the applied electric field (Kotnik et al., 
2019). If we can identify the molecular alterations of the cell membrane, we can begin to connect 
them to the biological response of the cells to pulsed electric fields.

The most accepted models, that describe electroporation on the whole-cell level, consider that 
pores can form only in the lipid domains of the plasma membrane and that all pores exhibit a similar 
kinetic behaviour (Krassowska and Filev, 2007; Li and Lin, 2011; Gowrishankar et  al., 2013). 
However, accumulating evidence from experiments and simulations on model systems speaks against 
these assumptions. Poration kinetics in pure lipid bilayers has been shown to depend on the type of 
lipids and their phase state (Perrier et al., 2017; Sengel and Wallace, 2016). Since the lipids in the 
plasma membrane organize in domains (Lu and Fairn, 2018; Levental et al., 2020), there must exist 
locations which are more and less prone to poration. Moreover, our research suggests that pores 
can nucleate within some membrane proteins, causing protein denaturation and lipid rearrangement 
(Rems et al., 2020). Such lipid/protein pores can be more stable than pure lipid pores and are more 
likely to explain the persistent increase in plasma membrane permeability following exposure to elec-
tric pulses. Studies have further shown that pore formation and/or expansion is affected by the actin 
cytoskeleton, either via actin’s influence on lipid organization or the mechanical properties of the 
membrane (Muralidharan et al., 2021; Perrier et al., 2019). The current challenge is to gather this 
ensemble of findings into a coherent and predictive mathematical model describing electroporation 
of the living cell’s plasma membrane. In a living cell’s plasma membrane, pores cannot form anywhere: 
as soon as a sufficient number of pores are formed, the transmembrane voltage drops, preventing 
formation of new pores (DeBruin and Krassowska, 1999; Smith et al., 2014). In other words, pores 
will form preferentially in specific sites with the highest poration propensity. However, it remains to be 
elucidated which are the properties of these sites.

The challenge of studying pores in the plasma membrane experimentally is that pores are 
nanometre-sized and open only transiently, whereby most of them appear to rapidly close (ns–μs 
range) after turning off the electric field (Melikov et al., 2001; Bennett et al., 2014; Sözer et al., 
2020). Pores have been imaged in giant unilamellar vesicles (Riske and Dimova, 2005; Lira et al., 
2021); however, these pores have reached sizes on the order of 1 μm, which have not been observed 
in cell plasma membranes, likely because the actin cytoskeleton limits pore expansion (Perrier et al., 
2019). Pores have also been imaged in real time in droplet interface bilayers with TIRF (total internal 
reflection fluorescence) microscopy (Sengel and Wallace, 2016); however, the membranes were 
exposed to seconds-long electric pulses, which are much longer than pulses used in electroporation 
applications (ns−ms range), and which would likely not be tolerated by living cells. A few attempts 
have been made to visualize pores in cells using electron microscopy (Chang and Reese, 1990; Lee 
et al., 2012); however, the observed pores were suggested to be artefacts of sample preparation 
(Teissie et al., 2005). Overall, the current state of experimental methods does not appear to be at 
a stage where it would provide the spatiotemporal resolution required to understand the molecular 
mechanisms of plasma membrane electroporation in its entirety.

In this study, we thus resort to molecular modelling methods to investigate plasma membrane 
electroporation. In particular, we use coarse-grained molecular dynamics simulations, building on their 
success in studying membrane lateral organization and dynamic behaviour (Duncan et  al., 2017; 
Marrink et  al., 2019; Khalid and Rouse, 2020). By running electroporation simulations on lipid 
membranes mimicking the realistic composition of plasma membranes, we confirm that pores do not 
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form homogeneously across the membrane, but colocalize with domains that have specific features, 
particularly high content of polyunsaturated (PU) lipids. By training machine learning algorithms, we 
further demonstrate that knowing the local lipid distribution is sufficient to predict with ~80–90% accu-
racy the locations, which are most likely to be porated. Additionally, by analysing poration kinetics with 
Bayesian survival analysis we show that poration does not depend solely on local lipid arrangement, 
but also on membrane mechanical properties and the polarity of the electric field. Finally, we discuss 
how atomistic and coarse-grained molecular dynamics simulations, machine learning methods, and 
Bayesian survival analysis combined can help us develop more accurate cell-level models, which are 
required to foster new and better electroporation-based applications.

Results
To study plasma membrane electroporation we have used coarse-grained membranes consisting of 
>60 different lipid types parametrized with the Martini force field (Marrink et al., 2007; de Jong 
et  al., 2013). The membranes mimic the composition of either an idealized average mammalian 
plasma membrane (APM) or a human brain plasma membrane (BPM) and have been developed and 
equilibrated in earlier work (Ingólfsson et al., 2014; Ingólfsson et al., 2017). The lipid composition of 
both APM and BPM is asymmetric, the lipids in the outer leaflet being different from those of the inner 
leaflet. Both compositions contain similar lipid types but differ in their fractions (Figure 1, Figure 1—
figure supplement 1, Tables 1 and 2).
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Figure 1. The average mammalian and human brain plasma membranes. Two equilibrated membranes taken from the study of Ingólfsson et al., 2017 
were cut into four 30 nm x 30 nm large pieces each. The pie charts show the fraction of lipid subgroups in the inner and outer leaflets of the membranes. 
CHL, cholesterol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SM, sphingomyelin; GM, gangliosides; PS, phosphatidylserine; FS, fully 
saturated lipids; MU, monounsaturated lipids; PU, polyunsaturated lipids. Figure inspired by Ingólfsson et al., 2017.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Fraction of different lipidsin the inner and outer membrane leaflets.

https://doi.org/10.7554/eLife.74773
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The following subsections present the results and analysis as follows. First, we present the results 
from electroporation simulations and demonstrate that all membranes exhibit preferential poration 
sites. Then we determine local membrane properties and examine which of them increases/decreases 
the poration propensity. We further investigate the importance of local membrane properties by 
training machine learning algorithms and predicting the sites, which are most likely to be porated. 
Finally, we apply Bayesian survival analysis to investigate how membrane properties influence the 
poration kinetics and to develop an underlying kinetic model.

Table 1. Separation of lipids into groups based on their headgroup type or tail saturation.
The lipids are grouped into subtypes, depending on their headgroup type and tail saturation. Lipids 
are considered to be fully saturated, if they contain no double bonds in any of the tails. Lipids are 
considered to be monounsaturated, if they contain exactly one double bond in one or both of the 
tails. Lipids are considered to be polyunsaturated, if they contain at least two double bonds in one 
or both of the tails*.

Group name Abbrev. Martini lipids

Phosphatidylcholines PC
DAPC, DOPC, DPPC, OIPC, OUPC, PAPC, PEPC, 
PFPC, PIPC, POPC, PUPC

Phosphatidylethanolamines PE
DAPE, DOPE, DUPE, OAPE, OIPE, OUPE, PAPE, PIPE, 
POPE, PQPE, PUPE

Sphingomyelins SM
BNSM, DBSM, DPSM, DXSM, PBSM, PGSM, PNSM, 
POSM, XNSM

Gangliosides GM

DBG1, DPG1, DXG1, PNG1, POG1, XNG1, DBG3, 
DPG3, DXG3, PNG3, POG3, XNG3, DBGS, DPGS, 
PNGS, POGS

Ceramides CE DBCE, DPCE, DXCE, PNCE, POCE, XNCE

Lysolipids LPC APC, IPC, OPC, PPC, UPC, IPE, PPE

Diglycerides DAG PODG, PIDG, PADG, PUDG

Phosphatidylserines PS
DAPS, DOPS, DPPS, DUPS, OUPS, PAPS, PIPS, POPS, 
PQPS, PUPS

