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Abstract

Pulsed field ablation (PFA), recently introduced as a non-thermal and selective method for cardiac ablation, was associated with great promise,
hope and expectation, but also raised some concerns and left some questions unanswered, in particular with respect to waveform. To better
understand the challenges associated with the design and development of safe and efficient PFA systems, the underlying mechanism of
electroporation at the membrane, cellular and tissue levels is described. The three interdependent components of each system, that is, the
waveform, the catheter and the generator, are then addressed. The effect of the different waveform parameters on treatment outcomes is
reviewed, and the consequences of a potential mismatch of the three components in the development of a safe and efficient PFA system are

highlighted.
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Pulsed field ablation (PFA), recently introduced as a non-thermal and
selective method for cardiac ablation, is associated with great promise,
hope and expectation, but also raises some concerns.!* Unfortunately,
from a scientific and engineering perspective, PFA is associated with a
poorly defined design and parameter space due to the nature of the
treatment, which includes load variability and requires multi-parameter
optimisation with several potentially conflicting constraints. The device,
that is, the waveform, the catheter and the pulse generator, forms the
trinity of PFA. They must be developed together and function as a whole
that is greater than the sum of its parts. An ever-increasing number of
newly developed pulse generators and catheters with different waveforms
raises important questions. Are they comparable and does a certain
combination have specific side effects? Are these specific or the same for
all systems? Do we need to ask the same questions and conduct the same
studies for each new PFA system?

To better understand the challenges of developing a PFA system, we will
first describe the phenomenon of electroporation that underlies PFA at
the membrane, cellular and tissue levels. We will then look at the
waveform, the catheter and the pulse generator, which must be
considered and developed as a unit to be fully functional. Even small
changes in one of the three components can cause the whole system to
fail or at least operate suboptimally. Only by understanding these aspects
can we fully assess the challenges and recognise how narrow the path to
success can be.

Basic Description and Understanding

of Electroporation

Cell Membrane: Increased Conductivity

and Cell Depolarisation

The cell membrane separates the inside of the cells from the outside. It
has a very selective permeability for ions and molecules, which enables
the cell to survive even in a sometimes somewhat unstable environment.
In excitable cells, ion channels and pumps ensure that the cells can
generate and transmit action potential. The cell membrane can be
regarded as a capacitor from an electrical point of view and thus
represents a barrier for electrical current (at low frequencies). During and
after electroporation, the conductivity of the cell membrane is greatly
increased and the membrane remains permeable to ions and other
molecules for up to several minutes after treatment.*® Even though this
persistent increase in permeability for ions (e.g. Na, Cl, Ca, K, etc) is
smaller than during the pulse delivery itself, it is sufficient to cause and
maintain cell depolarisation, which can be transient (triggering action
potential) or can result in sustained depolarisation.®® Increased transient
membrane permeability results in the stunning of excitable cells (rendering
them unexcitable or causing conduction block).? This depolarisation can
result in immediate disappearance of local electrograms and transient
phrenic nerve paresis.* Given that the membrane damage caused by
electroporation is followed by membrane repair, this can lead to cells
regaining the ability to react to an electrical stimulus within a few minutes,
depolarising and conducting an action potential™® For a given pulse

Published by Radcliffe Group Ltd.
www.AERjournal.com


https://orcid.org/0000-0001-6219-7046
https://orcid.org/0000-0001-6361-6628
https://orcid.org/0000-0003-3506-9449
mailto: damijan.miklavcic@fe.uni-lj.si
https://creativecommons.org/licenses/by-nc/4.0/legalcode

Complexity and Perplexity of Pulsed Field Ablation

Figure 1: Pulsed Field Ablation at Different Scales
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A: Organ level. The catheter is positioned in the blood pool in contact with the myocardium. B: Tissue level. The electric field is strongest around the ablation catheter. The magnitude rapidly drops with
increasing distance from the surface, as indicated by the contours. Electric current (indicated by black lines) flows from the catheter to the surface electrodes. C: Cellular level. An electric field is present
in the tissue, consequently also in the capillaries and small blood vessels. Sufficient field strength causes electroporation of the membrane of the cardiomyocytes, but also of the other cells present in
the tissue, such as vascular endothelial cells and red blood cells. Through membrane electroporation, additional conductive pathways are created, enabling the current to pass through the cytoplasm.

