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PPOOVVZZEETTEEKK  
 
 
 
Elektropermeabilizacija celic in posledično tudi tkiva je pojav, ki označuje spremembo prepustnosti 
celične membrane zaradi vzbujanja s kratkimi, visokonapetostnimi pulzi. Pri električnem vzbujanju 
je celica izpostavljena zunanjemu električnemu polju, zaradi katerega se na celični membrani pojavi 
električni potencial. Le-ta je odvisen od oblike in velikosti celice ter jakosti zunanjega električnega 
polja. V primeru, ko je vsiljena potencialna razlika na celični membrani zaradi zunanjega 
električnega polja dovolj velika, se poveča prepustnost celične membrane. Sprememba prepustnosti 
celične membrane pa je lahko reverzibilna ali ireverzibilna, na kar vpliva velikost jakosti zunanjega 
električnega polja. Poleg jakosti električnega polja pa vplivajo na permeabilizacijo celične 
membrane tudi trajanje in število električnih pulzov ter njihova frekvenca. Sprememba prepustnosti 
celične membrane pod vplivom zunanjega električnega polja je posledica sprememb v strukturi 
membrane. Natančni mehanizmi tega pojava doslej še niso v celoti pojasnjeni zaradi pomanjkanja 
eksperimentalnih rezultatov. 
 
S povečanjem prepustnosti celične membrane omogočimo vnos snovi v celico, za katere celična 
membrana sicer predstavlja neprehodno oviro. Take snovi so nekatere zdravilne učinkovine (npr. 
kemoterapevtiki), barvila, beljakovine, DNK in druge snovi. Zaradi možnosti vnosa omenjenih 
snovi v celico je elektropermeabilizacija celične membrane z visokonapetostnimi pulzi postala 
zanimiva za uporabo v medicini.  
 
Trenutno v kliniki za terapijo tumorjev že uporabljajo terapevtski pristop, ki združuje kemoterapijo 
in elektropermeabilizacijo. Pri tem kombiniranem pristopu z električnim vzbujanjem tkiva s 
kratkimi visokonapetostnimi pulzi omogočimo vnos kemoterapevtika v tumorske celice. Ustrezna 
terapevtska metoda zdravljenja je poimenovana elektrokemoterapija. Za uspešno 
elektrokemoterapijo je potrebno celotni volumen tumorja izpostaviti poljskim jakostim, višjim od 
reverzibilnega praga. 
 
Podobno se za vnos genskega materiala v celice uporablja kombinacija visokonapetostnih pulzov, ki 
permeabilizirajo celično membrano in pulzov nižjih amplitud, ki omogočajo prehod genskega 
materiala prek permeabilizirane celične membrane z elektroforezo. Opisana metoda, poimenovana 
elektro-genska terapija, je trenutno predmet predkliničnih raziskav. Zaradi številnih prednosti, ki jih 
ima pred drugimi metodami genskega vnosa, pa lahko pričakujemo, da jo bodo v kratkem pričeli 
uporabljati tudi v kliniki. Pogoj za uspešno elektro-gensko terapijo je porazdelitev poljskih jakosti 
med reverzibilnim in ireverzibilnim pragom v obravnavanem delu tkiva. 
 
Uspešnost elektrokemoterapije in elektro-genske terapije je torej odvisna od porazdelitve poljske 
jakosti v obravnavanem območju tkiva. Tako je potrebno za vsako od naštetih metod glede na tip in 
razsežnosti obravnavanega tkiva posebej, določiti električne parametre signala vzbujanja in izbrati 
ustrezno postavitev elektrod. Za določitev pragovih vrednosti poljske jakosti je bila doslej 
uporabljena kombinacija modelov in tako imenovanih hitrih testov. Pri teh se v tkivo vbrizga snov, 
ki lahko prehaja v celico zgolj skozi permeabilizirano celično membrano. Temu sledi vzbujanje 
tkiva z visokonapetostnimi pulzi različnih amplitud. Amplitude električnih pulzov, pri katerih 
dosežemo vnos snovi v celico se uporabi za modelski izračun porazdelitve električnega polja. 
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Pragovne vrednosti električnega polja nato določimo s primerjavo področja permeabiliziranega 
tkiva in na tem mestu z modelom izračunanih vrednosti električnega polja. Ena od pomanjkljivosti 
tega pristopa je, da ne upošteva električnih sprememb v tkivu zaradi izpostavljenosti zunanjemu 
električnemu polju.  
 
S povečanjem prepustni celične membrane se namreč pri elektropermeabilizaciji poveča tudi 
prepustnost membrane za ione, kar se posledično odraža v povečani električni prevodnosti celice. 
To ima za posledico tudi povečanje prevodnosti celotnega tkiva, kar seveda vpliva na drugačno 
porazdelitev električnega polja kot v nepermeabiliziranem tkivu. 
 
V okviru tega dela smo tako razvili časovno diskretni model permeabilizacije tkiva. Model upošteva 
spreminjanje električne prevodnosti v tkivu pod vplivom zunanjega električnega polja zadostnih 
jakosti. Obnašanje modela smo potrdili v okviru študije parametrov in posebej v ta namen razvitega 
simulacijskega okolja. Vrednotenje modela na eksperimentalnih podatkih pa je pokazalo zelo dobro 
ujemanje izmerjenih in izračunanih vrednosti. Na podlagi predstavljenega modela permeabilizacije 
smo raziskali možnosti njegove uporabe za optimizacijo parametrov električnih pulzov in razdalje 
med elektrodama za uporabo v elektrokemoterapiji na geometriji človeških možganov s tumorjem.  
 
Osnovni namen uporabe predstavljenega časovno diskretnega modela je torej določitev optimalnih 
parametrov za učinkovito permeabilizacijo tkiva na neinvaziven način pred terapijo. 
 
 

SIMULACIJSKO OKOLJE ZA SPREMLJANJE ELEKTROPERMEABILIZACIJE TKIVA 
NA OSNOVI ČASOVNO DISKRETNEGA MODELA 
 
Simulacijsko okolje za spremljanje elektropermeabilizacije tkiva smo razvili za geometrijo dveh 
koncentričnih valjastih elektrod, med kateri je vstavljeno biološko tkivo. To geometrijo smo izbrali, 
ker omogoča analitičen izračun porazdelitve električnega polja, obenem pa je porazdelitev polja 
med koncentričnima valjastima elektrodama podobna porazdelitvi polja okrog igelnih elektrod.  
 
Elektropermeabilizacijo tkiva med koncentričnima valjastima elektrodama smo opisali s časovno 
diskretnim modelom (Slika i). Le-ta je zasnovan na dejstvu, da se pri vzbujanju tkiva z električnim 
pulzom zaradi elektropermeabilizacije tkiva poveča električna prevodnost v delu tkiva, ki je bilo 
izpostavljeno električni poljski jakosti, višji od reverzibilnega praga. Način spreminjanja električne 
prevodnosti tkiva zaradi električne poljske jakosti je podan s funkcijsko odvisnostjo σ(E), ki jo je 
potrebno vnaprej določiti za vsak tip tkiva. Električno polje v posameznem časovnem trenutku 
obravnavamo kot kvazistacionarno in ga opišemo z enačbami za tokovno polje v prevodniku. 
 
Začetno stanje ob vzbujanju z visokonapetostnim električnim pulzom v času k=1 predpostavlja v 
celotnem tkivu tako prevodnost, kot jo ima nepermeabilzirano tkivo. V primeru, da ima v času k=1 
izračunano električno polje v delu tkiva višjo jakost od reverzibilnega praga, temu delu tkiva 
ustrezno spremenimo prevodnost na podlagi odvisnosti σ(E). Tako dobimo prevodnost tkiva v 
časovnem trenutku k=2. Zaradi povečane električne prevodnosti v permeabiliziranem delu tkiva, se 
v časovnem trenutku k=2, posledično spremeni tudi porazdelitev električnega polja. Pri izračunu 
porazdelitve električnega polja smo zaradi spremenjene prevodnosti upoštevali prestopni pogoj za 
električno poljsko jakost na meji dveh snovi z različnima prevodnostma. Nova porazdelitev 
električne poljske jakosti vpliva na nadaljnjo permeabilizacijo tkiva in spremembo prevodnosti. 
Razširjanje permeabilizacije se tako nadaljuje, dokler električna poljska jakost ne doseže 
ustaljenega stanja. Pri spreminjanju prevodnosti v časovno diskretnem modelu smo upoštevali, da 
se med trajanjem električnega pulza prevodnost nikoli ne zmanjša, saj je proces zacelitve bistveno 
počasnejši in tako daljši od časa trajanja pulza. Tako tudi v primeru, ko bi zaradi odvisnosti σ(E) 
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morala biti v izbrani točki prevodnost nižja, kot je bila v predhodnem časovno diskretnem trenutku, 
se le-ta ne zmanjša, ker traja učinek permeabilizacije dlje, kot je dolžina pulza.  
 

 
 

Slika i: Časovno diskretni model permeabilizacije tkiva – shematski prikaz. 
 
Opisani časovno diskretni model permeabilizacije tkiva smo nato vključili v simulacijsko okolje. 
Namen izdelave simulacijskega okolja je bil omogočiti spremljanje poteka permeabilizacije pri 
različnih amplitudah pulzov, različnih prevodnostih tkiva in različnih razdaljah med valjastima 
elektrodama. V simulacijskem okolju smo upoštevali možnost, da ima lahko funkcijska odvisnost 
σ(E) stopničast, linearen, eksponenten ali sigmoiden potek. Grafični vmesnik simulacijskega okolja 
prikazuje Slika ii. Nastavitev parametrov permeabilizacije in izbiro funkcijske odvisnosti σ(E) 
izvedemo v spodnjem levem oknu grafičnega vmesnika. Potek permeabilizacije pa je v okviru 
simulacijskega okolja predstavljen s porazdelitvijo električnega polja (zgoraj desno) in specifične 
prevodnosti tkiva (zgoraj levo) med elektrodama za vsak časovno diskretni korak ter radijem, do 
katerega je bilo tkivo permeabilizirano, v posameznem časovne koraku (spodaj desno).  
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Slika ii: Grafični vmesnik simulacijskega okolja, s prikazom poteka permeabilizacije ob izbiri sigmoidne 

odvisnosti σ(E). 

 
Prikazano simulacijsko okolje bi lahko zaradi podobne porazdelitve električnega polja, kot je okrog 
igelnih elektrod, uporabljali v klinične namene za grobo, a hitro oceno permeabilizacije tkiva. Poleg 
tega bi lahko služilo v pomoč pri izbiri parametrov – razdalje med elektrodami in napetosti 
električnih pulzov, potrebnih za permeabilizacijo želenega dela tkiva.  
 
Znotraj simulacijskega okolja smo predvideli štiri različne oblike funkcijskih odvisnosti σ(E). 
Njihov vpliv, kot tudi vpliv amplitude pulzov in razdalje med elektrodama na potek 
permeabilizacije smo sistematično raziskali v okviru študije parametrov. Namen študije parametrov 
je bila tudi potrditev časovno diskretnega modela, saj s spreminjanjem posameznih parametrov 
lahko preverimo, ali so modelski izračuni skladni z eksperimentalno ugotovljenimi pojavi pri 
elektropermeabilizaciji tkiva. 
 
Študija parametrov je potrdila, da električne lastnosti tkiva (prevodnost permeabiliziranega in 
nepermeabiliziranega tkiva ter reverzibilni in ireverzibilni prag električne poljske jakosti) vplivajo 
na radij permeabilizacije. Ravno tako je potrdila, da je porazdelitev električnega polja, ki jo 
določata razdalja med elektrodama in amplituda pulzov odločilna za potek permeabilizacije. Iz tega 
sledi, da je potrebno za učinkovito permeabilizacijo tkiva poznati električne lastnosti tkiva ter le-
tem ustrezno izbrati amplitudo pulzov in razdaljo med elektrodama. 
  
Pri primerjavi vpliva funkcijskih odvisnosti σ(E) smo izbrali take parametre le-teh, da so imele vse 
funkcijske odvisnosti iste vrednosti prevodnosti permeabiliziranega in nepermeabiliziranega tkiva. 
Simulacijsko okolje in študija parametrov sta pokazala, da v primeru stopničaste funkcijske 
odvisnosti σ(E) permeabilizacija poteka dlje, kot v primeru ostalih odvisnosti. Stopničasta odvisnost 
namreč povzroča nezveznosti v porazdelitvi električnega polja na meji med snovmi z različno 
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prevodnostjo, ki je posledica prestopnega pogoja za vektor električne poljske jakosti na tej meji. V 
primeru linearne, eksponentne in sigmoidne funkcijske odvisnosti σ(E) vpliv prestopnega pogoja ni 
tako izrazit, ker so le-te zvezne oziroma vsaj odsekoma zvezne. Primerjava med slednjimi 
funkcijskimi odvisnostmi pa je pokazala, da je bil največji del tkiva permeabiliziran pri upoštevanju 
linearne funkcijske odvisnosti σ(E). Vzrok temu je porazdelitev polja med elektrodama, ki pada 
obratno sorazmerno z razdaljo od središča valjastih elektrod. Tako je bil v področju med 
elektrodama večji del tkiva izpostavljen poljskim jakostim, ki so nižje od povprečne vrednosti 
poljskih jakosti na veznici med elektrodama. Pri nižjih vrednostih električne poljske jakosti pa 
linearna funkcijska odvisnost predvideva večje povečanje specifične prevodnosti, kot eksponentna 
ali sigmoidna odvisnost.  
 