Phosphatidylinositols PI POPI, PIPI, PAPI, PUPI

Phosphatic acids PA POPA, PIPA, PAPA, PUPA

Phosphatidylinositol phosphates PIP PAP1, PAP2, PAP3, POP1, POP2, POP3

Cholesterol CHOL CHOL

Fully saturated tails FS

DPPC, DBSM, DPSM, DXSM, PBSM, DPPS, DBCE, 
DPCE, DXCE, PPC, PPE, DBG1, DPG1, DXG1, DBG3, 
DPG3, DXG3, DBGS, DPGS

Monounsaturated tails MU

DOPC, POPC, DOPE, POPE, BNSM, PGSM, PNSM, 
POSM, XNSM, DOPS, POPS, POPI, POP1, POP2, 
POP3, POPA, PODG, PNCE, POCE, XNCE, OPC, 
PNG1, POG1, XNG1, PNG3, POG3, XNG3, PNGS, 
POGS

Polyunsaturated tails PU

OIPC, OUPC, PAPC, PEPC, PFPC, PIPC, PUPC, OAPE, 
OIPE, OUPE, PAPE, PIPE, PQPE, PUPE, OUPS, PAPS, 
PIPS, PQPS, PUPS, PAPI, PIPI, PUPI, PAP1, PAP2, PAP3, 
PAPA, PIPA, PUPA, PADG, PIDG, PUDG, APC, IPC, 
UPC, IPE, DAPC, DUPE, DAPE, DAPS, DUPS

*The way in which lipids are grouped by tail saturation is different than in Ingólfsson et al., 2017, where the 
grouping is based on the total number of double bonds in both lipid tails. Here, the grouping is motivated 
by the role of lipid oxidation in electroporation, whereby lipid tails containing two or more double bonds are 
considerably more prone to oxidative damage than tails containing a single double bond. This is because bis-
allylic hydrogens are much more easily abstracted by free radicals compared to allylic hydrogens (Reis and 
Spickett, 2012). Furthermore, membranes made of polyunsaturated lipids (by our definition) were found to 
be considerably more prone to poration/rupture by mechanical stretching compared to membranes made of 
lipids containing a single bond in one or both lipid tails (Olbrich et al., 2000). Thus, we consider that a lipid is 
polyunsaturated only if it contains at least one polyunsaturated tail.

https://doi.org/10.7554/eLife.74773
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Membranes exhibit preferential poration sites
The original APM and BPM membranes from Ingolfsson et al. (Ingólfsson et al., 2014; Ingólfsson 
et al., 2017) were cut into four pieces each (Figure 1) to increase sampling, since the analysis was 
focused on the first poration event. After a short re-equilibration, each of the eight membranes was 
subject to electroporation simulations, 60 simulations under hyperpolarizing field and 60 simulations 
under depolarizing electric field. Both polarities of the electric field were considered, since during 
exposure of a cell to an electric field, the plasma membrane becomes hyperpolarized on the side 
facing the positive electrode and depolarized on the side facing the negative electrode. The elec-
tric field was set to ±127.7 mV/nm, which was high enough to induce a pore within ~15 ns. Being 
able to observe poration over short time scales was important to minimize lateral lipid diffusion and 
provide a reliable mapping of local membrane features before electric field application to the likeli-
hood of a poration event. Note that the value of the electric field strength imposed in simulations is 
not directly comparable to the electric field strengths reported in experimental studies (see section 
Molecular dynamics simulations for further explanation). After identifying when and where the pores 
formed in each simulation, we observed that pore locations do not distribute homogeneously along 
the membrane surface but often cluster together (Figure 2). An individual membrane exhibits one or 
more of such clusters. The location of pores is similar albeit not completely identical under depolar-
izing and hyperpolarizing electric field.

Poration sites colocalize with domains with specific features, in 
particular with a high density of PU lipids
We hypothesized that pores preferably form in nanodomains with specific features. We used the 
recently developed tool MemSurfer (Bhatia et al., 2019) to extract from each membrane the local 

Table 2. The total number of lipids and the percentage of individual lipid groups in each of the eight 
membranes.
The numbers correspond to inner/outer leaflet.

Average plasma membrane Brain plasma membrane

 �  mem #1 mem #2 mem #3 mem #4 mem #1 mem #2 mem #3 mem #4

Total number of lipids in each leaflet

in / out 1503/1638 1564/1663 1571/1650 1553/1663 1728/1891 1740/1847 1770/1886 1764/1906

Percentage of lipid groups

CHOL 27.7/31.7 30.4/32.1 30.8/32.1 29.6/33.0 44.5/45.7 45.1/46.1 45.4/46.3 44.4/46.4

PC 17.9/36.4 18.9/34.3 15.9/34.7 17.8/34.3 12.4/23.0 12.4/23.6 14.8/25.8 14.2/21.9

PE 24.5/6.6 21.9/4.6 24.8/5.3 25.2/6.2 22.8/9.7 21.8/11.7 19.6/9.2 20.9/10.5

SM 10.6/18.7 8.9/19.5 9.7/19.6 8.6/19.1 2.1/8.9 2.1/9.0 2.3/9.2 2.8/8.5

GM 0.0/3.7 0.0/7.0 0.0/5.2 0.0/4.7 0.0/11.3 0.0/8.6 0.0/8.0 0.0/11.5

PS 11.3/0.0 10.7/0.0 9.6/0.0 10.6/0.0 9.8/0.0 11.0/0.0 9.1/0.0 8.7/0.0

PI 3.7/0.0 4.5/0.0 5.0/0.0 5.0/0.0 5.4/0.0 4.9/0.0 5.0/0.0 5.1/0.0

PIP 2.0/0.0 1.7/0.0 1.1/0.0 1.5/0.0 1.4/0.0 0.9/0.0 1.3/0.0 1.7/0.0

PA 1.6/0.0 2.1/0.0 2.0/0.0 0.9/0.0 0.3/0.0 0.6/0.0 0.5/0.0 0.2/0.0

LPC 0.0/1.5 0.0/0.8 0.0/1.4 0.0/1.0 0.5/0.3 0.2/0.5 0.5/0.6 0.3/0.3

DAG 0.5/1.0 0.3/0.5 0.4/0.8 0.3/1.0 0.4/0.2 0.3/0.1 0.8/0.3 1.0/0.1

CE 0.3/0.4 0.6/1.1 0.6/0.9 0.6/0.7 0.2/0.7 0.6/0.3 0.7/0.5 0.7/0.7

FS 6.6/12.2 4.4/14.8 5.3/14.7 4.8/14.0 5.1/22.4 5.2/19.3 6.1/19.8 5.8/20.6

MU 24.6/26.7 25.4/29.5 24.4/27.1 25.4/26.6 13.2/15.5 12.9/15.9 14.1/16.6 15.2/17.2

PU 41.1/29.4 39.8/23.6 39.5/26.2 40.2/26.5 37.2/16.3 36.8/18.7 34.4/17.2 34.5/15.8

https://doi.org/10.7554/eLife.74773
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area per lipid (APL), membrane thickness, mean curvature, cosine of the dipole angle (cos θdip), charge, 
and lipid tail order parameter (Figure 3—figure supplement 1). We also determined the local density 
of individual groups of lipids, grouping the lipids either according to their head architecture or their 
tail saturation. These membrane features were extracted from 101 frames of a 10-ns long trajectory 

A

B

0 5 10 15
tpore (ns)

Figure 2. Location and kinetics of pore formation in each membrane upon depolarization and hyperpolarization. The pore locations are expressed 
relative to the dimensions of the simulation box at the poration time, to correct for the natural fluctuations in the membrane area during the simulation. 
All data points correspond to the first poration event. The colour of the circle codes for poration time according to the colour bar. (A) Average plasma 
membranes. (B) Brain plasma membranes.