Created in BioRender. Kos, B (2025) https://BioRender.com/7sa2cxl.

duration and number of pulses, the most important parameter that
determines the level and intensity of electroporation is the amplitude of
the electric field to which the cell is exposed.

Electroporation at the Cellular Level: Reversibility
As a consequence of cell membrane electroporation and increased
membrane permeability, there are several downstream effects, including
changes in gene regulation and protein expression.® Historically,
electroporation was separated into reversible and irreversible, with the
only clear determination between the two represented by whether the
cells survive the treatment or later die via one of the cell death pathways.®
Reversible electroporation is typically associated with applications such
as drug and gene delivery, in which transient permeabilisation of the cell
membrane enables therapeutic agents to enter the cell before the
membrane permeability returns to normal physiological conditions and
the cell therefore recovers”-? Irreversible electroporation, in contrast,
leads to changes in the membrane or sustained disruption, which leads to
cell death via diverse cell death pathways.”~%

Membrane resealing alone, however, does not guarantee cell survival.
Cell death is a dynamic process, and different pathways of cell death
can occur in the same lesion at different times, locations and distances
from the catheter.?*® The electric field closest to the catheter and
electrodes is the highest and then drops rapidly with distance from the
catheter.®® It is therefore plausible to speculate that necrotic or
pyroptotic cell death predominates in the lesion core (where the field is
strongest), while apoptotic mechanisms may be more prevalent at the
lesion periphery.

Tissue Level: Electric Field Distribution

and Cell-Cell Interactions

To achieve therapeutic electroporation in tissue, an electric field has to be
established in the tissue, which is usually achieved by bringing electrodes in
contact with the tissue. In cardiac electrophysiology, this is most commonly
achieved in a minimally invasive way using a catheter approach (Figures 1A
and 1B). The cells of the tissue are organised and embedded in the
extracellular matrix. Several different cells coexist in the same volume of

tissue, nerves pass through, and vessels bring oxygen (and nutrient-rich
blood) to every cell in the body. Electroporation occurs at the membrane cell
level, as described above, and all cells can be electroporated, including (but
not limited to) cardiomyocytes, fibroblasts, neurons, endothelial cells and
erythrocytes (Figure 1C). In addition to the effects on individual cells
described in the previous sections, cell-cell interactions are at least
transiently disrupted, leading to leaky vessels, which results in oedema
formation.”” All of these effects occur simultaneously due to high-voltage
pulse delivery, but they have different dynamics of resealing and recovery.

The membrane conductivity increase due to electroporation also leads to
an increase in tissue admittance (i.e. a decrease in tissue impedance). This
means that the electrical load is changing during the delivery of pulses in a
non-linear fashion.”®?® Based on previous in vivo studies on gene transfer
and drug delivery, it is well established that pulsed electric fields transiently
reduce tissue perfusion and increase vascular permeability, including
temporary disruption of the blood—brain barrier.**=*2 These changes lead to
a reduction of tissue cooling due to diminished or absent capillary blood
flow, and promote oedema formation. The resulting oedema further
decreases tissue impedance following pulse delivery and contributes to the
early stages of wound healing and tissue repair.®** Additionally, reduced
perfusion and elevated interstitial fluid pressure caused by oedema may
impair the contractile function of cardiomyocytes.