Vpliv posameznih funkcijskih odvisnosti σ(E) je seveda odvisen tudi od porazdelitve električnega 
polja v tkivu. Večji kot je del tkiva, ki je izpostavljeno poljskim jakostim med pragovnima 
vrednostma, večji je vpliv različnih funkcijskih odvisnosti. V odvisnosti od porazdelitve 
električnega polja tako lahko oblika funkcijske odvisnosti σ(E) pomembno vpliva na izračun radija 
permeabilizacije. Na podlagi zgornjih ugotovitev in primerjave z rezultati poskusov in vivo smo 
izbrali sigmoidno obliko funkcijske odvisnosti σ(E) za uporabo v nadaljnjih modelih. Sigmoidna 
oblika je namreč zvezna v celotnem področju električnih poljskih jakosti, obenem pa se ujema z 
rezultati, dobljenimi pri poskusih in vivo. Poskusi so namreč pokazali, da je v tkivu, ki je bilo 
izpostavljeno poljskim jakostim tik nad reverzibilnim pragom, le del celic permeabiliziran. Z 
večanjem poljske jakosti je bil tudi večji del celic permeabiliziran. Pri poljskih jakostih velikosti 
ireverzibilnega praga, je nato odmrlo sprva le nekaj celic, pri še višjih poljskih jakostih pa je prišlo 
do nekroze tkiva. Tak potek permeabilizacije v odvisnosti od električne poljske jakosti je mogoče 
opisati s sigmoidno funkcijsko odvisnostjo. Upoštevajoč dejstvo, da se pri permeabilizaciji tkiva 
poveča električna prevodnost tkiva, ima tudi slednja sigmoidni potek v odvisnosti od poljske 
jakosti.  
 
Določitev parametrov sigmoidne funkcijske odvisnosti σ(E) je mogoče opraviti zgolj s pomočjo 
eksperimentalnih podatkov za vsak tip tkiva posebej. Tako smo v nadaljevanju predlagali metodo 
določitve parametrov funkcijske odvisnosti. Metoda temelji na minimizaciji razlike med izmerjenim 
in modelsko izračunanim tokom, s spreminjanjem parametrov sigmoidne funkcijske odvisnosti 
σ(E), ki je vključena v model. Območje, v katerem se z optimizacijo išče optimalne vrednosti 
parametrov, smo določili na podlagi meritev vnosa Cr51-EDTA, ki je indikator volumna reverzibilno 
permeabiliziranega tkiva. Primerjavo izmerjenega in izračunanega toka z modelom, v katerega je 
vključena sigmoidna funkcijska odvisnost z optimiziranimi vrednostmi parametrov prikazuje Slika 
iii. 
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Slika iii: Izmerjeni tok (*) in izračunani tok (polna črta) pri optimiziranih parametrih sigmoidne odvisnosti 

σ(E). 
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V simulacijskem okolju in študiji parametrov smo pri izračunu modela upoštevali vzbujanje s 
pravokotnimi električnimi pulzi. V nadaljevanju pa nas je zanimalo, kako oblika pulza vpliva na 
potek permeabilizacije tkiva. Zato smo izvedli dodatne izračune modela pri dveh različnih oblikah 
vhodne napetosti in sicer v obliki rampe, a z nasprotnima naklonoma. Simulacije so pokazale, da je 
radij permeabiliziranega področja v obeh primerih približno enak (Tabela i), z razliko, da je v 
primeru linearno padajoče napetosti maksimalni radij dosežen že na samem začetku vzbujanja, 
medtem ko je v primeru linearno naraščajoče napetosti maksimalni radij dosežen tik pred koncem 
vzbujanja (Slika iv). Primerjava radijev permeabilizacije z radijem, ki ga dobimo pri vzbujanju s 
konstantnim pulzom amplitude povprečne vrednosti signalov rampe je pokazala, da je v primeru 
vzbujanja s konstantno napetostjo radij permeabilizacije bistveno nižji (Tabela i). Iz tega sledi, da 
na radij permeabilizacije odločilno vpliva maksimalna vrednost pritisnjene napetosti.  
 

Tabela i: Primerjava radijev permeabilizacije pri različnih oblikah vhodne napetosti za različne funkcijske 
odvisnosti σ(E). 

 Linearno naraščajoča u Linearno padajoča u Konstantna u 
σ(E) Radij permeabilizacije (enota)  

Stopničasta 1.75 1.61 1.12 
Linerana 2.77 2.81 1.97 
Eksponentna 2.52 2.53 1.83 
Sigmoidna 2.63 2.72 1.89 
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Slika iv: (c) radij permeabilizacije pri vzbujanju z linearno naraščajočo napetostjo (a); (d) radij 

permeabilizacije pri vzbujanju z linearno padajočo napetostjo (b). Upoštevana je sigmoidna oblike funkcijske 
odvisnosti σ(E). 
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Ker lahko z obliko pritisnjene napetosti vplivamo na radij permeabilizacije tkiva, smo v 
nadaljevanju raziskali možnosti zaprtozančnega vodenja permeabilizacije s proporcionalno 
integrirnim (PI) regulatorjem. Naloga regulatorja je bila določiti ustrezno napetost vzbujanja na 
podlagi razlike med trenutnim in želenim obsegom permeabilizacije tkiva. Rezultati, ki smo jih 
pridobili s pomočjo časovno diskretnega modela (Slika v) so pokazali, da je uporaba tega pristopa 
možna. Vendar pa bi bila uporaba sprotnega vodenje permeabilizacije za klinične namene težavna, 
saj je določitev obsega permeabilizacije v realnem času praktično nemogoča. Ta podatek pa je 
nujno potreben tako za določitev parametrov PI regulatorja, kot tudi za sprotno vodenje 
permeabilizacije. Podatka o obsegu permeabilizacije prav tako ni mogoče dobiti posredno iz drugih 
meritev, saj npr. podatek o spremembi celotne prevodnosti tkiva, ki bi ga lahko pridobili iz sprotnih 
meritev toka in napetosti, ne daje informacije o tem ali je bilo neko področje tkiva permeabilizirano. 
Edini način za pridobitev podatka o obsegu permeabilizacije bi lahko bil dinamični model 
permeabilizacije in posledično pristop vodenja permeabilizacije na osnovi modela. To obenem 
predstavlja tudi dodatno področje uporabe predstavljenega časovno diskretnega modela. 
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Slika v: (a) regulirani signal – radij in (b) regulirni signal – napetost pri vodenju s proporcionalno integrirnim 

regulatorjem. 
 
Porazdelitev električnega polja lahko v časovno diskretnem modelu izračunamo tudi s pomočjo 
numeričnih metod. Ta pristop je praktično nujen, ko geometrije in snovnih lastnosti prevodnika ni 
mogoče opisati v istem koordinatnem sistemu. Takrat namreč analitični opis porazdelitve 
električnega polja ni mogoč. Glede na dejstvo, da je potrebno v časovno diskretnem modelu večkrat 
izračunati porazdelitev električnega polja, in upoštevajoč računsko zahtevnost numeričnih 
izračunov, je čas izračuna časovno diskretnega modela z numeričnim izračunom porazdelitve polja  
bistveno daljši, kot v primeru analitičnega modela. To je pokazala tudi primerjava časovno 
diskretnih modelov permeabilizacije tkiva z analitičnim in numeričnim izračunom polja med dvema 
koncentričnima valjastima elektrodama. 
 
 

DOLOČITEV OPTIMALNE GEOMETRIJE IGELNIH ELEKTROD ZA MODELIRANJE Z 
METODO KONČNIH ELEMENTOV 
 
Igelne elektrode se v kliniki uporabljajo za elektropermeabilizacijo globlje ležečega tkiva. Pri 
modelskem izračunu porazdelitve električnega polja okrog igelnih elektrod, pa je pogosto potrebno 
uporabiti numerične metode, še posebej v primerih, ko želimo opazovati porazdelitev polja okrog 
vrha elektrod. Za reševanje tovrstnih problemov se je metoda končnih elementov izkazala kot zelo 
primerna. Modeliranje igelnih elektrod z metodo končnih elementov pa je dostikrat zahtevno, saj so 
dimenzije elektrod ponavadi bistveno manjše od dimenzij okoliškega tkiva. V takih primerih je 
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potrebno v okolici elektrod zgraditi zelo gosto mrežo končnih elementov, kar ima za posledico 
daljši čas, potreben za izračun modela.  
 
V okviru tega dela naloge smo tako raziskali načine modeliranja geometrije igelnih elektrod z 
metodo končnih elementov, z namenom, da bi določiti tako geometrijo, ki bi omogočila hitrejši 
izračun modela, obenem pa ne bi bistveno vplivala na porazdelitev električnega polja v tkivu. 
Določitev optimalne geometrije elektrod in vrednotenje le-te smo izvedli s pomočjo 
eksperimentalnih podatkov, pri katerih je bil merjen celotni tok pri vzbujanju z določeno napetostjo. 
Eksperimenti z igelnimi elektrodami so bili izvedeni v gelu, ki ima podobne električne lastnosti, kot 
biološko tkivo. Za izbiro ustrezne geometrije elektrod smo vpeljali kriterijsko funkcijo, ki so jo 
sestavljale utežena relativna razlika med izmerjenim in modelsko izračunanim tokom, utežena 
relativna razlika med časom, potrebnim za izračun modela in najkrajšim časom izračuna ter utežena 
relativna razlika med presekom elektrod in presekom okroglih igelnih elektrod.  
 

 
Slika vi: Različni preseki, uporabljeni za modeliranje igelnih elektrod. 

 
Osem kotni presek igelnih elektrod je bil na podlagi kriterijske funkcije in eksperimentalnih 
podatkov, dobljenih pri električnem vzbujanju z enim parom igelnih elektrod, izbran kot 
najustreznejši. Model z osem kotnimi igelnimi elektrodami smo nato ovrednotili na 
eksperimentalnih podatkih, dobljenih pri vzbujanju s poljem igelnih elektrod. Maksimalno 
odstopanje med modelsko izračunanim in izmerjenim tokom je bilo 9%, razen v primeru zelo 
tankega gela. Razlog za odstopanje je bila polarizacija elektrod, ki je pri nižjih napetostih bistveno 
vplivala na odstopanje med modelom in meritvami. Učinek polarizacije elektrod smo nato vključili 
v model, kar je zmanjšalo odstopanje med modelom in meritvami na 3%. Primerjava izračunane 
porazdelitve električnega polja pri vzbujanju s poljem igelnih elektrod (Slika vii) in porazdelitve 
podane v literaturi za isto geometrijo elektrod je pokazala, da model z osem kotnimi igelnimi 
elektrodami zadosti dobro opisuje porazdelitev polja. 
 
Vrednotenje modela na podlagi celotnega toka pa je pokazalo, da je ta pristop mogoče uporabiti za 
hitro vrednotenje modela pod pogojem, da so geometrija in električne lastnosti tkiva zadosti dobro 
opisane z modelom. 
 
 

VREDNOTENJE ČASOVNO DISKRETNEGA MODELA PERMEABILIZACIJE 
JETRNEGA TKIVA S PAROM IGELNIH ELEKTROD 
 
Med pomembnejše korake pri procesu modeliranja sodita vsekakor potrditev in vrednotenje modela. 
Potrditev časovno diskretnega modela smo opravili v okviru študije parametrov. Vrednotenje 
modela, pri katerem ugotavljamo, ali daje model take rezultat kot realni sistem, pa smo opravili v 
okviru tega poglavja.  
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Slika vii: Porazdelitev električnega polja pri vzbujanju z dvema paroma igelnih elektrod v xy ravnini (a) in yz 
ravnini (d); s tremi pari igelnih elektrod v xy ravnini (b) in yz ravnini (e) in s štirimi pari igelnih elektrod v xy 

ravnini (c) in yz ravnini (f). 

 
Eksperimenti, potrebni za vrednotenje modela, so bili opravljeni na institutu Gustave-Roussy v 
Franciji. Za permeabilizacijo jetrnega tkiva zajcev so uporabili igelne elektrode. Električno 
vzbujanje so izvedli z vlakom osmih pulzov, trajanja 100 µs in frekvence 1 Hz. Posamezni 
eksperimenti so se med seboj razlikovali v amplitudi pulzov, ki je bila v območju med 200 V in 
1200 V. V eksperimentih so izmerili celoten tok in napetost med trajanjem pulza. V predhodno 
opravljenih eksperimenti na jetrnem tkivu zajcev z enakim električnim vzbujanjem pa so določili 
tudi območje permeabiliziranega in nepermeabiliziranega tkiva. Meritve obeh skupin eksperimentov 
smo uporabili za ocenjevanje parametrov funkcijske odvisnosti σ(E) in vrednotenje modela. 
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Slika viii: Funkcijska odvisnost σ(E). Ocenjevanje parametrov je izvedeno z optimizacijo na eksperimentalnih 

podatkih o toku. 