https://doi.org/10.7554/eLife.74773
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before electric field application, from each leaflet separately and in points corresponding to locations 
where a pore has or has not formed in any of the electroporation simulations. The first and second 
group of points are labelled as ‘porated’ and ‘non-porated’ locations, respectively (Figure 3A, left). 
We estimated the distribution of the values of the various features in non-porated and porated loca-
tions by constructing histograms (Supplementary file 1) and quantified the difference between prob-
ability density estimates by means of the Kullback–Leibler divergence (Figure 3B). By far the most 
significant feature to distinguish the locations where pore formed from locations where they did not 
was the presence of PU lipids, in both the APM and BPM membranes. This finding is corroborated by 
visualizing the colocalization of pore clusters with nanodomains enriched with PU lipids (Figure 3A). 
However, the analysis further showed that both the lipid head and tail architecture influence pora-
tion, with pores being favoured in regions with higher density of phosphatidylcholine (PC) lipids and 
lower densities of cholesterol (CHOL), gangliosides (GM), and fully saturated (FS) lipids. In BPM, the 
pores are also favoured in regions with higher content of phosphatidylethanolamine (PE) lipids, where 
most PE lipids in BPM are polyunsaturated (Figure 1—figure supplement 1). In addition, the analysis 
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Figure 3. Membrane features that favour and disfavour poration. (A) (Left) Definition of porated and non-porated locations in one of the membranes; 
(middle) most pore locations colocalize with increased polyunsaturated lipids density; (right) the corresponding histogram of polyunsaturated lipids 
density values in porated and non-porated locations. (B) Distances (KL divergence) between probability density estimates of individual features in 
porated and non-porated locations. The higher the bar, the more the feature influences poration. Positive and negative bars show whether a feature 
favours or disfavours poration, respectively. APL, area per lipid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SM, sphingomyelin; GM, 
gangliosides; PS, phosphatidylserine; PI, phosphatidylinositol; PA, phosphatic acid; PIP, phosphatidylinositol phosphate; LPC, lysolipids; CE, ceramides; 
DAG, diglycerol; CHL, cholesterol; FS, fully saturated lipids; MU, monounsaturated lipids; PU, polyunsaturated lipids.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Membrane surface fitting with MemSurfer.

Figure supplement 2. Kullback–Leibler divergence.

https://doi.org/10.7554/eLife.74773
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showed that pores in all membranes are favoured in regions with greater area per lipid and lower 
lipid order. None of the analysed features appeared markedly dependent on the electric field polarity, 
even when we contrasted them with 10-ns-long trajectories obtained under non-porating electric field 
(Figure 3—figure supplement 2).

Knowing the lipid distribution is sufficient for machine learning models 
to reliably predict poration sites
The local poration propensity in both APM and BPM and under both electric field polarities is governed 
by similar features, for example, high density of PU lipids, as suggested by Kullback–Leibler divergence 
(Figure 3B). To corroborate this finding further, we trained three machine learning models, namely 
random forest, support vector machine (SVM), and multilayer perceptron neural network (Fleetwood 
et al., 2020), on selected subsets of data, that is, using features from APM or BPM and/or features 
obtained under hyperpolarization or depolarization. The accuracy of predicting poration in another/
different subset of data typically surpassed 80% in all three models tested, with random forest exhib-
iting slightly superior performance (Table 3). Similar accuracy was obtained regardless of whether we 
trained and tested the models on (1) datasets from different membrane pairs of the same composition 
and the same electric field polarity (rows 1–6 in Table 3); (2) membranes of the same composition but 
different electric field polarity (rows 7–8 in Table 3); or (3) membranes of different composition (rows 
9–11 in Table 3). Visual inspection of the prediction showed that locations corresponding to pore 
clusters are reliably predicted, whereas those that are scattered away from the clusters tend not to be 
predicted as accurately (Figure 4A).

Table 3. Prediction accuracy by machine learning models, reported for the training and test datasets; dep, depolarization; hyp, 
hyperpolarization.

# Training dataset Test dataset

Random forest all 
features SVM all features

Neural network all 
features

Random forest
four features

Train Test Train Test Train Test Train Test

Same membrane composition, same E-field polarity; train on dataset from two out of four membranes

1 APM-dep, mem 1 and 2 APM-dep, mem 3 and 4 100% 83% 97% 83% 97% 81% 100% 82%

2 APM-dep, mem 1 and 3 APM-dep, mem 2 and 4 100% 80% 96% 80% 94% 77% 100% 76%

3 APM-dep, mem 1 and 4 APM-dep, mem 2 and 3 100% 85% 96% 85% 91% 81% 100% 82%

4 BPM-dep, mem 1 and 2 BPM-dep, mem 3 and 4 100% 87% 97% 86% 94% 86% 100% 84%

5 BPM-dep, mem 1 and 3 BPM-dep, mem 2 and 4 100% 82% 97% 84% 97% 79% 100% 85%

6 BPM-dep, mem 1 and 4 BPM-dep, mem 2 and 3 100% 75% 97% 83% 96% 77% 100% 82%

Different membrane composition, same E-field polarity

7 APM-dep BPM-dep 100% 83% 94% 82% 93% 83% 100% 83%

8 APM-hyp BPM-hyp 100% 83% 94% 82% 95% 83% 100% 83%

Same membrane composition, different E-field polarity

9 APM-dep APM-hyp 100% 86% 95% 83% 94% 81% 100% 84%

10 BPM-dep BPM-hyp 100% 90% 95% 86% 95% 84% 100% 88%

11 APM and BPM-dep APM and BPM-hyp 100% 88% 94% 84% 93% 82% 100% 86%

Same membrane composition, same E-field polarity; train on 60% dataset from all four membranes

12 APM-dep (60%) APM-dep (40%) 100% 99% 94% 91% 91% 91% 100% 92%

13 APM-hyp (60%) APM-hyp (40%) 100% 99% 94% 90% 92% 92% 100% 91%

14 BPM-dep (60%) BPM-dep (40%) 100% 99% 95% 93% 94% 94% 100% 93%

15 BPM-hyp (60%) BPM-hyp (40%) 100% 99% 94% 91% 95% 94% 100% 93%

16 APM and BPM-dep (60%) APM and BPM-dep (40%) 100% 99% 94% 92% 92% 92% 100% 92%

17 APM and BPM-hyp (60%) APM and BPM-hyp (40%) 100% 99% 92% 92% 91% 91% 100% 92%

https://doi.org/10.7554/eLife.74773


 Research article﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Rems et al. eLife 2022;11:e74773. DOI: https://doi.org/10.7554/eLife.74773 � 9 of 26

The prediction accuracy became considerably improved when a single dataset was randomly 
split into 60% training/40% test dataset (rows 12–17 in Table  3). In such case, random forest 
reached the highest accuracy of 99%. The improvement in accuracy suggests that there is some-
thing unique about poration of each membrane, even when membranes have practically identical 
overall composition, which the machine learning models can capture. However, this high accuracy 
could be partially biased by oversampling, which was performed to balance the starting number 
of porated locations (~60) and the number of non-porated locations (300), see Machine learning 
methods. When randomly choosing 60% of a given dataset for training, the values of features from 
all (not just 60%) actual porated locations are effectively taken into account. Therefore, we made 
additional tests, where we trained random forest on the first 32 porated and 150 non-porated 
locations for each of the APM membrane under depolarization. The accuracy of the prediction for 
the rest of the porated and non-porated locations was 92%, 97%, 94%, 95% for membranes 1–4, 
respectively. The accuracy was lower than 99%, but still considerably higher than when training/
testing on pairs of different APM membranes (rows 1–3 in Table 3). Consequently, this exercise 
suggests that prediction accuracy might be improved by finetuning machine learning models on 
data from more different membranes or by adding additional features to the analysis in future 
studies.