While PFA was initially described as more selective for cardiac tissue based
on in vitro data, this is not mirrored by in vivo studies and their findings of a
lethal electric field.*¥ An interesting observation is that PFA can ablate
through scarred tissue.® Scarred tissue, which is mostly acellular, has a
significantly higher conductivity than healthy myocardium.®* Scarred
tissue seems to present a lower barrier for the electric field, however, with
the increase of conductivity due to electroporation, the electroporated
myocardium becomes similarly conductive as the scarred tissue, which
results in the ability of PFA to ablate through the scar.?®

It is important to note that electroporation is a physical mechanism of cell
membrane disruption that can affect all cell types. For PFA, the most
relevant cells are of course cardiomyocytes, but other cells such as
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Figure 2: The Pulsed Field Ablation Trinity
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For a successful system the three system components (i.e. the catheter, waveform and generator)
have to work together to achieve reliable success. However, design choices for each of the
components affect the requirements and functioning of the other two. EAM = electro-anatomical
mapping, EMI = electromagnetic interference.

erythrocytes, neurons, cardiac fibroblasts and cells of the cardiac
conduction system can also be electroporated. All of the electroporation
effects on the cells described above can also be observed in these cells,
leading, for example, to haemolysis, spasm of the cardiac arteries, phrenic
nerve paresis, and disruption of the cardiac conduction system.“-%° It is
not yet clear to what extent these effects are reversible, and what affects
the extent of injury and rate of recovery of their normal function.

While the electric field decreases rapidly with distance from the catheter
surface, it is important to consider that the electric field at a given point in
the tissue (Figure 1B) depends on the geometry of the catheter, the tissue
and its electrical properties, and the configuration of the return electrode. If
all of these factors are kept constant, the electric field depends on the
voltage.

The Trinity of PFA: Waveform, Catheter

and the Pulse Generator

Pulsed field ablation depends on the successful delivery of a sufficiently
strong electric field in the target tissue. As shown in Figure 2, the
waveform, catheter and pulse generator must function together as a
whole, greater than the sum of its parts. The waveform must effectively
irreversibly electroporate the targeted cells (i.e. cardiomyocytes) of the
arrhythmogenic substrate and avoid, as much as possible, heating and
bubble formation, minimise neuromuscular capture (pain and muscle
contraction) and reduce or minimise stunning and/or reversible
electroporation.”” For atria and specifically for pulmonary vein isolation
(PVI), 2-5-mm-deep lesions are sufficient to create transmural lesions and
effectively isolate the pulmonary veins. However, for targeting ventricular
substrate, this is not sufficient because greater depth is required. In the
following sections we take a look at the three components of the trinity.

The Waveform

Early electroporation research was performed using monophasic 100 ps
pulses.? Nanosecond pulses and sub-microsecond pulses were then
intensively researched, because they looked promising for causing
interesting biological effects.”® Later, Arena et al. suggested using
biphasic short pulses with the intention of reducing the contrast in tissue
conductivity and neuromuscular stimulation.* Several first-in-human
studies of PFA were performed using monophasic pulses, but those
quickly switched to biphasic pulses.®® A biphasic waveform has many
parameters, all of which have the possibility of affecting the treatment
outcomes.*®~% Figure 34 shows a compact and complete set of waveform
parameters. A single treatment waveform can be composed of several
trains. Each individual train can be composed of a single or several bursts

of pulses. A single burst can contain one or several biphasic pulses. The
total duration of a treatment then depends on the number of trains, the
duration of each train and the delay between trains.

Figure 3B shows how the different parameters of the pulses affect
treatment. An increase in pulse amplitude greatly increases irreversible
electroporation and heating, and causes a small increase in all other
outputs 0242535980 |ncreasing pulse width causes a large increase in
electrochemical  reactions, pain, neuromuscular capture and
arrhythmogenicity.** Increasing the number of pulses causes a large
increase in electrochemical reactions, by increasing the total amount of
charge delivered, and a small increase in all other parameters.