 
Za izdelavo ustreznega časovno diskretnega modela permeabilizacije smo morali najprej določiti 
parametre funkcijske odvisnosti σ(E) za jetrno tkivo zajcev. Iz razlogov, podanih pri analizi 
časovno diskretnega modela z analitičnim opisom porazdelitve električnega polja med valjastima 
elektrodama, smo izbrali sigmoidno obliko funkcijske odvisnosti. Ocenjevanje parametrov 
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funkcijske odvisnosti σ(E) pa smo izvedli s prav tako predhodno predlagano metodo, torej z 
optimizacijo na eksperimentalnih meritvah toka. Za ocenjevanje parametrov smo izbrali le del 
eksperimentalnih meritev toka, preostale meritve pa smo kasneje uporabili za vrednotenje modela. 
Funkcijsko odvisnost σ(E), s tako ocenjenimi parametri prikazuje Slika viii. Z ocenjevanjem 
parametrov smo med drugim določili tudi reverzibilni (460 V/cm) in ireverzibilni (700 V/cm) prag 
električne poljske jakosti za jetrno tkivo zajcev. Dobljena pragova se razlikujeta od podanih 
vrednosti v literaturi. Vzrok temu je dejstvo, da so bili v literaturi podani pragovi določeni brez 
upoštevanja spreminjanja prevodnosti tkiva zaradi permeabilizacije. Razlago razlike v dobljenih 
vrednostih pragov prikazuje Slika ix. Razlaga je podana za geometrijo dveh koncentričnih valjastih 
elektrod, ker ima le-ta podobno porazdelitev polja kot je v okolici igelnih elektrod in omogoča 
analitični opis polja. Črta, označena z E00, podaja vrednost reverzibilnega praga, ki jo dobimo v 
nepermeabiliziranem tkivu, ob upoštevanju podatka, da je bil eksperimentalno ugotovljen radij 
permeabilizacije pri vrednosti 2.6 enote (navpična črta). Ker se pri permeabilizaciji tkiva poveča 
njegova električna prevodnost, to vpliva na spremembo porazdelitev električnega polja v tkivu. Če 
torej upoštevamo porazdelitev polja v delno permeabiliziranem tkivu, dobimo reverzibilni prag 
permeabilizacije pri vrednosti E0-dejanski, ki je višji od predhodno določenega. 
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Slika ix: Razlaga razlike v pragovnih vrednostih, dobljenih z ocenjevanjem parametrov funkcijske odvisnosti 

σ(E) in podanimi vrednostmi v literaturi. 

 
Časovno diskretni model permeabilizacije jetrnega tkiva smo nato ovrednotili na eksperimentalnih 
podatkih. Najprej smo primerjali območje reverzibilno permeabiliziranega tkiva, izmerjenega z 
eksperimenti in območje permeabilizacije, izračunano z modelom, ob upoštevanju enake amplitude 
pulza, kot v ustreznem eksperimentu. Slika x prikazuje porazdelitev električnega polja, izračunane z 
modelom v petih časovno diskretnih korakih. Porazdelitev polja v petem koraku ustreza stanju, ki 
ga dobimo po zaključku razširjanja permeabilizacije v tkivu. Vidimo, da na sredini med 
elektrodama poljska jakost ravno doseže reverzibilni prag (460 V/cm), kar se ujema z 
eksperimentalnimi ugotovitvami, ki so pri enaki amplitudi pulza pokazale reverzibilno 
permeabilizacijo jetrnih celic na celotni veznici med elektrodama.  
 
V nadaljevanju smo vrednotili območje ireverzibilne permeabilizacije, ki ga predvideva model z 
eksperimentalno določenim območjem. Slika xi prikazuje porazdelitev električnega polja pri 
električnem vzbujanju s pulzom amplitude 960 V. S temno rdeče je prikazano območje, ki je 
izpostavljeno poljskim jakostim nad 700 V/cm in torej ireverzibilno permeabilizirano. S črno 
konturo je označeno eksperimentalno določeno območje ireverzibilne permeabilizacije, ki se zelo 
dobro ujema z modelsko izračunanim območjem.  
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Nazadnje smo opravili vrednotenje modela še z eksperimentalnimi podatki o celotnem toku, 
izmerjenem pri različnih amplitudah pulzov. Slika xii prikazuje primerjavo izračunanega toka po 
zaključeni permeabilizaciji in izmerjenega toka na kocu pulza. Ujemanje med izračunanim in 
izmerjenim tokom smo ovrednotili z merami, kot sta srednji kvadratični pogrešek (RMSE) in 
neenakostni kriterij po Theil-u (TIC). Slednji pravi, da je ujemanje med dvema vrstama dobro za 
vrednosti TIC manjše od 0.3. Na podlagi obeh mer, katerih vrednosti prikazuje Slika xii vidimo, da 
je ujemanje med modelskim in izmerjenim tokom zelo dobro. 
 
Tok, izračunan v posameznih časovno diskretnih korakih smo primerjali tudi s tokom, izmerjenim 
med trajanjem pulza (Slika xiii). Trajanje intervalov med posameznima časovnima korakoma pa 
smo določili s prilagajanjem izračunanega in izmerjenega toka. Primerjava je pokazala, da se 
modelsko izračunani tok ustali pred koncem trajanja pulza pri vseh napetostih vzbujanja, medtem 
ko merjeni tok pri višjih napetostih narašča ves čas trajanja pulza. Vzrok temu bi lahko bilo 
povišanje prevodnosti tkiva zaradi segrevanja ter tudi ionska disociacija. To sta pojava, ki bi lahko 
bila prisotna pri vzbujanju z višjimi napetostmi, vendar nista vsebovana v modelu.  
 
Vrednotenje časovno diskretnega modela permeabilizacije je pokazalo, da model zelo dobro opisuje 
permeabilizacijo tkiva. Med vrednotenjem modela smo postavili tudi nekaj hipotez, s katerimi smo 
poskusili pojasniti dogajanje med permeabilizacijo tkiva. Pri transportu snovi skozi 
permeabilizirano celično membrano sodelujejo različni transportnih mehanizmi, kot je npr. 
elektroforetski transport ionov, ki se odraža v povečani prevodnosti tkiva in difuzijski transport 
manjših molekul, kot npr. bleomicyn, s katero smo določali področje reverzibilne permeabilizacije. 
Oba transportna mehanizma sta povezana z enako vrednostjo reverzibilnega praga električnega 
polja, saj le-ta vpliva na permeabilizacijo celične membrane, vendar je transport ionov bistveno 
hitrejši od transporta molekul. Domnevamo tudi, da povečani transport ionov prek celične 
membrane omogoča veliko število majhnih prehodno prepustnih struktur (por), ki izginejo po 
prenehanju trajanja pulza. Transport molekul čez celično membrano, ki poteka z difuzijo, pa 
omogoča manjše število večjih, stabilnih por, ki nastajajo z združevanjem manjših por in trajajo tudi 
po več minut. Ker majhne prehodno prepustne pore nastajajo hitro – takoj po začetku vzbujanja z 
električnim pulzom in ker je transport ionov hiter, se prevodnost tkiva med pulzom zelo hitro 
spreminja in posledično tudi porazdelitev električnega polja. Proces se nadaljuje, dokler ni doseženo 
ustaljeno stanje. V ustaljenem stanju pa je v permeabiliziranem delu tkiva poljska jakost nižja, kot 
na začetku vzbujanja. Domnevamo, da šele ustaljena porazdelitev poljske jakosti povzroča nastanek 
stabilnih por, ki posledično omogočajo transport molekul čez celično membrano.  
 
Z modelom smo tudi ugotovili, da poljska jakost med permeabilizacijo tkiva v posameznih časovnih 
korakih presega vrednost ireverzibilnega praga (Slika x(c)), kljub temu pa po zaključeni 
permeabilizaciji tkivo v teh delih ni ireverzibilno permeabilizirano. Zato domnevamo, da je za 
ireverzibilno permeabilizacijo tkiva potrebno daljše izpostavljanje tkiva poljski jakosti nad 
ireverzibilnim pragom. Domnevamo, da šele vrednosti polja v ustaljenem stanju, pod pogojem, da 
so višje od ireverzibilnega praga, povzročajo nekrozo tkiva.  
 



Povzetek 

 

 xviii 

(a)                                k=1 (b)                                k=2 

(c)                                k=3 (d)                                k=4 

(e)                                k=5  
 

 

E (V/cm) 

 

Slika x: Porazdelitev električnega polja v petih časovno diskretnih korakih med permeabilizacijo jetrnega 
tkiva. Slike (a) do (e) prikazujejo porazdelitev električnega polja za ustrezne časovno diskretne korake k=1 do 

k=5. 
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E (V/cm) 

 

Slika xi: Izmerjeno področje (črna kontura) in izračunano področje (temno rdeče) ireverzibilne 
permeabilizacije. 
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Slika xii: Izmerjeni (polna črta) in izračunani tok (*) na koncu pulza. 
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Slika xiii: Izmerjeni tok pri vzbujanju s pulzi različnih amplitud (polne črte) in tok izračunan z modelom v 

petih časovno diskretnih korakih (simboli) pri enakih amplitudah pulzov. 
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OPTIMIZACIJA PARAMETROV PERMEABILIZACIJE NA OSNOVI ČASOVNO 
DISKRETNEGA MODELA 
 
Kot smo že uvodoma omenili, je eden bistvenih razlogov za izdelavo modela, uporaba le-tega za 
optimizacijo parametrov elektropermeabilizacije – t.j. amplitude električnih pulzov in določitev 
postavitve elektrod za dosego izbranega cilja terapije. V primeru elektrokemoterapije je tako 
potrebno določiti amplitudo pulzov in postavitev elektrod, ki bi v tumorju povzročili jakosti 
električnega polja, višje od reverzibilnega praga. S tem bi dosegli permeabilizacijo celotnega 
volumna tumorja in torej vnos kemoterapevtika v vse tumorske celice.  
 
V zadnjem poglavju smo tako raziskali možnosti za določanje parametrov permeabilizacije z 
optimizacijo na osnovi modela za uporabo v elektrokemoterapiji. Optimizacijo parametrov smo 
najprej izvedli na modelih preprostih geometrij (Slika xiv) nato pa na modelu človeških možganov s 
tumorjem. Električne parametre možganov in tumorja smo določili na podlagi vrednosti, zbranih iz 
literature, potek odvisnosti σ(E) pa smo določili hipotetično. Natančen potek odvisnosti σ(E), ki bi 
ga lahko pridobili samo z dodatnimi eksperimenti, ne bi vplival na zaključke študije možnosti.  
 
V primeru geometrije, ki jo prikazuje Slika xiv(a), smo želeli določiti optimalno amplitudo pulza, ki 
ga moramo pritisniti na ploščati elektrodi, da celotni volumen tumorja izpostavimo poljskim 
jakostim nad reverzibilnim pragom. V primeru geometrije, ki jo prikazuje Slika xiv(b), pa smo 
iskali optimalno napetost pulza in hkrati optimalno razdaljo med elektrodama, da dosežemo 
permeabilizacijo celotnega tumorja. Izračun porazdelitve polja na osnovi optimalnih parametrov je 
dal želeni rezultat (Slika xv). V primeru prve geometrije je bilo celotno področje tumorja 
izpostavljeno poljskim jakostim tik nad reverzibilnim pragom, ker je polje med ploščatima 
elektrodama precej homogeno. V drugem primeru je bil vrhnji del tumorja (bližje elektrodam) 
izpostavljen bistveno višjim poljskim jakostim, kot spodnji del, kjer so jakosti električnega polja 
bile tik nad reverzibilnim pragom. Vzrok temu je nehomogena porazdelitev električnega polja pri 
taki postavitvi elektrod.  
 
(a) (b) 

 

 
Slika xiv: (a) Tkivo s krogelnim tumorjem in elektrodami položenimi ob straneh ter (b) tkivo s krogelnim 

tumorjem in elektrodami položenimi na vrhu. 
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(a) (b) 

         
Slika xv: Porazdelitev električnega polja v yz ravnini za geometriji, ki ju prikazuje Slika xiv: (a) ustreza 

geometriji na Sliki xiv (a) in (b) ustreza geometriji na Sliki xiv (b). 
 

Optimizacijo parametrov smo nato izvedli na modelu možganov s tumorjem. Trirazsežnostni model 
možganov smo izdelali na podlagi prereznih slik glave, pridobljenih z računalniško tomografijo 
(CT). Za izgradnjo trirazsežnostnega modela možganov smo izdelali poseben program, ki na osnovi 
podane pragovne vrednosti avtomatično razpozna rob možganov iz slik CT in zgradi trirazsežnostno 
geometrijo možganov. Izgradnja modela tumorja pa je zahtevala ročno določitev roba tumorja na 
podlagi podatkov iz slik CT, ker je bil rob tumorja premalo jasen za avtomatsko določanje s 
programom. Nadaljnja izdelava trirazsežnostne geometrije tumorja je potekala na enak način kot pri 
možganih.  
 