From the datasets for both APM and BPM, we determined the feature importance score, which 
confirmed that the density of PU lipids is the most important for poration, followed by density of GM, 
CHOL, and FS lipids (Figure 4B). Furthermore, the feature importance score suggested that knowing 
the distribution of these lipid groups is sufficient to predict poration sites. The densities of other lipids 
and other membrane properties including the area per lipid, thickness, …, and lipid tail order can be 
practically neglected. We confirmed this by training random forest using four most important features, 
that is the density of PU, GM, CHOL, and FS lipids. The accuracy of the prediction was indeed very 
similar (≥76%) as when using all features (Table 3, last column).

A BPM #1 BPM #2 BPM #3 BPM #4

B Hyperpolarization Depolarization

Feature Importance Score Feature Importance Score

Fe
at

ur
es

Figure 4. Random forest output. (A) Comparison between the predicted poration sites (red dots) and real poration sites (yellow dots). Only locations 
that were classified as porated in >90% of the trajectory frames are shown. (B) Feature importance score for average plasma membrane (APM) and brain 
plasma membrane (BPM) obtained under hyperpolarization and depolarization. The feature importance score quantifies how much each feature is used 
in each tree of the random forest.

https://doi.org/10.7554/eLife.74773
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Electroporation kinetics depends on membrane composition and 
electric field polarity but can be described with a universal model
The analysis presented so far demonstrates that the pore location mainly depends on the local lipid 
arrangement, particularly the density of PU lipids, regardless of the type of membrane and electric 
field polarity. However, this does not necessarily mean that poration is equally likely or equally fast in 
all membranes. To investigate whether the membranes differ in poration kinetics we compared the 
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Figure 5. Kinetics of membrane poration. (A) Probability distribution of the first poration times, sampled from 60 simulations, and approximated with 
kernel density estimation. (B) The time course of λ0(t). (C) Credible intervals of exp(βi) for average plasma membrane (APM) and brain plasma membrane 
(BPM) under depolarization and hyperpolarization. (D, E) Correlation between βi and the steady-state relative change in membrane thickness Δd/d0 and 
projected area ΔA/A0 normalized by E2, extracted from least-square fits presented in Figure 5—figure supplements 5 and 6. Square symbols show the 
average over all four membranes, whereas the error bars show the range of values in four membranes. The ratio ΔA/A0 / E2 is inversely proportional to 
the area compressibility (or stretching) modulus (Needham and Hochmuth, 1989).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Posterior predictive checks of the Bayesian inference procedures.

Figure supplement 2. The time-dependent βi(t) model.

Figure supplement 3. Credible intervals of exp(βi) separately for each of the eight membranes considered and both electric field polarities.

Figure supplement 4. Upon exposure to electric field, the membranes thin and increase their area.

Figure supplement 5. Relative change in membrane thickness under non-porating electric fields.

Figure supplement 6. Relative change in the projected membrane area under non-porating electric fields.

https://doi.org/10.7554/eLife.74773
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distributions of first poration times for each membrane. These distributions were indeed found to 
depend both on membrane composition and electric field polarity (Figure 5A). APM membranes tend 
to porate faster than BPM, and hyperpolarizing fields tend to porate faster than depolarizing fields.

A Bayesian survival model was then trained (1) to quantify and study the statistical significance 
of the differences in poration rates, (2) to investigate if an underlying universal model can be used 
to describe the poration kinetics, and (3) to parametrize the kinetic parameters. Cox’s proportional 
hazards survival model (Cox, 1972) is a suitable model for this purpose, since it allows for an arbitrary 
time dependence of the poration rate, and it allows to then compare different systems or situations. 
This model assumes that for a given system, i, the instantaneous probability of an event happening, 
λi(t) (the rate pore formation), is a function of time:

	﻿‍ λi
(
t
)

= λ0
(
t
)

exp
(
βi
)
‍� (1)

where λ0(t) is a time-dependent and system-independent baseline rate of pore formation and βi 
are regression coefficients accounting for the difference in poration kinetics between systems (APM-
depolarization, APM-hyperpolarization, BPM-depolarization, BPM-hyperpolarization). The baseline 
rate captures the common time dependency whereas the regression coefficient captures the system 
specificity. The inferred model was able to successfully reproduce the measured data (Figure 5—
figure supplement 1) highlighting its robustness and suggesting the existence of a common kinetic 
model for electroporation. To further test the model validity, we trained a more complex model which 
allowed the βi coefficients to vary with time, allowing for a system-specific time variability of λi(t). The 
βi(t) obtained were found to slightly drop in the interval 0 < t < 3 ns until becoming practically time 
independent (Figure 5—figure supplement 2). Given that the βi(t) for all systems follow the same 
trend and that the time-dependent model only adds information in the initial stage of electroporation 
and has a high uncertainty, the time-independent model was selected for its easier interpretability and 
lower complexity.

The time-independent Bayesian survival model shows that the baseline poration rate λ0(t) is initially 
zero and then increases, reaching a constant steady-state value after approximately 3 ns (Figure 5B). 
To determine the mechanistic basis for the initial transient kinetic regime, we performed additional 
simulations at non-porating electric fields. These simulations revealed that the electric field E causes 
the membrane to thin and expand its area, whereby the relative change in membrane thickness and 
area are proportional to E2 (Figure 5—figure supplement 5 and Figure 5—figure supplement 6), 
as expected for Maxwell stress (Lewis, 2003). The membrane thickness and area reach a steady state 
~3 ns after electric field onset (Figure 5—figure supplement 4), suggesting that the time scale of 
the initial transient kinetic regime is related to the progressive thinning and area expansion caused by 
Maxwell stress.

The calculated βi credible intervals (Figure 5C, Figure 5—figure supplement 3) confirm that the 
differences in poration kinetics between different systems are statistically significant. APM membranes 
porate ~5 and ~2 times faster than BPM for hyperpolarizing and depolarizing fields, respectively. 
Hyperpolarizing fields porate membranes ~3 and ~2 times faster than depolarizing fields for APM and 
BPM membranes, respectively. We found that the values of βi correlate with the ability of a membrane 
to thin and expand its area under electric field, that is, they corelate inversely with the membrane area 
compressibility (or stretching) modulus (Figure 5D, E).

Discussion
In this study, we focused on lipid pores formed by electric field (electroporation) and we asked three 
main questions: Where do pores form in membranes with realistic plasma membrane lipid composi-
tion? Which membrane features/properties govern the most likely poration sites? Which membrane 
features/properties govern the poration kinetics?

Features important for membrane poration
Research conducted so far has mainly focused on studying formation of pores in model membrane 
systems with up to three different lipid types. In membranes containing a single type of fluid-phase 
lipids, poration was found to depend on both the head and tail architecture. Longer tail length, larger 
headgroups (e.g. heads containing sugar moieties), and stronger intramolecular interactions between 

https://doi.org/10.7554/eLife.74773
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both lipid tails and heads generally reduce the propensity for poration (Ziegler and Vernier, 2008; 
Piggot et al., 2011; Polak et al., 2013; Polak et al., 2014; Gurtovenko and Lyulina, 2014). Poration 
was further found to be more difficult in membranes with gel-phase lipids compared fluid-phase lipids 
(Knorr et al., 2010; Majhi et al., 2015; Liu et al., 2014). In binary mixtures of fluid- and gel-phase 
lipids, experiments suggested that pores form in the fluid domains (Perrier et al., 2018). Mixing a 
lipid with cholesterol was found to either decrease or increase the poration propensity, whereby this 
appears to depend on the cholesterol concentration and the architecture of the lipid (Portet and 
Dimova, 2010; Fernández et al., 2010; Mauroy et al., 2015; Casciola et al., 2014; Perrier et al., 
2017). Studies were also done on ternary mixtures containing cholesterol, where the lipids orga-
nize in the liquid-ordered and -disordered domains. Both molecular dynamics simulations and exper-
iments showed that pores preferentially form in liquid-disordered domains (Reigada, 2014; Sengel 
and Wallace, 2016). Overall, studies on simple model systems showed that there are many different 
factors influencing poration and it is quite impossible to predict which ones will be most important in 
a complex mixture such as the plasma membrane.