The shape of the pulses has a very important effect: we know that longer
monophasic pulses are more efficient in electroporating cells and that
monophasic pulses delivered at a relatively low repetition rate should be
the preferred choice.®” However, monophasic pulses cause
electrochemical reactions and severe neuromuscular capture and
pain.?2%564%  Biphasic pulses dramatically reduce electrochemical
reactions, but also decrease all other parameters except heating, which is
unaffected by pulse shape, and depends only on the total energy and rate
of pulse delivery.*$2-%4" |ncreasing interpulse delay reduces heating
slightly, but also greatly increases pain, neuromuscular capture and
arrhythmogenicity.®2%3" Intertrain delay has an effect on the heating: a
long pause between pulse trains enables cooldown of the tissue by blood
(and to a smaller extent by catheter irrigation).®®

The Catheter

The catheter must be manoeuvrable, should be introduced through a
small-diameter sheath, able to conduct a high-voltage electric signal
from the generator to electrodes, and sustain the high voltage in the
limited space of the connecting cables and catheter. The catheter
design can be unipolar, meaning that the pulses are delivered between
the active electrodes on the catheter and a grounding electrode on the
surface of the patient; or bipolar, indicating that the pulses are delivered
between electrodes on the same catheter. The electrodes on the
catheter have to provide an effective distribution of electric field in the
tissue, and minimise local heating and stray fields that are generated in
the blood pool (risk of haemolysis) and also in tissue distant from the
target area causing nerve and muscle stimulation (neuromuscular
capture). In this respect unipolar PFA delivery should reduce haemolysis
but also increase neuromuscular capture compared to bipolar delivery.
Regardless of the specific catheter design, the constrained shaft
(internal space) can cause the delivered waveform to the tissue to
deviate from the waveform at the output of the generator resulting in
reduced voltage and altered pulse shape (Figure 4A-C).

Most commercial radiofrequency (RF) or PFA cardiac catheters have
catheter cabling that acts as a low-pass filter with a frequency cut-off
around 2 MHz. As a result, pulse rise and fall times are prolonged by
approximately 200 ns. Consequently, square wave pulses longer than
1 us undergo minimal distortion, while a biphasic pulse requires at least a
200 nsinterphase delay (i.e. the pause between the positive and negative
phases) to maintain charge balance. However, in such a system, a 200 ns
pulse loses 50% of its power and takes on a triangular shape (Figure 4C).
Therefore, to enable efficient nanosecond pulse delivery, catheter cabling
and active delivery electrodes must be optimised accordingly.

In contrast to RF ablation, PFA does not depend on conductive diffusion
transfer to achieve ablative effect in tissue. In fact, blood is a tissue with
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Figure 3: Definition of Waveform Parameters and Their Effects
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A: Schematic diagram of all waveform parameters and total duration of treatment. B: Effects of different waveform parameters on important efficacy and safety endpoints. IPhD = interphase delay;

IPD = interpulse delay; NW = negative pulse width; PW = positive pulse width.

some of the highest conductivity in the human body.%*”® This means that
electric fields will spread through blood in a generally similar way as through
the myocardium. During the pulse delivery itself conductivity of tissue
increases. Given the conductivity increase factor for cardiac tissue reported
in the literature, the conductivity of myocardial tissue affected by
electroporation becomes similar to that of blood.” Consequently, when the
catheter is not in direct contact with the myocardium, the depth of the
resulting lesion is reduced. This reduction in lesion depth is usually at least
equal to the distance between the catheter and the myocardium.” It is
important to note that in PFA — in contrast to RF ablation — achieving good
contact is more important than contact force for ensuring optimal lesion
size > 78

The Pulse Generator

Like most new medical devices, the main design of the current PFA
systems was locked for several years before they were approved for the
market. Figure 4D shows a typical design cycle of a medical device.”® This
cycle is very long, given that many steps are required to develop such a
treatment. At each step of the process, detailed evaluation is performed
and some parameters of the system are locked. First, new hardware must
be developed, which must then be tested for electrical safety and
electromagnetic compatibility. Then the preclinical tests are carried out,
followed by clinical trials. During this period it is difficult to change the
hardware because it has already passed previous tests, therefore the
outcome is often already known at the beginning of the cycle. However,
there was a lack of sound knowledge about this treatment when the first
decisions were made. Therefore, many of the existing PFA systems were
modified at very late stages (Figure 4D).%%%® However, during this
development cycle, many new insights have been gained in preclinical

and clinical trials and in the widespread adoption of the technology. This
can constitute a basis for a new design cycle. Unfortunately, many of
these findings cannot be used collectively to improve PFA because the
waveforms of PFA systems are not publicly disclosed and shared between
systems. Hence, our knowledge is only partially assembled and far from
complete.