Slika xvi prikazuje trirazsežnostni model možganov s tumorjem. Model je zasukan za kot 24° glede 
na vodoravno ravnino, ker so pod takim kotom bile posnete tudi slike CT. Za dovajanje električnega 
vzbujanja smo upoštevajoč razsežnosti tumorja izbrali polje štirih parov igelnih elektrod, ki jih prav 
tako prikazuje Slika xvi. Pri definiciji optimizacijskega problema smo upoštevali omejitve 
generatorja električnih pulzov Cliniporator in sicer 16 A za maksimalni tok in 1000 V za 
maksimalno napetost. Obenem smo upoštevali zahtevo, da mora biti v izbranih točkah tumorja 
poljska jakost nad reverzibilnim pragom. Izbrane točke tumorja smo določili tako, da smo 
upoštevali tiste robne točke tumorja, v katerih so bile izračunane najnižje vrednosti polja.  
 
Z optimizacijo smo želeli določiti amplitudo pulzov in razdaljo med elektrodama za učinkovito 
permeabilizacijo tumorja. Pri optimizaciji amplitud pulzov se je izkazalo, da pri podanih omejitvah 
rešitev optimizacijskega problema ne obstaja. Če bi namreč želeli izpolniti pogoj, da poljska jakost 
preseže reverzibilni prag v izbranih točkah tumorja, bi morali izbrati bistveno višjo amplitudo 
pulzov, kot 1000 V. Tako smo v nadaljevanju pri optimizaciji parametrov upoštevali samo omejitvi 
toka in napetosti. Pri tem smo se zavedali možnosti, da na ta način dobljena poljska jakost ne bo 
nujno presegla reverzibilnega praga v izbranih točkah tumorja in da bo ta pogoj mogoče doseči 
samo s ponovno terapijo, pri kateri bodo elektrode postavljene na drugem mestu. 
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Slika xvi: Trirazsežnostni model možganov s tumorjem in vstavljenim poljem štirih parov igelnih elektrod. 

 
Ker je bila izgradnja mreže končnih elementov za model možganov s tumorjem in poljem igelnih 
elektrod izredno zahtevna, smo problem hkratne optimizacije amplitude pulza in razdalje med 
dvema paroma elektrod poenostavili tako, da smo naenkrat optimirali samo napetost pulza ter 
postopek ponovili za dve različni razdalji med paroma elektrod. Pri obeh razdaljah med paroma 
elektrod je bila z optimizacijo napetosti dosežena ena od omejitev generatorja - bodisi omejitev toka 
ali napetosti. Dobljeni optimalni napetosti pulza (za obe razdalji med paroma elektrod) pa nista dali 
take porazdelitve polja, ki bi povzročila permeabilizacijo celotnega tumorja. Podoben rezultat smo 
dobili tudi z optimizacijo amplitude pulza na štirih parih igelnih elektrod in sicer za primer, ko smo 
pritisnili na vse pare enako napetost (Slika xvii) in tudi za primer, ko smo vsakemu paru pritisnili 
drugačno – optimalno napetost.  
 
Omejitve generatorja pulzov so bile vzrok za le delno permeabilizacijo tumorja. Za permeabilizacijo 
celotnega volumna tumorja bi potemtakem morali spremeniti lego polja igelnih elektrod in postopek 
ponoviti ali pa uporabiti zmogljivejši generator. V povezavi s slednjim smo z optimizacijo želeli 
ugotoviti, kakšno napetost bi morali pritisniti posamičnemu paru igelnih elektrod, da bi dosegli 
permeabilizacijo celotnega tumorja. Za napetost na posamičnem paru igelnih elektrod smo dobili 
naslednje vrednosti: u1=1088.2 V, u2=485.7 V, u3=1200.1 V, in u4=1880.9 V. Pri vzbujanju s takimi 
pulzi pa bi skozi tkivo stekel tok 28.7 A. 
 
 

ZAKLJUČEK 
 
Predstavljeni časovno diskretni model permeabilizacije tkiva lahko po uspešnem vrednotenju 
uporabimo za simulacijo procesa permeabilizacije. Na ta način lahko spoznamo učinek vzbujanja z 
različnimi amplitudami pulzov in učinek postavitve elektrod na obseg permeabilizacije tkiva. Z 
modelom lahko izračunamo tudi tok, ki steče skozi tkivo pri izbrani postavitvi elektrod. Na podlagi 
tega podatka lahko v generatorju pulzov omejimo tok na vrednost, ki ne sme biti presežena, da ne bi 
prišlo do uničenja tkiva. Podatek o napetosti in ustreznem toku za učinkovito permeabilizacijo tkivo 
z izbranimi elektrodami lahko uporabimo tudi pri izbiri oziroma določanju tehničnih lastnosti 
generatorja pulzov. 
 
S pomočjo modela lahko ugotovimo, ali je bil posamezni del tkiva izpostavljen želenim jakostim 
električnega polja, prav tako pa lahko ugotovimo, ali je bila zdravemu tkivu, ki ni bilo predmet 
terapije, povzročena škoda.  
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Za uspešno uporabo modela je potrebno natančno določiti funkcijsko odvisnost σ(E) za vsako vrsto 
tkiva posebej. Zato smo v okviru tega dela predlagali metodo za določitev funkcijske odvisnosti 
σ(E) na podlagi meritev celotnega toka. 
 

  
 (a) (b) 

(c) (d) 

(e) (f) 

Slika xvii: Specifična prevodnost (leva stran) in porazdelitve električnega polja (desna stran) v tumorju v 
ustaljenem stanju; (a) in (b) presek v yz ravnini pri x=54.55 mm; (c) in (d) presek v xz ravnini pri y=174.44 

mm; (e) in (f) presek v xy ravnini pri z=20 mm. Amplituda pulza, dobljena z optimizacijo, je 701 V. Pri 
optimizaciji je bila dosežena omejitev na maksimalni tok 16 A. 
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Časovno diskretni model permeabilizacije tkiva lahko pomembno prispeva k izboljšanju metod 
zdravljenja z elektrokemoterapijo in elektro-gensko terapijo, saj ga je mogoče uporabiti za 
optimizacijo parametrov električnih pulzov in razdalje med elektrodama upoštevajoč zahteve 
posamične terapije. Optimizacija parametrov na podlagi modela ne zahteva izvedbe poskusov in jo 
je mogoče opraviti vnaprej - pred samo terapijo. Na podlagi optimalnih parametrov lahko 
zagotovimo učinkovitost terapevtske metode, saj je cilj optimizacije približati porazdelitev poljskih 
jakosti v tkivu želenim pragovnim vrednostim. Obenem pa nam takšni izračuni omogočajo 
določitev maksimalnih tokov in napetosti pri načrtovanju elektroporatorjev in elektrod.  
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AABBSSTTRRAACCTT  
 
 
 
Electropermeabilisation of cell membranes is a phenomenon which in the last few years has been 
increasingly exploited for medical purposes. Namely, when exposed to an external electric field of 
high sufficient amplitude a cell membrane becomes permeable for molecules and even 
macromolecules which otherwise can not enter the cell. In this way drugs, such as some 
chemotherapeutics, as well as nucleic acids, proteins and dyes can enter the cell. Transport of 
chemotherapeutics by means of electropermeabilisation is already used in clinics. The 
corresponding therapeutic approach is referred to as electrochemotherapy (ECT). On the other hand 
the use of electropermeabilisation for transport of DNA across the cell membrane, referred to as 
electrogentransfer, has now entered preclinical trials.  
 
The application of an external electric field for the purpose of electrochemotherapy and 
electrogenetransfer however must be done with precautions. Exposure of cells to too high electric 
field intensity can cause cell necrosis. On the other hand very low electric field intensities do not 
cause cell membrane permeabilisation at all. As an electric field is induced by applying usually 
rectangular electric pulses, an inappropriate pulse duration with respect to pulse amplitude can also 
cause cell necrosis. On the top of that, in case of electrochemotherapy, effective 
electropermeabilisation is achieved when the entire volume of the tumour is exposed to E intensities 
above reversible threshold, while in electrogenetransfer, for effective therapy, the subjected tissue 
should be exposed to E intensities above reversible and at the same time below the irreversible 
threshold. Therefore the choice of optimal electric pulse parameters for a particular application of 
electropermeabilisation is very important. 
 
To date, determination of optimal pulse parameters and electrode design for ECT and 
electrogenetransfer has been performed experimentally. For example by utilising rapid tests [Gehl 
and Mir, 1999] the pulse amplitudes appropriate for cell permeabilisation were determined by 
measuring the uptake of dyes or drugs which can enter permeabilised cells. In some reports the 
rapid tests were accompanied by finite element models, used to compute the electric field intensity 
at optimal parameters. However those models did not consider changes in the electrical properties 
of tissue resulting from permeabilisation.  
 
Thus, the aim of this thesis was to develop a time discrete model of tissue permeabilisation which 
can be used for determination of optimal parameters for effective tissue permeabilisation.  
 
The time discrete model presented in this thesis is based on the fact that tissue specific conductivity 
changes as a result of cell membrane permeabilisation when exposed to an external electric field. 
The change in tissue specific conductivity (σ) due to an external electric field (E) is given by σ(E) 
dependency. The latter should be obtained experimentally for each type of the tissue. As the change 
in tissue conductivity alters E distribution in the tissue at an applied constant pulse amplitude, the 
time discrete model of tissue permeabilisation consists of a sequence of static models, which 
describe E distribution in discrete time steps during tissue permeabilisation and thus describes the 
dynamics of permeabilisation. The determination of tissue conductivity in each static model in a 
sequence is based on E distribution from the previous step according to σ(E) dependency. The static 
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model that describes E distribution in tissue with particular specific conductivity can be either 
analytical or numerical.  
 
In the first part of the thesis the time discrete model with analytical description of E distribution is 
presented. An analytical model is developed for the geometry of two concentric cylindrical 
electrodes with tissue placed between the electrodes. In the analytical time discrete model, different 
σ(E) dependencies were implemented, such as stepwise, linear, exponential and S-shaped 
dependency. The model was incorporated into a simulation environment which provided a means 
for observation of the electropermeabilisation process for different electric pulse amplitudes, 
electrode radii and different σ(E) dependencies at time discrete steps. The simulation environment 
revealed that the extent of permeabilisation i.e. radius up to which tissue is permeabilised depends 
on the σ(E) dependency used. The latter also influences the number of static models at which 
changes in E distribution are present due to permeabilisation. Similar results were obtained by a 
model parametric study, which lead to the conclusion that determination of σ(E) dependency is 
important for assessment of tissue permeabilisation with the presented time discrete model. Thus an 
approach for determination of σ(E) dependency was proposed which combines the experimental 
results and the model of E distribution. The parameter study also showed the importance of E 
distribution on the extent of permeabilisation, which is in agreement with previous studies [Gehl et 
al., 1999, Miklavčič et al., 1998; Miklavčič et al., 2000]. While in the simulation environment the 
application of a rectangular pulse is assumed, investigation of the influence of the applied pulse 
shape on the dynamics and extent of permeabilisation is further performed. Ramp signals were 
tested and model results were compared with results of rectangular pulse applications.  
 
An analytical time discrete model was also used for investigation of the feasibility of real time 
control of tissue permeabilisation. For that purpose a closed loop control scheme was designed 
which employs proportional integral (PI) controller. Based on the results it was ascertained that the 
major drawback of real time control is the on-line measurement of the extent of permeabilisation. 
To obtain such information we proposed the use of a model based control.  
 
The analytical time discrete model of tissue permeabilisation presented was designed only for the 
particular geometry i.e. two concentric cylindrical electrodes. In general, analytical description of E 
distribution is possible when geometry, inhomogeneities and anisotropies of the tissue can be 
described in the same coordinate system. As biological tissue can have irregular shapes, 
inhomogeneities and anisotropies, the use of numerical methods is usually more appropriate for 
computation of the E distribution. Therefore we examined the feasibility of employing a finite 
element model by comparing the results of the analytical and finite element model for the same 
geometry. The results of both models were in close agreement, however the accuracy of the finite 
element model was limited when distinctive inhomogeneities or even discontinuities in the E 
distribution were present. This problem can be solved by generating denser mesh in such regions. 
Apart from this, the major drawback of the finite element model was that time spent on solving the 
model was significantly longer than in the case of the analytical model. 
 
As further in the thesis, permeabilisation in biological tissue with inserted needle electrodes is 
examined, simplifications in finite element modelling of needle electrodes were next investigated in 
respect to reducing time spent on solving the finite element model. An 8-faceted needle electrode 
geometry was proposed to be used in the finite element model instead of a cylindrical shape. 8-
faceted needle electrode geometry was determined to be superior in the model with a single needle 
electrode pair by means of a criteria function consisting of the weighted sum of the relative 
difference between measured and computed total current, the relative difference in CPU time spent 
on solving the model and the relative difference in the cross-section surface of electrodes. Such 
electrode geometry was further evaluated on physical models with needle arrays by comparison of 
computed total current and measured current. The agreement between modelled and measured 
current was good, being within 9% of measurement, except in cases with very thin gel. The reason 
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identified was electrode polarization. This effect was incorporated in the model which reduced the 
difference between the model and the measurement to less than 3%. 
 