Our findings from membranes composed of >60 different lipid types mimicking the realistic 
composition of plasma membranes are fully in agreement with findings from simpler model systems. 
We observed that pores form preferentially in locations with lower lipid tail order, and that pores 
avoid regions enriched with gangliosides containing large sugar headgroups, regions enriched with 
cholesterol and fully saturated lipids. A new finding from our study is that, in plasma membranes, the 
most important factor governing poration propensity is the local density of polyunsaturated lipids, 
regardless of the membrane type (average or brain plasma membrane) and polarity of the electric 
field. Note that the majority of polyunsaturated lipids in both average and brain plasma membranes 
have either PC or PE headgroup (>75% of all polyunsaturated lipids; Figure 1—figure supplement 1), 
whereby PC and PE headgroups also contribute favourably to poration (Figure 3B).

Polyunsaturated lipids and lipid oxidation
The finding that poration is strongly facilitated in the presence of polyunsaturated lipids is very 
important from the standpoint of lipid oxidation. Polyunsaturated lipids are highly prone for oxida-
tion by free radicals, whereby upon oxidation a part of the lipid tail becomes hydrophilic making 
the membrane considerably more permeable to ions and hydrophilic molecules (Yin et al., 2011; 
Boonnoy et al., 2015; Rems et al., 2019). Several experimental studies have shown that electro-
poration is associated with oxidative lipid damage, and it is believed that lipid oxidation plays an 
important role in increased membrane permeability after electric field exposure (Maccarrone et al., 
1995; Breton and Mir, 2018). Our study suggests that most pores form in domains enriched with 
polyunsaturated lipids. If pores somehow act as precursors for lipid oxidation, such as by improving 
the access for free radicals to lipid tails, this could provide a clue on how electroporation is related to 
lipid oxidation.

Electroporation kinetics
Bayesian survival analysis demonstrated that all membranes are characterized by two distinct kinetic 
regimes. Initially, no poration occurs, but progressively as the membrane area expands due to 
Maxwell stress, poration becomes easier and the poration rate increases, plateauing at a maximum 
rate when the membrane has reached its steady-state area. The steady-state poration rate was found 
to be inversely correlated with membrane area compressibility modulus – a measure of how resistant 
the membrane is to compression or expansion (Figure 5E). Inverse correlation between electropo-
ration propensity and membrane area compressibility modulus has also been found experimentally 
(Needham and Hochmuth, 1989). The increase in membrane area is directly related to a decrease in 
membrane thickness (Figure 5—figure supplement 4). Membrane thinning is expected to facilitate 
pore formation, as water molecules need to travel shorter distance when bridging the membrane. 
Note that when comparing properties in porated and non-porated locations (Figure 3B) the variation 
in local membrane thickness was not large enough to discriminate porated locations. However, pore 
formation was indeed found to be favoured in regions with larger area per lipid.

In the steady-state kinetic regime, the poration rate becomes constant and the time distribution of 
the poration events becomes exponential. A constant poration rate and an exponential distribution of 
first poration times are characteristic of a Poisson behaviour of the number of pores formed per unit 
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time. Indeed, the most accepted kinetic models of electroporation assume a constant poration rate 
at a fixed value of the transmembrane voltage (or the electric field within the membrane) (Neu and 
Krassowska, 1999; Vasilkoski et al., 2006), which is consistent with our model in the steady-state 
regime. Observing the non-steady-state transient kinetic regimes is beyond the time resolution of 
most experiments. As such, our model has the advantage of characterizing the transient initial kinetic 
regime, which should be important when exposing cells to increasingly used pulses with duration in 
the (sub)nanosecond range (Pakhomov and Pakhomova, 2020; Neuber et al., 2019).

Electroporation rate on the whole-cell level is typically modelled as (Neu and Krassowska, 1999; 
Vasilkoski et al., 2006; Glaser et al., 1988):

	﻿‍
λ = A exp

(
− δ−B∆Ψ2

kT

)
‍� (2)

where ΔΨ is the transmembrane voltage, δ is the energy barrier for pore formation at ΔΨ = 0 V, B 
is a proportionality constant, k is the Boltzmann constant, and T is the temperature. A is a prefactor 
that is proportional to the number of possible pore nucleation sites and the frequency of lateral lipid 
fluctuations. Comparing the ratios of the pore formation rates of two systems i and j in Equations 
(1-2), assuming Ai ≈ Aj and a steady-state kinetic regime we obtain:

	﻿‍ βi − βj ≈ − δi−Bi∆Ψ2

kT + δj−Bj∆Ψ2

kT ‍� (3)

Therefore, the difference between βi of two systems is approximately equal to the negative differ-
ence of their steady-state poration-free energy barrier in kT units. This relates the βi regression coeffi-
cients to their physical interpretation. Assuming approximately equal prefactors Ai ≈ Aj is reasonable 
for our membranes because all membranes have the same total area. In addition, the sites with the 
highest poration propensity are comprised of similar lipids, so we can safely assume that those regions 
have similar lipid fluctuation frequency. Note that the pore formation barrier δ can be independently 
determined by free energy methods (Hu et al., 2015), whereas the parameter B can be inferred from 
simulating electroporation at different values of the transmembrane voltage; however, both these 
approaches are computationally more demanding. Bayesian survival analysis thus offers an alternative 
and simpler way to obtain parameters of Equation 2 for different systems.

Kinetic differences between the average and brain plasma membranes
The average plasma membranes (APMs) exhibit shorter poration times compared to the brain plasma 
membranes (BPMs). Bayesian survival analysis confirmed that the poration kinetics in APMs and BPMs 
is statistically different. Compared with BPMs, APMs contain a smaller fraction of cholesterol and 
fully saturated lipids and a greater fraction of polyunsaturated lipids, all favouring poration and likely 
increasing the poration rate. Note that the polyunsaturated lipids in BPMs have on average greater 
number of double bonds than in APMs (Ingólfsson et  al., 2017) however, this is not enough to 
balance the poration rate with APMs. In experimental studies, cells of different types, or even cells in 
different phases of the cell cycle, have been found to exhibit different electroporation thresholds (i.e., 
different electroporation propensities) (Cemazar et al., 2009; Towhidi et al., 2008; Golzio et al., 
2002). According to our results, this difference in thresholds is, at least in part, related to the fact 
that cells of different types can have considerable differences in their lipid composition, which further 
changes along the cell cycle (Zhang et al., 2017; Atilla-Gokcumen et al., 2014).