After a decade of studies, we now know that shorter pulses attenuate
unwanted muscle contractions and nerve stimulation, but this also
reduces the efficiency of the treatment, which can be compensated for by
applying higher voltages.”**"%280 A compromise between side effects
and efficiency is therefore being sought, which has led to the development
of generators with high voltage and short pulses. However, the higher the
voltage and the shorter the pulses, the more difficult it becomes to
develop such pulse generators and, above all, to ensure that the device is
safe for the patient and the operator and does not interact with other
devices in crowded electrophysiology laboratories.

The development of silicon carbide switches has now made it possible to
develop high voltages faster, and in shorter pulses, which attenuates
muscle contractions and nerve stimulation.®' However, faster pulse rise
times also increase peak leakage currents, peak electromagnetic
interference and peak voltages across the reinforced insulation.®
Designers in this area should pay particular attention to this, given that
PFA waveforms generate atypical interference. Typical medical devices
generate continuous leakage currents and electromagnetic interference.
However, PFA systems generate high peak and low RMS (root mean
square) leakage currents and quasi-peak electromagnetic interference
due to their fast rise and fall times and long delays between pulses and
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Figure 4: Development of a Pulsed Field Ablation System: From Concept to Reality
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Ap = amplitude of the positive
phase

An = amplitude of the negative
phase

PW = positive pulse width
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NP = no. pulses in bursts

NB = no. bursts

NT = no. trains

Catheter geometry
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A-C: The change of a biphasic 200 ns pulse on its way from the generator (A) through the pulse delivery system (B). The pulse generator (A) produces a waveform with a defined amplitude (V) and interphase
delay; however, due to the influence of resistive, inductive and capacitive components in the catheter and connecting cables (B), the pulse shape is distorted. In particular, the amplitude reaching the cardiac
tissue (C) is reduced (AV) and the interphase delay is shortened and the rise and fall times are increased. D: The engineering design cycle: there are many stages from a conceptual to a final design. At each
stage the design is subject to evaluation. During the detailed design, optimisation is carried out. At each stage, the process can be started from the beginning, with lessons learned informing design decisions.

E: The pulsed field ablation optimisation problem is a multi-parameter optimisation with multiple inputs coming from the waveform, catheter and generator, and many outputs. Some of the outputs are

desirable, others should be avoided.

bursts. Such a device can pass the standardised leakage current and
electromagnetic compatibility (EMC) tests, given that the medical device
standard requires measurements only of low-frequency leakage currents
that can lead to cardiac arrest and quasi-peak EMC.23%* However, this
does not mean that the high peak leakage current cannot affect the
patient’s untargeted tissue and that high electromagnetic spikes cannot
interfere with some of the neighbouring devices.

In addition, transient overvoltages occur across the reinforced insulation
in PFA systems during PFA delivery, hence it is not sufficient to base the
insulation design on the steady-state operating voltage alone. These
transient overvoltages must be considered when designing the reinforced

insulation.® Fortunately, existing standards for medical devices include
methods for calculating insulation requirements that take into account
such transient conditions. High-voltage pulses with fast rise times, as
used in PFA, can lead to electrical discharges and electric arcing. During
arcing, the current can increase significantly, which poses a risk to the
patient’s health and can lead to damage to the components of the pulse
switch. To mitigate these risks, current- and energy-limiting circuitry
should be incorporated into the PFA system to prevent arcing and protect
critical switching elements.®

Compared with RF ablation signals, PFA signals have significantly higher
amplitudes (in the order of kilovolts), while measurement signals used for
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Figure 5: Time Course of Electrode Surface Temperature

A
100 i
90 } 6 ms defibrillator
90 x 100 ps IRE
8 s0 3-0-3-0 ps HFIRE
Decapolar o
catheter 2 70
g
£ 60
Monopolar @
50
+_+

+ + 40 | -
¥ & §+
+‘“ A 0 5 10 15 70 80 920 100

Time since first pulse (s) End of PFA protocol (s)

c .