Considering 8-faceted needle electrode geometry, a time discrete model of electropermeabilisation 
in liver tissue around two needle electrodes was designed by computing E distribution using the 
finite element model. In the time discrete model an S-shaped dependency between specific 
conductivity and E was considered. Parameter estimation of S-shaped dependency was performed 
on a set of current measurements, obtained by in vivo experiments. Thresholds obtained appear to 
be higher than previously published for rabbit liver tissue. Another set of measurements was used 
for model validation. All measurements were performed on rabbit liver tissue with inserted needle 
electrodes. Model validation was carried out in three different ways: first, through a comparison of 
total current at the end of pulse and computed current in the last step of the time discrete model; 
second, by comparing the area of irreversibly permeabilised tissue computed by the model and the 
area where tissue necrosis was observed in experiments; and third, by comparing reversibly 
permeabilised tissue in the model and the reversibly permeabilised area of tissue as obtained in the 
experiments. The model validation showed good agreement between modelled and measured 
results. The model also provided a means for better understanding processes that occur during 
permeabilisation. Based on the model, the permeabilised volume of tissue exposed to electrical 
treatment can be predicted. Therefore, the most important contribution of the model is its potential 
to be used as a tool for determining the electrode position and pulse amplitude needed for effective 
tissue permeabilisation. 
 
Thus in the final part of the thesis a feasibility study of model based optimisation of electric pulse 
parameters for treatment in electrochemotherapy was performed. The feasibility of model based 
optimisation was first examined on a model with simple geometry, i.e. a cube representing tissue 
and a sphere representing a tumour inside the tissue. Electrical treatment was performed with plate 
electrodes positioned either on the top or placed on the sides of the cube. The parameters subject to 
optimisation were pulse amplitude and distance between the electrodes. A nonlinear constrained 
optimisation method was used, which considered constraints on voltage and current supplied by the 
pulse generator and the condition that E intensity must exceed reversible threshold in selected 
points in the tumour. The objective of optimisation was to minimize the difference between the 
reference value of E intensity (i.e. E reversible threshold) and the E intensity computed by the 
model at selected points. The points selected were where the lowest values of E intensity were 
computed in the non-permeabilised tumour. The application of optimal pulse amplitude and 
distance between electrodes resulted in E distribution in the tumour just above the reversible 
threshold, which was an excellent result. Thus the model based optimisation was in continuation 
carried on more complex geometry – i.e. the human brain with a tumour.  
 
The human brain geometry was generated from computer tomography (CT) images. An approach 
for semiautomatic 3D geometry model generation from CT images was proposed and implemented. 
Electric treatment was applied through an array of 4 needle electrode pairs. Nonlinear constrained 
optimisation with the same conditions as in the case of simple geometry was used. The only 
parameter subject to optimisation was pulse amplitude. The distance between the electrode pairs 
was not optimised because problems with automatic mesh generation were encountered due to the 
complex geometry. Several optimisations were run, i.e. voltage was applied only to inner 
electrodes, only outer electrodes and to all electrodes. However in all cases the optimisation 
terminated by reaching constraints either on maximal voltage or maximal current supplied by the 
generator, without satisfying the condition that E must exceed the reference value at selected points 
of the tumour. That pointed to the conclusion that the treatment must be repeated by considering 
different positions of the electrodes or by using a different pulse generator. Additionally, another 
optimisation was run which assumed no constraints on generator power limitation. Optimal pulse 
parameters in this case gave E intensity above reversible threshold in all selected points in the 
tumour.  
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Model based optimisation showed that the time discrete model of tissue permeabilisation can be 
used for determination of optimal pulse parameters in a non-invasive way before therapy. The 
efficiency of the optimisation however depends on the accuracy of the determined σ(E) dependency 
and the constraints of the pulse generator. Namely, due to generator limitations on the pulse 
amplitude and current it is not always possible to obtain required E intensity in defined points of the 
tissue. Further, the optimisation of the distance between electrodes in models with a numerical 
description of E distribution is limited by the complexity of the geometry, because it depends on the 
automatic mesh generation. While in complex geometries mesh generation depends on tuning initial 
mesh parameters, in simple geometries automatic mesh generation can be performed without 
changing those parameters during optimisation. On the other hand, optimisation of pulse amplitude 
is not critical and thus optimal pulse amplitude can be determined regardless of the complexity of 
the model geometry. The optimisation of electric pulse parameters based on the time discrete model 
showed the importance of knowing the E distribution in the tissue to be permeabilised. Only in this 
way can the information be obtained if a predetermined volume of tissue is to be permeabilised. 
Further, model based optimisation can be extremely useful for successful electrogenetransfer, 
because the optimal pulse amplitude can be computed, which exposes the tissue under treatment to 
an E distribution just above the reversible threshold. As in most tissues, the two E threshold values 
– reversible and irreversible – are very close to each other, the exposure of tissue to E above 
irreversible threshold is minimized in this way, which is important for effective electrogenetransfer. 
The most important contribution of model based optimisation of pulse parameters therefore is that it 
yields optimal parameters with respect to the therapeutic approach intended, in a non-invasive way 
before the therapy. Additionally, model based optimisation can be used to establish the efficacy of 
the therapeutic approach considering limitations of the pulse generator and the electrode setup. 
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11  IINNTTRROODDUUCCTTIIOONN  
 
 
 
Exposure of cells, either in suspension or in tissue, to the appropriate, short, intense electric pulses 
results in a reversible change of their membrane permeability [Tsong, 1991]. Consequently the 
membrane becomes permeable for molecules which otherwise cannot enter the cell, such as 
proteins, some drugs and nucleic acids.  
 
This phenomenon is already exploited for clinical purposes in order to facilitate the transfer of 
chemotherapeutics into cells. The corresponding therapeutic method is referred to as 
electrochemotherapy [Mir et al., 1991]. In preclinical trials another application is currently taking 
place, where DNA is transferred into cells by means of an applied external electric field [Jaroszeski 
et al. 1999; Neumann et al. 1999]. The method is termed as electrogentransfection and is currently 
gaining a lot of attention, because it is considered a safer method compared to other methods of 
gene transfer using viral vectors [Ferber, 2001].  
 
The change in permeability of cell membrane can also result in other phenomena. When two 
neighbouring cells are permeabilised a fusion of the two can occur. The phenomenon is termed 
electrofusion [Chizmadzhev et al., 1995]. It is also possible to insert molecules (proteins) into 
membrane of permeabilised cells, which is known as electroinsertion [Maček-Lebar et al., 1998]. 
 
Theory and experiments have shown that efficacy of electropermeabilisation depends on electric 
field intensity across a given cell, its size and shape and also on the electric pulse parameters 
applied (amplitude, number, duration). In electrochemotherapy a train of short and intense 
rectangular electrical pulses is usually applied in order to facilitate the transfer of chemotherapeutics 
into cells. Such pulses have no, or minimal, cytotoxic effects by themselves. The local field 
experienced by the cell in tissue during electropermeabilisation is a function of applied voltage, 
electrode design and the conductivity of regional tissue elements and extra-cellular media. 
 
Description of the phenomenon of the permeabilisation has been approached theoretically and by 
means of experimental observations and results. However exact mechanisms that occur during 
permeabilisation have not yet been fully elucidated. In continuation we will thus describe basic 
findings and different approaches towards the explanation of permeabilisation phenomena.  
 
 

1.1 DEFINITION OF PERMEABILISATION AT THE CELL LEVEL 
 
A cell membrane is a lipid bilayer which separates the interior of the cell from the exterior. The 
function of the cell membrane is to isolate the chemical environment inside the cell from the 
outside, by allowing only selected components to pass in and out of the cell.  
 
However by applying short intense electric pulses cell membrane permeability may be changed. In 
such a case enhanced cell membrane permeability depends on the external electric field. The 
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relation between superimposed transmembrane potential and the electric field intensity is for 
spherical cell presented with Schwan’s equation: 
 

ϑcosfREVm =∆ ,       (1.1) 
 
where Vm is the induced transmembrane potential (TMP), f numerical factor, E applied external 
electric field, R the cell radius and ϑ  the polar angle measured from the centre of the cell with 
respect to the external electric field. A generalized form of Schwan’s equation describing all 
spheroidal cells has been recently developed [Kotnik and Miklavčič, 2000].  
 
The value of transmembrane potential at which a cell membrane is permeabilised is referred to as 
the critical value. Reported values of critical transmembrane potential are in the range 0.2 V – 1 V 
[Kinoshita and Tsong, 1997; Teissie and Rols, 1993]. As the membrane bilayer is common to 
eucaryotic cells the critical transmembrane potential is also similar for various types of cells. 
Therefore with respect to Schwan’s equation the smaller the radius of the cell, the larger the 
external electric field is needed for membrane permeabilisation. 
 
Cell membrane permeabilisation can be assessed through the extent of permeabilisation i.e. the 
surface of membrane permeabilised by the external electric field [Gehl, 2003] or on a large scale it 
can be quantified by the penetration of nonpermeant cytotohic agents [Puc et al., 2003], 
nonpermeant dyes and fluorescent dyes that entered the cell or by measuring the leakage of the 
endogenous metabolite [Teisse et al., 1999]. 
 
 

1.2 THEORETICAL MODELS OF CELL PERMEABILISATION 
 
Although the relation between an external electric field and the induced transmembrane potential 
expressed by Schwan’s equation is relatively simple, the molecular events at the membrane level 
are extremely complicated. The complexity of events caused a variety of approaches and 
consequent development of corresponding theoretical models aimed at description of cell membrane 
permeabilisation. A variety of models have been developed which describe phenomena related to 
permeabilisation to a different extent, however a complete model description of phenomenology of 
permeabilisation has not yet been provided. That is also due to the fact that molecular events which 
take place during permeabilisation have not been experimentally observed to a full extent. Also, as a 
result, none of the models could be experimentally validated.  
 
In general the theoretical model of cell membrane permeabilisation can be divided into the 
following groups: electromechanical models [Crowley, 1973], denaturation model [Tsong, 1991], 
phase transition models [Sugar, 1991; Sugar and Neumann, 1984], and a model based on the theory 
of aqueous pathways [Weaver et al., 1999]. The description of these models is given in [Weaver 
and Chizmadzhev, 1996; Kotnik, 2000]. Here we will thus just briefly present some advantages and 
shortcomings of each model type.  
 
Electromechanical models describe permeabilisation as a large scale phenomenon [Kotnik, 2000] 
and neglect the molecular structure of the cell membrane. They fail in describing the durability of 
permeabilisation and dependence on pulse duration, as well as they do not distinguish between 
reversible membrane breakdown and irreversible rupture. With respect to this, phase transition and 
denaturation models are superior, because they incorporate all those phenomena and also explain 
permeabilisation by structural changes within the molecules. The phase transition model is based on 
a statistical mechanical model of lipid membrane structures, however it does not describe the 
permeabilised cell membrane. This phenomenon is described by the denaturation model which 
presents permeabilisation based on specific effects at the membrane protein level, however its 



Chapter 1 

 

 3

drawback is that it does not incorporate the permeabilisation of the lipid bilayer. The model based 
on aqueous pore theory is prevalent at the moment because it represents a compromise between the 
above models. It describes permeabilisation as a formation of transient aqueous pores in the lipid 
bilayer. Recent results from molecular dynamics simulation give it additional credibility [Marrink et 
al., 2001]. 
 
As opposed to theoretical models there are also black box models which describe events at the cell 
level based on RC elements. In those models the cell membrane is presented as a capacitor and 
intra-cellular and extra-cellular media as two resistors [Somiari et al., 2000].  
 
In general the shortcoming of all models describing permeabilisation on a cell level is that they do 
not apply to a tissue, where the permeabilisation phenomena is even more complicated as the 
number of factors that influence permeabilisation is even larger. Some attempts towards expansion 
of cell models to a tissue level were performed by RC black box models [Gowrishankar and 
Weaver, 2003]. They were expanded into a matrix, which consists of capacitors and resistors in 
order to describe the tissue permeabilisation. However the intricacy and variability of the model 
parameters was too high, preventing the use of such models for accurate modelling of tissue 
permeabilisation [Somiari et al., 2000].  
 
 

1.3 TIME COURSE OF CELL PERMEABILISATION 
 
Permeabilisation is an extremely rapid process as it can be induced with even submicrosecond 
electric pulses of high enough amplitude [Kinosita and Tsong, 1977]. Direct monitoring of 
permeabilisation events which is usually performed by microscopic imaging methods thus require a 
temporal resolution lower than microseconds. The monitoring of permeabilisation is performed in 
different ways; for example: by observing the changes in membrane structure [Chang and Rees, 
1990], by imaging changes in transmembrane potential [Hibino et al., 1991; Hibino et al., 1993], 
and by observing transmembrane transport caused by permeabilisation [Rols and Teissie, 1993]. On 
the other hand determination of membrane resealing is in most cases performed through current 
measurements [Abidor et al., 1993; Chernomordik et al., 1987; Hibino et al., 1993], by measuring 
rate of swelling [Kinoshita and Tsong, 1977a] or by monitoring cell hemolysis [Neamtu et al., 
1999]. 
 