Kinetic differences between hyperpolarizing and depolarizing electric 
field
When a cell is exposed to an electric field, its membrane becomes hyperpolarized on the side facing 
the positive electrode (anode) and depolarized on the side facing the negative electrode (cathode). 
Experiments have shown that plasma membranes of different types of cells can become more perme-
abilized either on the anodic or cathodic side, whereby this asymmetry in permeabilization is still not 
completely understood (Mehrle et al., 1985; Kinosita et al., 1992; Tekle et al., 1994; Sözer et al., 
2017). Our results suggest that the asymmetric lipid composition present in all mammalian plasma 
membranes favours pore formation on the anodic side, which is hyperpolarized. We found that hyper-
polarization induces more profound membrane thinning compared to depolarization, consequently 
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increasing the poration rate. Greater membrane thinning could be associated with electrophoretic 
drag of negatively charged lipids, which are mainly present in the inner leaflet and are pulled towards 
the membrane interior by hyperpolarizing electric field. Moreover, in our previous study, in which we 
characterized pores that formed in voltage sensors of sodium voltage gated channels (Rems et al., 
2020), we also observed that such pores are more easily formed under hyperpolarization, albeit 
this was associated with asymmetric distribution of charged protein residues. Nevertheless, there 
are numerous types of membrane proteins in the plasma membrane, some of which might become 
denaturated more easily under depolarization. Whether the cell is permeabilized more on the anodic 
or cathodic side might therefore depend on the plasma membrane’s lipid–protein content and the 
preferential sites of pore formation. This exemplifies the need to identify preferential poration sites 
in membranes with complex organization, which we discuss further in Towards building accurate cell-
level models of electroporation.

Towards building accurate cell-level models of electroporation
The cell membrane is a complex organization of lipids and proteins, whereby insights from atom-
istic molecular dynamics simulations suggest that the electric field can form pores both in the lipid 
domains and within some membrane proteins. The limitation of molecular dynamics simulations is 
that they are only able to model a small part of the membrane, and that they are not able to take into 
account the dynamic changes in the transmembrane voltage, which are present when electroporating 
whole cells (Hibino et al., 1993; Frey et al., 2006). Namely, on the whole-cell level, the induced trans-
membrane voltage varies with position on the membrane and depends on the spatiotemporal profile 
of the membrane conductivity. As sufficient number of pores form in the membrane, they increase the 
membrane conductivity to the extent that starts decreasing the transmembrane voltage and prevents 
formation of additional pores. In other words, in molecular dynamics simulations it is possible to 
observe poration of practically any membrane; however, in a real cell membrane only the sites with 
the highest poration propensity can be porated.

To understand electroporation of living cells, we need to be able to develop equations describing 
the poration rate of different types of pores (pores in the lipid domain, different membrane proteins) 
and embed them into a system of ordinary and partial differential equations that describe electropo-
ration on the whole-cell level (DeBruin and Krassowska, 1999; Smith et al., 2014). Such models can 
then be used to study the increase in membrane conductivity, transmembrane molecular transport of 
different types of molecules, and changes in the membrane resting potential and/or action potentials 
induced by different parameters of electric pulses. Electroporation can be caried out with different 
pulse waveforms, where the duration of individual pulses can range from a few 100 picoseconds to 
tens of milliseconds. Exploring the pulse-parameter space in silico instead of through trial-and-error 
experimental approaches will facilitate optimization of electroporation-based applications in vitro and 
in vivo (Rems and Miklavčič, 2016).

We envision that by combining atomistic and coarse-grained molecular dynamics simulations, 
machine learning methods and Bayesian survival analysis we will be able to improve existing kinetic 
models describing electroporation on the whole-cell level. Coarse-grained simulations, together with 
more mesoscopic models and experiments, are in the future anticipated to enable modelling of whole 
plasma membranes providing their detailed molecular organization (Pezeshkian and Marrink, 2021). 
An exciting finding from our study is that knowing the lipid distribution is sufficient for identifying the 
most likely poration sites in lipid domains by using machine learning methods. As such, we anticipate 
that we will be able to use machine learning to estimate the membrane area, which is most amendable 
to poration, and hence estimate the prefactors in Equation 2. By performing electroporation simu-
lations on selected membrane regions and applying Bayesian survival analysis, we can characterize 
the poration kinetics and simplify the determination of the corresponding kinetic parameters. For 
example, by following these approaches using coarse-grained membranes associated with actin fila-
ments (Schroer et al., 2020) we can investigate and quantify how the presence of actin cytoskeleton 
influences poration kinetics, either by affecting the local distribution of lipids or by influencing the 
mechanical properties of the membrane or both. To enable finer decomposition of the relative impor-
tance of local vs. global membrane properties, future studies could combine local lipid neighborhood 
analysis with pore initiation rate analysis.

https://doi.org/10.7554/eLife.74773
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Coarse-grained simulations have their disadvantages. At present, coarse-grained simulations 
cannot be used to study poration of membrane proteins, as the protein secondary structure typically 
needs to be constrained for the protein to remain stable (Periole et al., 2009). Nevertheless, pora-
tion of membrane proteins and its corresponding kinetics can be inferred from atomistic molecular 
dynamics simulations (Rems et al., 2020). Furthermore, coarse-grained lipid bilayers are known to 
be more difficult to porate than corresponding atomistic bilayers, likely due to coarse-graining of 
multiple water molecules into a single particle (Hu et al., 2015). Despite being more difficult to porate, 
coarse-grained systems are able to represent the differences in the energy barriers for pore formation 
in bilayers composed of different lipid types as well as the influence of the membrane mechanical 
properties on poration (Hu et al., 2015). This confirms that we can use coarse-grained simulations 
to identify the lipid domains, which are the most likely to be porated. By backmapping (Wassenaar 
et al., 2014), these regions to atomistic representation, we should be able to obtain a more accurate 
estimation of the kinetic parameters of Equation 2. Nevertheless, we hope our study will motivate 
further exploration on the validity of coarse-grained membrane models for studying membrane elec-
troporation, both in comparison with corresponding atomistic computational membrane models and 
experimental model membrane systems.

Conclusions
Pores in the plasma membrane can be formed under diverse physicochemical conditions. They can 
be formed in various physiological processes by pore-forming proteins, and when the membrane is 
subject to external mechanical or electromagnetic forces (Gilbert et al., 2014; Sun et al., 2020). 
In this study, we investigated pores formed by electric field. Electroporation simulations of coarse-
grained membranes mimicking realistic lipid composition of plasma membranes showed that pores 
preferentially form in domains enriched with polyunsaturated lipids and that pores avoid domains 
enriched with gangliosides, cholesterol, and fully saturated lipids. The density of polyunsaturated 
lipids is the most important feature governing the preferential pore location, regardless of the overall 
membrane composition and electric field polarity, as corroborated by machine learning methods. 
However, the poration kinetics does depend significantly on membrane composition and electric field 
polarity, as demonstrated by Bayesian survival analysis. The poration rate is higher under hyperpolar-
izing compared to depolarizing electric field and correlates with the ability of a membrane to expand 
its area under electric field. We envision that by combining atomistic and coarse-grained molecular 
dynamics simulations, Bayesian survival analysis and machine learning models, we will be able to 
improve existing kinetic models describing electroporation on the whole-cell level. Although we have 
focused on pores induced by electric fields, the findings are likely to be applicable to other ways of 
membrane poration, as we found that the lipid organization is much more important for poration than 
the electrical features of the membrane (charge, dipole angle).