6 ms defibrillator
Balloon 90 x 100 pis IRE
catheter 3-0-3-0 ps HFIRE
Bipolar

o

Temperature (°C)

1 1 1 1
10 15 70 80 90 100

End of PFA protocol (s)

0 5

Time since first pulse (s)

B
100 | ‘ ' ' I ;
90 —— 6 ms defibrillator
90 x 100 ps IRE
o 3-0-3-0 ps HFIRE
Decapolar ¢
catheter 2
o
Q
£
Bipolar @
Ty W
4 +, 1 1 1 1
'8 A 0 5 10 15 70 80 920 100
o

Time since first pulse (s) End of PFA protocol (s)

D 100 ;
90 | 6 ms defibrillator
8 mm tip 90 x 100 ps IRE
catheter O goft 3-0-3-0 ps HFIRE
[
Monopolar % 70
@
g 60
o
50
40 s

80 90
End of PFA protocol (s)

0 5 10 70 100

Time since first pulse (s)

The graphs show the temperatures for all waveforms for four different catheter configurations. A: Decapolar ring catheter in @ monopolar configuration. B: Decapolar ring catheter in a bipolar
configuration. C: Balloon catheter in a bipolar configuration. D: 8 mm tip catheter in a monopolar configuration. Voltage: (A-C) 2,000, 1,900, 2,800 V for the 6 ms, IRE, and HFIRE protocols, respectively;
(D) 2,100, 1,000, 1,300 V for the 6 ms, IRE, and HFIRE protocols, respectively. 6 ms = a single 6 ms monophasic exponentially decaying defibrillator pulse; HFIRE = high-frequency irreversible
electroporation (10 trains of a single burst of 333 biphasic pulses with a 3 us positive pulse width, 0 ps intraphase delay, 3 us negative pulse width and 0 us interpulse delay); IRE = irreversible

electroporation (90 = 100 us monophasic pulses delivered at 1Hz); PFA = pulsed field ablation.

mapping, temperature and force detection are typically in the millivolt
range. This large difference in signal magnitude makes electrical isolation
within the confined wiring of cardiac catheters and connectors particularly
challenging. In addition, switching between high-voltage and high-current
PFA pulses and low-voltage and low-current measurement of intracardiac
electrogram (iEGM) signals in switching units presents a further design
and engineering challenge.

Another unmet need is periprocedural guidance of PFA. It is impossible
to reliably predict durable lesion based on bipolar iEGM signal
attenuation and voltage maps due to transient stunning of the
cardiomyocytes (i.e. reversible electroporation). Early systems were not
(well) integrated into mapping systems for catheter visualisation; and
contact assessment was not available. Given that the lack of contact
reduces lesion depth, the reliability and durable efficacy were limited.
Clinical experience now shows that repositioning and following the
protocols as prescribed by manufacturers is essential to achieve PVI "%

Pulse generation technology and catheter technology have changed
significantly since the initial development of the hardware, and we have
much more data on the clinical efficacy and side effects of specific pulse
waveforms and electrical geometries. This could mark the beginning of a
new cycle of PFA systems, 2.0.

Effects of Mismatched Waveform

and Catheter Design

The shape of the electrodes, and the positioning of and spacing
between the electrodes on the catheter can be precisely defined and
fixed (circular loop catheter) or have a variable geometry (pentaspline
and variable loop catheters)." These influence not only the distribution
of the electric field, but also the load — that is, how much current will
flow through the wires in the catheter shaft during pulse delivery. The

currents can easily be in the range of 10-30 A, which corresponds to a
high instantaneous power.