Chang and Rees [Chang and Rees, 1990] performed the first direct examination of structural 
changes in cell membrane due to electropermeabilisation. They observed volcano-shaped openings 
on the cell membrane of human red blood cells which were exposed to a radio frequency electric 
field by using rapid freezing electron microscopy. However the volcano shaped openings reported 
were too large and were probably resulting from the enlargement of smaller primary pores by 
osmotic or hydrostatic pressure [Neumann et al., 1999]. 
 
Hibino et al. [Hibino et al., 1993] visualised the transmembrane potential in sea urchin eggs with a 
voltage sensitive fluorescent dye. They observed that 0.5 µs after the pulse onset both sides of the 
egg membrane were permeabilised, however the positive electrode side had higher conductance. 
After that, conductivity of the membrane increased steadily, with the distinction that the 
conductivity increase was faster on the negative electrode side. Their study first observed the 
asymmetry of permeabilisation, i.e. that membrane conductance on the negative electrode side 
increased faster than the conductance on the positive side.  
 
However the exact course of permeabilisation during the pulse has not been experimentally 
observed yet. Time dependence of permeabilisation is thus described only hypothetically by 
considering experimental observation and theoretical models. Teissie and Rols [Teissie and Rols, 
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1993] described the time course of permeabilisation by two-step kinetics: when exposed to critical 
electric field intensity the creation of defects in cell membrane appears in a timescale of a few 
nanoseconds (induction step) which is followed by an expansion on a micro second scale 
(expansion step). As soon as the field intensity is lower than the critical value, stabilisation of 
permeabilised state occurs which brings the membrane to the permeabilised state for small 
molecules [Teissie et al., 1999]. 
 
Other hypotheses, based on the state transition model, favour the appearance of hydrophobic pores 
due to electrically induced entrance of water and ions. Those pores actually represent a transient 
state which leads to formation of hydrophilic pores [Neumann and Kakorin, 1996]. Hydrophilic 
pores are considered as long–lived permeation sites [Neumann et al., 1999] which are responsible 
for transport of small molecules. 
 
Another hypothesis explains permeabilisation with lipid rearrangements when exposed to an 
external electric field, which result in formation of pores, also called electropores [Weaver and 
Chizmadzhev, 1996]. Based on that, the phenomenon of increased cell membrane permeability 
under electric field exposure is referred to as electroporation.  
 
However, the appearance of pores has not been experimentally observed and further, the mechanism 
of pore formation has not yet been explained. The volcano shaped openings observed in [Chang and 
Rees, 1990], are too large and are probably resulting from the enlargement of smaller primary pores 
by osmotic or hydrostatic pressure [Neumann et al., 1999]. In literature it is therefore proposed to 
use term electropermeabilisation instead of electroporation [Mir et al., 1995].  
 
A great majority of cell membrane recovery studies were performed by applying high voltage pulse 
followed by a test pulse with different pauses between the two pulses. The test pulse was low 
voltage and therefore did not affect the membrane permeability. They revealed that the process of 
membrane recovery occurs in at least two stages, one in a time scale of microseconds, and the other 
in a range of seconds to minutes [Hibino et al., 1993; Chernomordik et al., 1987]. In [Abidor et al., 
1993] the membrane resealing was determined on cell pellets. They observed that pellet 
conductivity decreased in three stages. The first stage was very fast – approximately 0.5-1 µs, the 
second stage took approximately 10 µs, while the complete relaxation of pellet conductivity to its 
initial state took several minutes. 
 
 

1.4 TRANSPORT MECHANISM RELATED TO CELL 
PERMEABILISATION 

 
A permeabilised cell membrane is no longer a barrier for the uptake of ions and molecules. Their 
transport through permeabilised cell membranes can be based on different mechanisms such as 
diffusion, electrophoresis and osmosis which can take place at different times with respect to pulse 
application. During the pulse application, transport occurs by diffusion, electrophoresis and 
electroosmosis, while after the pulse application, transport can occur only due to diffusion provided 
the membrane is still permeabilised. The millisecond measurements of transport during and after the 
electroporation pulse are presented in [Prausnitz et al., 1995]. 
 
Ion transport is electrically driven and thus occurs during the pulse application. It can be measured 
by increased membrane conductivity. Transport by diffusion is the predominant mechanism for 
transport of small molecules. It occurs due to the difference in the concentration of molecules inside 
and outside the cell. Similarly the osmotic transport is a consequence of the difference in osmotic 
pressure on both sides of a permeabilised membrane. 
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The transport of macromolecules, as well as DNA, is predominantly electrophoretic [Rols and 
Teissie, 1998] however it occurs in several temporally distinct stages [Neumann et al., 1999]. 
Macromolecular transport is facilitated first by adsorption of the macromolecules on the membrane 
surface [Neumann, 1992] and then electrophoretically driven into the cell. As macromolecular 
transport takes place during the pulse, in order to achieve sufficient uptake, the permeabilising 
pulses are longer [Wolf et al., 1994]. Another approach to achieving sufficient uptake is presented 
in [Satkauskas et al., 2002], where first a short high voltage electric pulse is applied, which 
permeabilises cells, followed by a longer low voltage electrophoretic pulse(s) that does not affect 
cell permeabilisation level but facilitates DNA transfer into the cell. 
 
There are also different models describing the transport of ions, molecules and DNA. The diffusion 
driven transport of small molecules is presented with a pharmacokinetic model in [Puc et al., 2003], 
while the model of DNA uptake is given in [Neumann et al., 1999]. Osmotic transport across 
aqueous pores is incorporated in a model presented in [Weaver and Chizmadzev, 1996]. Their 
model also successfully predicts ion transport by heterogeneous transient pore population by 
concluding that large number of metastable pores with short life-times (t<1 ms) can quantitatively 
account for significant transport of ions, charged molecules and possibly large molecules. 
 
 

1.5 ASSESSMENT OF PERMEABILISATION 
 
The first method used for the assessment of permeabilisation was electrical measurement of either 
the change in membrane capacitance or the change in cell conductivity when exposed to an external 
electric field [Abidor et al., 1979; Kinoshita and Tsong, 1979; Chernomordik et al., 1982]. Apart 
from determining values of reversible and irreversible induced transmembrane potential, those 
measurements revealed information about the initiation of permeabilisation and time course of 
resealing [Abidor et al., 1979]. 
 
Another approach towards assessing cell membrane permeabilisation is the microscopic imaging 
method. This approach comprises observation of changes in membrane structure [Chang and Rees, 
1990], imaging of changes in transmembrane potential [Hibino et al., 1991; Hibino et al., 1993], 
and monitoring of transmembrane transport caused by permeabilisation [Rols and Teissie, 1993; 
Gabriel and Teissie, 1999]. Those studies provided information about the onset of permeabilisation 
and the influence of electric pulse parameters on permeabilisation. 
 
Finally the cell membrane permeabilisation was also assessed by measuring the uptake of 
nonpermeant molecules that entered a permeabilised cell. This method was used for the 
determination of critical transmembrane potential [Teissie and Rols, 1993], the effect of pulse 
parameters on permeabilisation [Teissie and Rols, 1998] and consequently for the optimisation of 
pulse parameters for effective permeabilisation [Gehl and Mir, 1999]. 
 
 

1.6 CELL AND TISSUE PERMEABILISATION 
 
The mechanisms of cell membrane permeabilisation have been studied extensively. As opposed to a 
single cell, cell membrane permeabilisation in tissue might be influenced by additional factors, such 
as cell density, interaction and arrangement of cells in tissue as well as the properties of external 
medium. Several studies investigated the influence of those factors on induced transmembrane 
potential of the cell.  
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The studies of densely packed cells have shown the influence of cell density and organization on 
induced transmembrane potential [Susil et al., 1998]. Similarly the studies of cells organized in 
simple cubic, body-centered cubic and face-centered cubic lattice have shown that induced 
transmembrane potential decreases due to interaction with neighbouring cells. At the same time the 
surface of the cell exposed to particular electric field intensity changes [Pavlin et al., 2002]. In 
addition in [Pucihar et al., 2001] it was shown that external medium conductivity also affects the 
change in transmembrane potential of the cell. 
 
In general, the tissue properties related to electropermeabilisation can be measured by means of 
macroscopic parameters such as effective tissue conductivity (σ) [Davalos et al. 2000; Davalos et 
al., 2002] and specific tissue permittivity (ε). The relation between effective bulk conductivity of 
cells and factors such as a cell’s volume fraction, conductivity of medium, membrane conductivity, 
cell orientation and critical transmembrane potential (TMP) has been theoretically described in 
[Pavlin et al., 2003]. This theory can be extended to more concentrated cell samples i.e. tissue. Such 
knowledge can be further used for monitoring of changes in membrane conductivity through the 
measurement of bulk effective conductivity during permeabilisation.  
 
Therefore the relation between cell membrane permeabilisation and tissue permeabilisation is of 
great importance for assessment of permeabilisation. The measurement of tissue electrical 
properties can give information about cell membrane permeabilisation. And also in the opposite 
direction, if we know the value of critical transmembrane potential of the cell and its organization in 
tissue, we could compute the electric field intensity that needs to be applied across the tissue in 
order to permeabilise cells.  
 
Still, threshold values of electric field intensity needed for tissue permeabilisation were in most 
cases determined by combination of experimental results and numerical models [Gehl et al., 1999; 
Miklavčič et al., 2000]. The value of electrical field intensity at which reversible permeabilisation 
of tissue is achieved is termed the reversible threshold, while electric field intensity at which tissue 
necrosis occurs is termed the irreversible electric field threshold. 
 
 

1.7 ELECTRODE CONFIGURATION 
 
Type of electrodes and their position determine the electric field distribution in tissue [Miklavčič et 
al., 1998; Gehl et al., 1999]. In ex vivo experiments several types of electrodes were used such as 
plate electrodes, needle electrodes, wire electrodes and combinations of multiple needle electrodes 
placed in rows or in a circle. 
 
In in vivo experiments plate electrodes [Puc et al., 2001] and needle electrodes are predominantly 
used [Gilbert et al., 1997; Ramirez et al., 1998; Hofmann, 2000]. The plate electrodes are employed 
for permeabilisation of tissue accessible from the surface, such as in cases of transdermal drug 
delivery. The advantages of plate electrodes are non-invasiveness and relative homogeneity of the 
electric field distribution produced, however their disadvantage is that they are sometimes difficult 
to fit to tissue and to maintain in the same position during therapy. The contact between the tissue 
and plate electrodes can be improved by adding conductive gel. On the other hand needle electrodes 
provide deep penetration of electric field in tissue and are therefore well suited for permeabilisation 
of deep seated tissue structures. However, needle electrodes produce an inhomogeneous field 
distribution. This can be minimised by using arrays of needle electrodes. Several needle electrodes 
can be placed either in parallel rows [Gehl et al., 1999] or in a circle [Hofmann, 2000]. Two circle 
configurations are presented in [Gilbert et al., 1997], where, in the first configuration, six needles 
are positioned in the circle and in the second configuration eight needles are positioned in the circle 
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and one electrode is positioned in the centre of the circle (denoted as 8+1). For larger volumes, the 
so called honeycomb electrode design is used [Mir et al., 1997; Ramirez et al., 1998], where many 
needle electrodes are positioned in a honeycomb form.  
 
 

1.8 ELECTRIC PULSE PARAMETERS 
 
Since the experiments presented in [Mir et al., 1991; Belehradek et al., 1991] rectangular pulses 
have been predominantly used in in vivo applications of tissue permeabilisation. Compared to 
exponentially decaying pulses, which were used before, rectangular pulses enable independent 
setting of pulse amplitude and duration. Their application provides exposure of tissue to 
permeabilising electric field intensity for a sufficient time, by avoiding too high field strengths [Mir 
and Orlowski, 1999]. The latter cannot be avoided in case of exponentially decaying pulses. 
 
Rectangular pulse parameters that influence tissue permeabilisation are, pulse amplitude (causes 
electric field distribution in tissue), pulse number and duration. Electric field intensity is the 
governing factor that controls permeabilisation, as only the area of tissue exposed to electric field 
intensity above reversible thresholds is permeabilised. Pulse number (N) and pulse duration (T) 
control the degree of flow of exchanged molecules between cell and external medium [Maček-
Lebar, 1999; Puc et al. 2003; Teissie et al., 1999]. The effect of both parameters however is not the 
same; at a given cumulated pulse duration (N*T=const.) a higher electropermeabilisation efficacy is 
obtained at higher pulse number [Rols and Teissie, 1993]. Namely, the number of pulses increases 
the possibility for any cell to become permeabilised and increases the number and size of membrane 
modifications. However in [Gabriel and Teissie 1997; Gabriel and Teissie 1999] it was also 
observed that the intensity of alterations increases with the pulse length. In any case, when selecting 
pulse duration it should be considered to select a duration longer than the time required to obtain 
membrane modifications and shorter than the time at which irreversible changes in cell membrane 
may occur [Mir and Orlowski, 1999]. The latter may be caused by excessive heating of the tissue. 
 