Materials and methods
Molecular dynamics simulations
System preparation
The starting point for our systems was the topology files for the coarse-grained membranes used in 
the study of Ingólfsson et al., 2017, available at https://bbs.llnl.gov/neuronal-membrane-data.html. 
The membranes are parametrized with the Martini 2.2 force field (Marrink et al., 2007; de Jong 
et al., 2013). We took the frames extracted after 80 μs of the simulation (the files ​confout-​80us.​gro). 
The original membranes were about 70 nm × 70 nm large. We cut four 30 nm × 30 nm pieces from 
the original membranes. After cutting, we removed an appropriate number of Na or Cl ions, such that 
the final system had zero net charge. The NaCl concentration was ~150 mM. We replaced the non-
polarizable water model with its polarizable version to have a more accurate system representation for 
electroporation studies (Yesylevskyy et al., 2010). We also added more water to each system, such 
that the simulation box in z direction was ~19 nm after equilibration. This procedure was done using 
functions from VMD (Visual Molecular Dynamics) (Humphrey et al., 1996), Gromacs (Abraham et al., 
2015), and custom scripts. In the end we had eight membrane systems, four with lipid composition 
corresponding to the APM and four corresponding to the BPM composition.

https://doi.org/10.7554/eLife.74773
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Equilibration and production runs
After preparing the new systems and topology files, we made two steps of system minimization and 
four steps of system equilibration following the equilibration protocol for Martini membranes from ​
charmm-gui.org (Qi et  al., 2015). We then ran a short 500 ns simulation using the reaction-field 
electrostatics followed by 50 ns equilibration using Particle Mesh Ewald (PME) electrostatics (Darden 
et  al., 1993). Some of the PC lipid’s heads were constrained in their z position to reduce bilayer 
undulations, as done in the original publication (Ingólfsson et al., 2017). Other MD parameters were 
equal to the default parameters for simulations with Martini membranes from charmm-gui.org in April 
2020: leap-frog integration of the equations of motion using 20 fs time step; plain cutoff of van der 
Waals and Coulomb interactions at distance 1.1 nm; relative dielectric constant ɛr = 2.5; temperature 
coupling using velocity rescaling with a stochastic term (Bussi et al., 2007) with time constant 1 ps and 
temperature of 310 K; semi-isotropic pressure coupling using Parrinello–Rahman barostat (Parrinello 
and Rahman, 1981) with time constant 12 ps and reference pressure of 1 bar, with the compressibility 
of the system set to 3e−4 bar–1. The pressure coupling allows the size of the simulation box to adjusts 
to the changes in the membrane area. The trajectory was saved every 0.1 ns. All simulations were 
carried out with Gromacs 2019.4 (Abraham et al., 2015).

Electroporation simulations
After equilibration, and for each of the eight membranes, we ran multiple replicas of electroporation 
simulations where the membranes were exposed to an electric field of +127.7 mV/nm (60 replicas) or 
−127.7 mV/nm (60 replicas). No positional restraints were imposed in these simulations. The electric 
field was chosen such that we observed the formation of at least one pore within ~15 ns. Having a 
short poration time was important, because we aimed to map the local membrane features before 
poration to the likelihood of a poration event, which means that we needed to avoid considerable 
lateral lipid diffusion. The value of the electric field E imposed in simulations, and reported above, 
cannot be directly compared to that reported in experiments. The reason for this is the manner in 
which E is implemented in molecular dynamics. Namely, each particle carrying a charge qi is assigned 
an additional force F = qiE. As such, E corresponds to the electric field strength that would exist in 
vacuum. However, in our molecular dynamics systems there are many electric dipoles, including water 
molecules and headgroups of zwitterionic lipids, which respond to E by changing their average orien-
tation, that is, they polarize. The ability of a material to polarize under electric field is characterized by 
relative dielectric permittivity, which corresponds to the factor by which the electric dipoles within the 
material reduce the electric field that would exist in vacuum. Since the relative dielectric permittivity 
of water is around 80 (both experimentally and for the polarizable MARTINI water model Yesylevskyy 
et al., 2010), the macroscopic electric field that establishes in the aqueous compartment of our molec-
ular dynamics systems is about two orders of magnitude lower compared to the imposed electric field 
E (Vernier et al., 2013), that is, on the order of 1 mV/nm = 10 kV/cm. This macroscopic electric field 
strength is typically reported in experiments after being determined, for example, as the voltage-
to-distance ratio, if placing the sample between a pair of parallel-plate electrodes. The macroscopic 
electric field strengths in our simulations are well within the range of those used in experiments, when 
exposing cells to submicrosecond pulses (order of 1–100 kV/cm). Furthermore, the probability of pore 
formation depends exponentially on the magnitude of the applied electric field (Equation 2; Böck-
mann et al., 2008). The electric field strength required for detectable electroporation thus reduces 
with increasing the duration of the applied electric pulse, and consequently macroscopic electric field 
strengths of the order of 0.1–1 kV/cm are typically sufficient for electroporation when exposing cells 
to conventional microsecond and millisecond electric pulses. While the conditions in our study strictly 
correspond to nanoseconds-long exposures to electric field, we expect similar behaviour also for 
longer electric pulses. Nevertheless, on a longer time scale, electrodeformation of the cell membrane 
and/or increases in local membrane curvature caused by electric field might play additional roles in 
the pore formation process (Perrier et al., 2017; Riske and Dimova, 2005).

Additional simulations under non-porating electric field
For each membrane, we also ran five 10-ns-long simulations under lower electric field strengths of 0, 
±42.5, ±63.8, ±85.1, and ±106.3 mV/nm. No positional restraints were imposed in these simulations. 
The initial coordinates (initial gro file) were the same as for electroporation simulations. With the 
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exception of a few simulations at ±106.3 mV/nm, these electric field strengths were too low to induce 
poration within 10 ns.

Pore localization
To determine the poration time and pore location in the electroporation trajectories we used a custom 
semi-automatic procedure with Python and MDAnalysis (https://www.mdanalysis.org/; Michaud-
Agrawal et al., 2011). The procedure consisted of three main steps, as described below. For analysis, 
we generally considered only the first poration event. Additional pores could form after the first one 
and all pores eventually expanded until destroying the membrane, as is usual for simulations under 
constant electric field (Fernández et al., 2012; Delemotte and Tarek, 2012). We focused on the 
first poration event, as the local electric field changes after poration, changing the transmembrane 
voltage. In up to ~20% simulations, two or more pores formed practically simultaneously. In such a 
case, we considered all of these pores for analysis.

Step 1 – coarse search
Start from frame 12 (since no pore formed before time 1.2 ns), search every six frames (i.e. 12, 18, 
24, …). In each frame, divide the membrane into 100 small pieces. In each small piece, look for water 
molecules around the centre of the lipid bilayer. If there are more than 12 water molecules, stop and 
write down the frame (t) and the region (i,j), otherwise, continue the loop. This step is used to speed 
up and improve the accuracy of the algorithm. The condition of 12 water molecules ensured that only 
fully formed pores were considered for the second step.

Step 2 – precise Search
Start from frame t − 5, search every frame until t (i.e. t − 5, t − 4, t − 3, …). In each frame look for water 
molecules within the centre of the lipid bilayer in the regions (i − 2, j − 2), (i − 2, j − 1), …, (i + 2, j + 1), 
(i + 2, j + 2). If there are more than four (APM) or six (BPM) water molecules, check the following two 
frames. If there are water molecules also in the following two frames, return the poration time and the 
centre of mass of these water molecules as the pore location. Otherwise, continue the loop.

Step 3 – manual check and correction
The procedure failed for BPM, when the pore formed later than ~7 ns after the onset of the electric 
field, mainly because of the increase in BPM curvature with time. In this case, the poration time and 
location were determined by visualization of the trajectory in VMD.

All poration times and pore locations were manually verified by extracting the porated frames from 
all trajectories and translating the systems in (x,y) such that the pore location moved to a predefined 
position. These extracted frames were then visualized in VMD.

Analysis of membrane properties
To determine local membrane properties we used the MemSurfer tool (Bhatia et al., 2019), avail-
able at https://github.com/LLNL/MemSurfer, (Lawrence Livermore National Laboratory, 2022; copy 
archived at swh:1:rev:51c7c0534f7b73e74e7233e44c08a7fb269a0188) MemSurfer is a 3D membrane 
surface fitting tool, which fits a surface to the inner and outer membrane leaflet and uses Delaunay 
triangulations and surface parameterizations to compute membrane properties of interest (Figure 3—
figure supplement 1). Each vertex is mapped to the position of a lipid headgroup. The triangulated 
surface is then further smoothed (Figure 3—figure supplement 1D).