The different sizes of the catheter, the shape (e.g., flower or basket), and
vectoring (between splines, bipolar or unipolar) determine the distribution
of the electric field, as well as the load — the amount of current the
generator must provide. The distribution of the electric field also
determines the size and depth of the lesion, but due to the different
waveforms used, the same electric field threshold cannot be used to
compare different catheters. A catheter (as a load) in contact with the
tissue behaves differently to a catheter in the blood pool, that is, in slight
or partial contact with the tissue. Furthermore, the form factor of the
catheter will also affect lesion size dependence on contact force.

PFA catheters are available in very different shapes and sizes. Although
the manufacturers do not provide information on the waveforms, various
protocols with preclinical results are described in the literature. To
illustrate the effects of mismatched waveforms and catheters, we used
numerical modelling to examine all possible combinations of three
catheters and three waveforms described in the literature.

The three catheters were a generic decapolar loop catheter, an 8 mm
spherical tip catheter, and a custom bipolar balloon catheter.*#%%° Each
catheter was tested with three pulse protocols: a single 6 ms monophasic
exponentially decaying defibrillator pulse; 90 = 100 us monophasic pulses
delivered at 1 Hz (i.e. irreversible electroporation; IRE); and 10 trains of a
single burst of 333 biphasic pulses with a 3 ps positive pulse width, 0 s
intraphase delay, 3 us negative pulse width and 0 ps interpulse delay (i.e.
high-frequency irreversible electroporation; HFIRE).#%% pulse amplitudes
were adjusted for each configuration to achieve transmural lesion depth
(3 mmin the schematic atrium). More details on the modelling are available
in the Supplementary Material.
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Electrode surface temperatures varied significantly across combinations.
Generally, the HFIRE waveform resulted in the highest surface
temperature rise, due to the fact that the required amplitude was the
highest, and also because the waveform has a 100% duty factor (defined
as the total time in the ‘on’ position divided by the total duration of the
pulse train). In these configurations the monopolar deliveries resulted in
lower electrode surface temperatures (Figure 54 and D). The 8 mm tip
catheter resulted in the lowest average electrode surface temperature,
however, the total surface area of the electrode was also the largest,
and it enables only point-by-point ablation, whereas the other electrode
configurations theoretically represent a single-shot approach. The
lowest surface temperatures were observed with the long IRE protocol,
which has a very low duty factor and a long total duration. It is therefore
almost completely mitigated by blood flow cooling (or by diffusion in
Figure 5C, in which blood flow is blocked by the balloon). The
investigated balloon also had a very high surface temperature in the
HFIRE configuration, due to the mismatch between the surface area of
the two delivery electrodes: namely, the tip electrode was much smaller
than the ring electrode positioned at the PV ostium. Therefore, the tip
electrode has a much higher local current density and resultant higher
heating.

Conclusion
A well-designed PFA system should be safe and efficient. Currently
available systems (i.e. those that are approved or are being developed

and tested) were mostly developed for AF treatment, that is, to achieve
PVI. PFA offers unique opportunities: for the first time we do not need to
compromise on effectiveness in PVI for safety. This should enable us to
test hypotheses that are driving the treatment of paroxysmal and
persistent AF patients with much better precision than was previously
possible. At the same time, given that PFA is at least as effective as RF
ablation and cryo-balloon ablation but has superior efficiency, this will
enable the treatment of increasing volumes of patients early after their
initial diagnosis.®"* 0

Clinical Perspective

» Asuccessful pulsed field ablation (PFA) procedure depends on
the seamless integration of three key system components: the
waveform, the catheter and the generator, which must be
designed and calibrated to work in harmony for optimal
therapeutic effect.

» A basic understanding of the mechanisms of electroporation is
crucial to ensure consistent, safe and effective PFA treatment in
different clinical scenarios. Failure to do so may result in
treatment inconsistencies and unexpected outcomes.

» Current PFA workflows are not interchangeable between
different devices, meaning that what works for one system
should not be adopted for another without adequate research
and clinical validation.
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