Another important issue related to pulse parameters is the electrode orientation. Serša et al. in 1996 
showed that alterations of electrode orientation during the pulse application increase the efficacy of 
tissue permeabilisation.  
 
 

1.9 DETERMINATION OF OPTIMAL PARAMETERS FOR TISSUE 
PERMEABILISATION 

 
In terms of electrochemotherapy for effective tissue permeabilisation the pre-required volume of 
tissue needs to be exposed to electric field intensity above the reversible threshold. When related to 
electrogenetransfer in addition to this requirement also the electric field intensity should be below 
the value which causes cell necrosis. This is a very rigorous requirement for application because the 
range of electric field intensities between reversible and irreversible tissue permeabilisation is often 
quite narrow [Mir and Orlowski, 1999]. 
 
As mentioned before, electrode configuration, electric pulse parameters (amplitude, duration, 
number) and the shape and type of tissue are parameters which determine the efficacy of 
permeabilisation. To achieve efficient permeabilisation of a given volume of specific tissue the 
choice of optimal pulse parameters and electrode configuration is therefore crucial. 
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The determination of optimal pulse duration was based on experimental work on cells in culture. 
Considering the requirements for the pulse length i.e. less than the time which causes irreversible 
cell damage and more than the time needed to permeabilise cell, the optimal pulse duration was 
determined to be 100 µs [Mir et al., 1988; Rols and Teissie, 1989]. Latter in vivo experiments have 
also shown this pulse duration to give excellent results. Recently the same pulse parameters were 
systematically tried in vivo [Maček-Lebar et al., 2002]. 
 
The number of pulses increases the number and size of membrane modification. Thus a higher 
number of pulses is beneficial. In [Mir et al., 1988] it was shown that the application of 8 pulses 
gives better results than the application of 4 pulses. Therefore 8 pulses are considered as optimal for 
antitumour effect. 
 
Pulse amplitude and electrode configuration are nevertheless the most important parameters 
responsible for tissue permeabilisation, as they control electric field distribution in tissue. Several 
rapid tests were proposed to determine the electric field intensity needed for in vitro 
permeabilisation of a given cell type [Mir and Orlowski, 1999]. They are based on measurement of 
the uptake of molecules which can not enter intact cells. Some molecules such as Cr51-EDTA and 
Lucifer Yellow also leak out of irreversibly permeabilised cells. This provides information about 
the maximal pulse amplitude that can be applied without causing cell necrosis. Similar tests which 
were combined with numerical models of electric field distribution were performed for in vivo 
[Gehl et al., 1999; Miklavčič et al., 2000] determination of electric field intensities important for 
tissue permeabilisation. However those models assumed the electric field distribution in non-
permeabilised tissue, while electric field distribution in permeabilised tissue might be different.  
 
The electrode configurations used in in vivo applications are usually determined by standard 
electrode holders. The effect of electrode configuration on electric field distribution in tissue can be 
determined by means of numerical models [Miklavčič et al., 1998; Gehl et al., 1999; Brandinsky 
and Daskalov, 1999]. Despite that the choice of electrode configuration for a particular treatment is 
still based on empirical results. Thus for the treatment in electrochemotherapy Brandinsky and 
Daskalov [Brandinsky and Daskalov, 1999] addressed the importance of electrode design 
optimisation with respect to tumour size and location. 
 
The optimal pulse parameters described so far are related to electrochemotherapy. In the case of 
electrogenetransfer those optimal pulse parameters should be slightly modified because after cell 
membrane permeabilisation, gene transfer is facilitated by electrophoretic forces. This requires 
additional low voltage pulse(s) to be added after tissue permeabilisation is achieved [Satkauskas et 
al., 2002] or an increase of pulse length [Gehl and Mir, 1999]. The determination of optimal pulse 
parameters for in vivo gene transfer by rapid test was described by Gehl and Mir [Gehl and Mir, 
1999]. 
 
In summary, the optimal number and duration of pulses have been already determined for 
application in electrochemotherapy, however the pulse amplitude and electrode design are the two 
parameters that vary depending on the type of tissue and region of tissue to be permeabilised. 
Despite numerous numerical models that have been developed to describe electric field distribution 
in tissue for different pulse amplitudes and different electrode designs, those models have not been 
used to determine the optimal pulse amplitude and electrode design for effective tissue 
permeabilisation. This was due to their inefficiency to model the electropermeabilisation process 
and consequently electric field distribution in permeabilised tissue.  
 
Therefore the most important contribution of our work is development of a time discrete model that 
describes tissue permeabilisation and implementation of this model for the optimisation of pulse 
amplitude and electrode design. 
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1.10  APPLICATIONS OF TISSUE PERMEABILISATION 
 
The two leading applications of tissue permeabilisation are electrochemotherapy and 
electrogenetransfer. 
 
Electrochemotherapy could be defined as a local potentiation, by means of permeabilising electric 
pulses, of the antitumour activity of a nonpermeant anticancer drug possessing a high intrinsic 
cytotoxicity [Mir, 2000]. Thus electrochemotherapy is performed by administration of a cytotoxic 
drug and permeabilisation of the area of interest by appropriate electric pulses. The advantage of 
electrochemotherapy over standard chemotherapy is that it provides localized treatment, which also 
requires much lower drug doses than chemotherapy. The positive effect of electric pulse application 
in treatment was reported by Mir and Okino independently [Okino and Mohori, 1987; Mir et al., 
1988; Mir et al., 1991]. Soon after that in 1991 the first clinical trials of electrochemotherapy were 
performed at The Institute Gustave-Roussy and later also in other cancer research centres. Recent 
clinical trials which have been performed in five cancer research centres since 1998 are summarized 
in [Mir et al., 1998] as well as in [Heller et al., 1999; Gehl, 2003; Serša et al., 2003]. These clinical 
trials demonstrated excellent results in antitumour therapy: in [Heller et al., 1998] the 
electrochemotherapy of basal cell carcinoma showed complete regression in 99% of the nodules; 
[Panje et al., 1998] achieved complete regression in 50% and partial regression in the rest of oral 
cavity squamous cell carcinoma; further [Kubota et al., 1998] obtained complete recovery in 82% of 
metastases of bladder transitional cell carcinoma when exposed to electrochemotherapy; and finally 
at The Institute of Oncology in Ljubljana they performed electrochemotherapy of malignant 
melanomas using cisplatinum [Serša et al., 1998]. They were first to show that electrochemotherapy 
can also be effectively performed with cisplatinum instead of just bleomicyn as was the practice 
before.  
 
In addition to electrochemoptherapy, electrogenetransfer is another promising application of 
electropermeabilisation. Before employing electrogenetransfer, different methods had been used to 
facilitate the transfer of DNA into the cell. Each of these methods was however inadequate for a 
particular reason, i.e. for being inefficient or non-localized. The method of gene transfer by means 
of viral vectors has even caused the loss of life [Ferber, 2001]. Compared to those methods, 
electrogenetransfer is superior because it has proven to be highly efficacious especially when 
exposed to longer pulses than those used in electrochemotherapy [Mir et al., 1999], and also 
because it provides targeted gene expression due to its dependency on electric field distribution. The 
first demonstrations of in vitro gene transfection by means of electric pulses were reported in 
[Neumann et al. 1982; Wong and Neumann, 1982]. Due to its simplicity and efficacy the method of 
DNA electrotransfer has become a routine technique for introducing foreign genes into bacterial, 
plant and animal cells in vitro [Simon, 1993]. Successful results obtained on living cells lead to in 
vivo experiments. Electrogenetransfer has been performed in vivo in muscle tissue [Mir et al., 1999; 
Aihara and Miyazaki, 1998], tumour [Rols et al., 1998], skin [Zhang et al., 2002], and brain tissue 
[Nishi et al., 1996]. However no clinical trials have been performed to date. The important 
discovery obtained in vivo on muscle cells was that longer pulse durations than in 
electrochemotherapy increases DNA uptake [Mir et al., 1999]. The most recent report [Satkauskas 
et al., 2002] suggests the use of a short high voltage pulse that permeabilises cells followed by a 
longer low voltage pulse that enables electrophoretic gene transport. The successful results of 
electrogenetransfer obtained in vivo and the advantages of electrogenetransfer over other methods 
imply that this method will soon be put to use in clinical settings. 
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1.11 OBJECTIVES OF THE THESIS 
 
The main objective of the proposed work was to develop a time discrete model of tissue 
electropermeabilisation which can be employed for the assessment of the extent of tissue 
permeabilisation. As specific conductivity changes due to cell membrane permeabilisation when 
exposed to an external electric field, the time discrete model has to provide information about 
electric field distribution in discrete time steps during permeabilisation as well as to incorporate the 
functional dependency σ(E), which defines how the tissue conductivity changes when exposed to 
external electric field.  
 
Another objective of the thesis was to develop a simulation environment based on the time discrete 
model that presents tissue permeabilisation at user supplied pulse amplitude, tissue properties and 
electric field thresholds. In this way the behaviour of the time discrete model could be tested against 
the experimental knowledge of tissue permeabilisation. Another purpose of the simulation 
environment was to examine the influence of different functional dependencies σ(E), such as 
stepwise, liner, exponential, and S-shaped dependency on the course and the extent of 
permeabilisation at particular pulse amplitudes. The purpose of the time discrete model was also to 
establish the feasibility of real-time control of tissue permeabilisation.  
 
Electric field distribution in a time discrete model can be described either analytically or 
numerically, depending on the tissue geometry and electrical properties. As numerical methods, for 
example, the finite element method, are computationally demanding and time consuming, a further 
purpose of the thesis was to determine the simplifications which can be employed to modelling of 
needle electrodes with the finite element method from the perspective of frequent model 
computation that is present in a time discrete model. 
 
Additional objective of the thesis was to determine and validate the time discrete model of rabbit 
liver tissue electropermeabilisation, performed by needle electrodes. Within that model σ(E) 
dependency had to be determined which also includes the determination of reversible and 
irreversible electric field thresholds. The model validation on experimental data is a very important 
part of the modelling. Thus the results of the model need to be compared to experimental currents 
and the areas of reversibly and irreversibly permeabilised rabbit liver tissue.  
 
The final objective of the thesis was to examine the feasibility of model based optimisation of EP 
parameters for effective electrochemotherapy. The feasibility study should provide the benefits and 
constraints of model based optimisation of EP parameters. 
 
Taking into account the described objectives of the thesis, the continuation of the thesis is structured 
as follows: 
 
In Chapter 2 the methodology used for the development of a time discrete model is presented. 
Emphasis is given to the theory of volume conductor, which is a basis for the computation of 
electric field distribution in biological tissue. Next, the finite element method is presented, due to 
the fact that this method excels at modelling complex geometries with inhomogeneous and 
anisotropic properties, such as present in the biological tissue. As the biological tissue geometry for 
numerical modelling is usually acquired from computer tomography (CT) and magnetic resonance 
images (MRI), at the end of Chapter 2 the basics of CT and differences compared to MRI are 
described. 
 
In Chapter 3 we present a time discrete model of tissue permeabilisation placed between two 
concentric cylindrical electrodes, within which electric field distribution is described analytically. 
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The model is incorporated into a simulation environment that provided means for observing the 
course and extent of permeabilisation at different rectangular pulse amplitudes, electrode diameters, 
tissue specific conductivities and different σ(E) dependencies, such as stepwise, linear, exponential 
and S-shaped dependency. Apart from rectangular pulse amplitude, the extent of tissue 
permeabilisation was further investigated for linearly increasing and linearly decreasing pulses. In 
continuation of Chapter 3 the feasibility of real time control was examined through the closed loop 
control scheme incorporating the time discrete model and proportional integral controller. At the 
end of Chapter 3 the comparison between the results of numerical and analytical solutions of a time 
discrete model for the same geometry is presented. 
 
In Chapter 4 different approaches towards modelling of needle electrode geometry with a finite 
element model were examined from the perspective of frequent model computation. The optimal 
electrode geometry according to the defined objective function was then proposed to be employed 
in further numerical models.  
 
Chapter 5 presents a time discrete model of rabbit liver tissue permeabilisation with inserted needle 
electrodes. Electric field distribution in the model was described numerically, due to the relatively 
complex geometry. Model parameter estimation i.e. the determination of σ(E) dependency was 
performed on current measurements, obtained from in vivo experiments. Parameter estimation 
provided also the thresholds of reversible and irreversible electric field intensity for rabbit liver 
tissue. Those thresholds were slightly higher than previously published values in [Miklavčič et al., 
2000] for the same tissue. The model validation was performed on current measurements other than 
those used for parameter estimation and also on measurements of the area of reversibly and 
irreversibly permeabilised tissue. 
 