MemSurfer can be used to measure local membrane thickness, area per lipid, and mean curvature, 
among others. We added functions that analyse the dipole angle of zwitterionic lipids, the lipid tail 
order, and the headgroup charge. The dipole angle for each zwitterionic lipid was computed as the 
angle between the local membrane normal (determined by MemSurfer) and the vector connecting 
two beads corresponding to the phosphate group and the choline or amine group (PO4 and NC3 or 
NH3). To determine lipid tail order, we first computed the angles between the local membrane normal 
and the vectors connecting all adjacent beads in the lipid tails. Then we computed the average of the 
cosine of all angles and determined the average order parameter as
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	﻿‍
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2

(
3 ⟨cos θi⟩2 − 1

)
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where the average goes over all bond angles in both lipid tails. This definition of the lipid order 
turned out to be more sensitive for separating values in porated and non-porated regions, compared 

to the more common definition 
‍
P2 = 1

2

(
3
⟨

cos2 θi

⟩
− 1

)
‍
 (Ingólfsson et al., 2017). We also extracted 

the type of lipid at a given vertex and the charge of this lipid. The scripts for running MemSurfer 
in this study, as well as the following analysis carried out in Matlab R2021a and described below, 
are available at https://github.com/learems/Electroporation-CGmem-MemSurfer, (copy archived at 
swh:1:rev:3e7d2d393b8ec98e04aa1e8915b55ee024840b97; Rems, 2021a).

MemSurfer returns the values of the above-listed properties/features at vertices, which correspond 
to individual lipids’ headgroups. For a given trajectory frame, the values of most of the properties of 
interest like area per lipid, lipid order parameter, charge, … can exhibit large variations among the 
adjacent vertices. Therefore, to extract the values at a selected (xp,yp) position, we used a Gaussian 
smoothing kernel, which determined a weighted average of the values Vi at all vertices within a radius 
3rsmooth from the (xp,yp) position

	﻿‍
Vsmooth

(
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)
=

∑
i Viwi∑

i wi ‍� (5)

where the weights for a given adjacent vertex i are

	﻿‍
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− 1
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r2
smooth
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2

(
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)2

r2
smooth

)

‍�
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When determining the presence/density of lipid groups (PC, PE, SM, etc.), we assigned a value of 
0 or 1 if a given lipid group was located at a given vertex. Gaussian smoothing was carried out in the 
same way as for other features. The same smoothing procedure was also done for plotting the surface 
plots in Figure 5. We chose rsmooth = 1.5 nm, because this resulted in the best separation of the feature 
values in non-porated and porated regions.

The porated locations were defined as the locations at which a pore formed in any of the 60 elec-
troporation simulations. For non-porated locations, we first divided the membrane into a grid with 31 
by 31 points. We excluded all points which were within ~2 nm (6.7% of the box size) of any porated 
location. We also randomly excluded excess points such that the final number of non-porated loca-
tions was 300 (Figure 3A).

The distances between histograms of feature values in porated and non-porated locations 
(Figure 3B) were quantified by symmetrized version of the Kullback–Leibler divergence (Fleetwood 
et al., 2020) after performing a kernel smoothing probability density estimate:

	﻿‍
distance = ±1
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ˆ x2

x1
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p
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x
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log
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x
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(
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+ q
(
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dx
‍�

(7)

where p(x) and q(x) are the distributions of the data in porated and non-porated locations, respec-
tively. The limits x1 and x2 were defined as the lowest and highest value of x, where either of the 
distributions fell under 1% of their peak value. In Figure 3B, the distances correspond to probability 
density estimates, which were obtained after averaging the value of a given feature and at a given 
point over both membrane leaflets. Distances computed for each leaflet separately are shown in 
Figure 3—figure supplement 2.

Machine learning methods
The values of all the features extracted in non-porated and porated locations from 101 frames of a 
10-ns-long trajectory before electroporation were used to train three machine learning models with 
Python and scikit-learn library (Pedregosa et al., 2011): random forest, support vector machine and 
multilayer perceptron neural network. The input data contained the (x,y) locations on the membrane 
and the extracted membrane properties at those locations (i.e., features, denoted as X). The input 
data were separated into two classes with label Y = 1 for porated locations and Y = 0 for non-porated 
locations. As the number of non-porated locations (300) and porated locations (~60) was imbalanced, 
we used SMOTE in Python to randomly oversample the data in porated locations and balance them 
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with the data in non-porated locations. After oversampling the data, we trained the above-listed 
machine learning models and used them to predict the pore locations. The accuracy of the prediction 
was evaluated as:

	﻿‍ accuracy = no. correctly predicted points
(

porated and nonporated
)

in all frames
no. all points × no. all frames ‍� (8)

The feature importance score was determined using the attribute feature_importances_ of the 
scikit-learn random forest model. The codes used for this analysis are available at https://github.com/​
learems/Electroporation-CGmem-MachineLearning, (copy archived at swh:1:rev:1e32cf42c04af4543f-
b101ece2c92f35d793d62e; Rems, 2021b).

Bayesian survival analysis
To model the poration rates, we used Bayesian survival analysis. Given the non-exponential shape of 
the first poration times and the heterogeneity of poration rates between systems, it was crucial to use 
a model that allowed for an arbitrary time dependence of the rate and that was able to account for 
the system dependence. Cox’s proportional hazards model has these features and defines the event 
rate as

	﻿‍ λ
(
t
)

= λ0
(
t
)

exp
(∑

i βixi
)
‍� (9)

λ0(t) is constructed as a piecewise constant function defined in time intervals with endpoints: 0 ≤ 
s0≤…≤ sN such that λ0(t) = λj for sj ≤ t < sj+1. xi are binary categorical variables such that if the poration 
time describes a system k, then xii=k = 1 and xi≠kk0, that is, one-hot-encoding representations of the 
system category. A good signal-to-noise ratio was found with 1.5 ns time intervals. λj were given inde-
pendent priors in the form of gamma distributions with a shape parameter of 50 and a scale param-
eter of 10 ns–1. βi were given normally distributed priors centred at the origin and with a standard 
deviation of 100. Both priors are fairly uninformative.

The Bayesian inference of the model parameters {λi, βi } was done using as input features the first 
poration times and the system category (APM-dep, APM-hyp, BPM-dep, BPM-hyp) encoded in xi. 
In this way, the model was inferred on the electroporation events of all systems and a posteriori the 
model for a particular system i, λ0(t) exp(βj) was computed. Posterior predictive checks validated the 
quality of our models: the model can generate data that reproduce accurately the observed data 
(Figure 5—figure supplement 1).

To test the universality of λ0(t) and check the time independence of βi, we inferred another model 
allowing βi to be time dependent:

	﻿‍ λ
(
t
)

= λ0
(
t
)

exp
(∑

i βi
(
t
)

xi
)
‍� (10)

In this alternative model, βi(t) is also a piecewise constant function analogously to λ0(t). The heights 
of the steps of βi,j for sj ≤ t < sj+1 were given gaussian random walk priors: βi,j is given a gaussian prior 
with standard deviation of 1 but centred on their previous βi,j−1.

Since we are using Bayesian statistics, the parameters of the model {λj, βi} are treated as random 
variables whose distributions are inferred as a result. We can calculate their 94% credible intervals, 
that is, the interval containing 94% of the probability density of the variable. Therefore, uncertainties 
are presented as the median of the variable ± the distance to the credible interval limits.

The models were inferred using PYMC3 (Salvatier et al., 2016) and follow a similar methodology 
to one of the library’s case studies (available here). The full details of the implementation are avail-
able at https://github.com/sperezconesa/electroporation_modeling, (copy archived at swh:1:rev:1c-
c26d28bd76b5c254b4cbbf85703b2394aff775; Pérez-Conesa, 2022).
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