In Chapter 6 the feasibility of the model based optimisation of EP parameters for use in 
electrochemotherapy was examined. Optimisation was first performed on the simple geometry 
consisting of the tissue and the tumour, at which electrical treatment was performed with plate 
electrodes. The optimisation considered limitations in current and voltage supplied by the pulse 
generator and the condition that the electric field must exceed the reversible threshold value across 
the tumour. Considering that, nonlinear constrained optimisation was used for determination of 
optimal pulse amplitude and optimal position of plate electrodes. The resulting electric field 
distribution in the tumour exceeded reversible threshold yielding effective electrochemotherapy. 
Further in Chapter 6 the model based optimisation was performed on geometry representing a 
human brain tumour. The geometry was obtained from CT images. An approach for semiautomatic 
3D geometry model generation from CT images was proposed and implemented. The array of 
needle electrodes was considered for electrical treatment of a brain tumour. The model based 
optimisation of pulse amplitude to be applied to the needle array was then performed. The complete 
permeabilisation of the particular tumour was not achieved with the needle array used, due to the 
limitation of the pulse generator. Therefore at the end of the Chapter 6 alternative solutions were 
proposed to achieve complete permeabilisation. 
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22  MMEETTHHOODDOOLLOOGGYY  
 
 
 
This chapter comprises the methods used for the development of the time discrete model of tissue 
permeabilisation. At the beginning the theory of volume conductor is presented, which is used for 
the description of electric field distribution in biological tissue when direct constant current is 
applied. As the biological tissue can have anisotropies and inhomogeneities the solution yielding the 
electric field distribution can not always be solved analytically. In such cases the use of numerical 
techniques is much more appropriate. Thus, in the continuation, the numerical technique, which has 
proven to be very effective in numerous computations of electric field distribution in biological 
tissue, is presented. That is the finite element method. Further the details of finite element 
modelling are described with special emphasis on geometry modelling. The latter is usually 
acquired from computer tomography (CT) and magnetic resonance imaging (MRI). Thus at the end 
of the chapter the basics of computer tomography and differences compared to MRI are described. 
 
 

2.1 VOLUME CONDUCTOR THEORY 
 
The electric field problems in physiology resulting from the application of direct electric current in 
tissue can, in general, be considered as quasi-stationary [Plonsey, 1969; Plonsey and Heppner, 
1967]. A body can be represented as a composite volume conductor comprising a number of 
spatially distributed tissues with differing electrical properties [Geddes and Baker, 1967; Plonsey 
1984]. Thus the electric field distribution in tissue can be described by the equations for steady 
electric currents in volume conductor [Heringa et al., 1982]. Under quasi-stationary conditions the 
biological tissue can be treated as purely resistive, so that current density associated with the electric 
field can be given by Ohm’s law: 
 

EJ
rr

σ= ,      (2.1) 
 
where J is the current density, E electric field intensity and σ specific conductivity of the tissue. 
Specific conductivity reflects macroscopic properties of the tissue, which can also be 
inhomogeneous or anisotropic. Inhomogeneous tissue properties mean that tissue specific 
conductivity vary with space coordinates, so that different field properties prevail at different parts 
of the material structure. Anisotropic tissue properties mean that the field relations differ at any 
point for different direction of propagation. To describe such a material σ becomes a 3x3 tensor: 
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When the tissue conductivity can be described in an orthogonal coordinate system, and both the 
current density and the electric field are related to the same system, the above matrix becomes 
diagonal: 
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.     (2.3) 

 
For electrostatic problems in volume conductor electric field intensity E is described as a negative 
gradient of scalar potential u: 
 

uE −∇=
r

.     (2.4) 
 
Under quasi-static conditions the total current flow is solenoidal meaning that the divergence of 
(2.1) is zero. Thus  
 

0=∇J
r

.      (2.5) 
 
By combining (2.5) with (2.1) we get 
 

0)( =∇ E
r

σ      (2.6) 
 

and by incorporating the definition of electric field intensity we obtain 
 

[ ] 0)( =−∇∇ uσ .     (2.7) 
 
When the volume conductor is homogenous and isotropic specific conductivity is a scalar, the 
equation (2.7) becomes Laplace’s equation: 
 

02 =∇ u .     (2.8) 
 

Laplace’s equation is a partial differential equation of elliptic type. Solution of the Laplace equation 
requires the application of boundary conditions. They can be applied either in the form of a 
Neumann boundary condition or a Dirichlet boundary condition.  
 
A Neumann boundary condition is defined as the first derivative of the scalar electric potential in 
the normal direction to the boundary surface of the model: 
 

n
uq

∂
∂

=     or   
σ

nJ
q −= .   (2.9) 

 
The latter equation denotes the current density flowing in/out of the model in the direction normal 
to the surface, divided by the specific conductivity of tissue. 
 
A Dirichlet boundary condition is defined as a fixed scalar electric potential, i.e. applied voltage on 
the surface of the model: 
 

uu = .     (2.10) 
 
The solution of Laplace’s equation can be obtained analytically or numerically. Analytical solutions 
can be derived when the geometry and the material properties of the volume conductor are 
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described within the same coordinate system (Cartesian, spherical, and cylindrical). In other cases 
analytical models become too complex.  
 
On the other hand numerical methods can handle complex geometries, material inhomogeneities 
and anisotropies. Those characteristic are also significant for biological tissue. This makes 
numerical methods more convenient for solving problems in physiology than analytical methods. 
 
 

2.2 NUMERICAL METHODS 
 
Numerical solutions play an important role in numerous bioelectric field problems, such as 
electrocardiology, cardiac defibrillation, electrical impedance tomography, therapeutic and 
functional electric stimulation, electromiography, electroencephalography, electromagnetic 
dosimetry [Johnson, 1997].  
 
There is rich history in electrocardiography (ECG) of use of numerical methods and computer 
simulation to solve forward and inverse problems. The problem in which the source and conducting 
medium are known, but the field is unknown is referred to as a forward problem [Shahidi et al., 
1994; Klepfer et al., 1997]. On the other hand when the field and conductor are known and the 
source is unknown we deal with an inverse problem [Nenonen, 1994]. 
 
In cardiac defibrillation the improvement in lead technology has progressed in two different ways. 
The first is to manually construct lead systems and test configurations in animals. However with 
increased computer power and with increased understanding of critical variables necessary for 
successful defibrillation the second approach in designing implantable cardioverter defibrillators is 
to model and test new electrode configurations on computers before testing them on animals 
[Sepulveda and Wikswo, 1990].  
 
Electrical impedance tomography (EIT) is a procedure for mapping electrical conductivity 
properties of the internal tissue by applying electrical currents through electrodes attached to the 
surface of the body and measuring resulting voltage. The use of numerical modelling techniques 
with EIT is presented in [Kim et al., 1988]. 
 
Therapeutic and functional electric stimulation (FES) of the nervous system by either external or 
implantable electrodes is used amongst others to treat symptoms of epilepsy, psychiatric disorders, 
and spinal cord injury. Here the modelling problem is to deliver a therapeutic dose of electricity to 
the desired region while minimizing the stimulation effect to surrounding regions. The finite 
element analysis of electrical stimulation of the spinal cord for example is presented in [Coburn, 
1980].  
 
Electromyography (EMG) is defined as a registration of muscle action potentials, which reflect the 
state of the muscle and the activity of the motor neurons in reflex and voluntary actions. 
Electromyography has been used mostly for diagnostic purposes, however in recent years it has also 
become a tool for monitoring and in conjunction with FES it is also employed for controlling the 
movement of artificial limbs. In [Hennenberg and Plonsey, 1993] the directional sensitivity of the 
concentric EMG electrode is computed by means of boundary element analysis. 
 
The fundamental problem in computational electroencephalography (EEG) is the inverse EEG 
problem, i.e. to compute the source provided the field and the conductor are known. If an accurate 
solution to the inverse problem were known, a neurologist would be able to non-invasive view and 
interpret patient – specific cortical activity [Peters and De Munck, 1991].  
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Related to electromagnetic dosimetry the calculation of electromagnetic energy absorbed by 
humans in a radiation field has become important with the increased usage of electromagnetic 
devices. Electromagnetic analysis techniques (analytical and numerical) have been used by 
researchers in the field to obtain dosimetric data and understanding of absorption characteristics 
[Durney, 1980].   
 

2.2.1 FINITE ELEMENT METHOD 
 
Amongst a variety of numerical methods, that is, the finite difference (FD), finite element (FE), 
boundary element (BE), and multigrid (MG) methods, the finite element method excels at 
modelling complex inhomogeneous anisotropic materials such as are present in biological tissue. 
Consequently the FE method has become a powerful tool for the numerical solution of a wide range 
of electromagnetic field problems in physiology, such as problems related to a single cell level 
[Pavlin et al., 2001], organs or tissue [Miklavčič et al., 2000] and whole body structures [Šemrov 
and Miklavčič, 1998]. 
 
With the finite element method, differential equations are solved by subdividing the domain of 
interest into smaller elements of finite dimensions, termed as finite elements. The original domain is 
then considered as the assemblage of these elements connected at a finite number of joints called 
nodes.  
 
The material properties and the governing relations are considered over these elements and 
expressed in terms of unknown values in nodes. An assembly process, duly considering the loading 
and constraints, results in a set of equations, the solution of which gives the approximate behaviour 
of the continuum [Chandrupatla and Belegundu, 1997].  
 
An electromagnetic analysis problem is in general a problem of solving Maxwell’s equations 
subject to certain boundary conditions. Maxwell equations state the relationship between the 
fundamental electromagnetic quantities [FEMLAB User Guide and Introduction, 2001]. They can 
be formulated either in integral or differential form. The differential form leads to differential 
equations which are handled by the finite element method. Thus here we present the differential 
form of Maxwell’s equations for general time varying fields [Sinigoj, 1999]: 
 

DJH &rrr
+=×∇ ,     (2.11) 

 
BE &rr

−=×∇ ,     (2.12) 
 

ρ=⋅∇ D
r

,     (2.13) 
 

0=⋅∇ B
r

.     (2.14) 
 
The fundamental electromagnetic quantities within Maxwell’s equations are electric field intensity 
E
r

, electric flux density D
r

, magnetic field intensity H
r

, magnetic flux density B
r

, current density J
r

 
and electric space charge density ρ. 
 
Equations (2.11) and (2.12) are also referred to as Maxwell-Amper’s law and Faraday’s law, 
respectively. Equation (2.13) is the electric form of Gauss’ law, while equation (2.14) is a magnetic 
form of Gauss’ law. In the system of equations (2.11) to (2.14) only two are independent. Namely 
equation (2.13) is included in (2.11) and equation (2.14) in (2.12).  
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For full description of an electromagnetic problem the boundary conditions have to be specified at 
material interface and physicals boundaries. Provided there are no surface charge density and no 
surface current density, the boundary conditions on the interface between material 1 and material 2 
are expressed as  

 
21 tt EE =   and consequently  21 nn JJ = ,   (2.15) 

 
21 nn DD = ,      (2.16) 

 
21 tt HH = ,      (2.17) 

 
21 nn BB = ,      (2.18) 

 
where n denotes normal and t tangential component to the interface. 
 
The direct solution of the system of Maxwell’s equations on E

r
 and B

r
 has several disadvantages 

[EMAS Version 4 User’s Manual, 1997]. The first disadvantage is that six unknown components 
can not be chosen arbitrarily because they are related through Maxwell’s equations. The number of 
unknowns is thus larger than is actually needed. The second disadvantage is related to 
discontinuities in material properties. Boundary conditions in equations (2.15) to (2.18) must be met 
at each interface between two materials with different properties. Therefore every solution strategy, 
that involves E

r
 and B

r
, must enforce these conditions at every interface. This potentially means at 

all surfaces of each finite element. This requirement puts a huge burden on numerical computation. 
And third, at sharp corners of certain materials values of E

r
 and B

r
may be infinite. Resulting 

singularities cause severe problems in digital computing.  
 
To eliminate the disadvantages mentioned above the problem is formulated in terms of electric 
scalar potential ψ, which is related to classical potential u through the relation: 
 

∫=
t
udtψ      (2.19) 

 
 and magnetic vector potential A

r
. The new formulation is as follows: 

 
AB
rr

×∇= ,     (2.20) 
 

E Aψ= −∇ −
rr && .     (2.21) 

 
The two equations are direct consequences of the magnetic case of Gauss’ law and Faraday’s law 
respectively. Thus the three components of vector potential and the unconventional scalar potential 
represent the unknown quantities. Such reformulation of the problem has a profound effect on the 
symmetry and unity of the finite element formulation of electromagnetics [EMAS Version 4 User’s 
Manual, 1997]. In the case of an electric field distribution within a volume conductor (quasi-
stationary field), the three components of the vector potential equal 0. The solution therefore 
requires only the computation of unconventional scalar potential. 

 
The system of equations to be solved by a finite element method can be derived by either Garlekin’s 
method or by means of variation form. The former method is described in detail in [Braess, 1997; 
Prelog, 1975]. While here we will focus on the principle of virtual work, which is based on the 
variation method.  
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The principle of virtual work is used in the EMAS software package because unlike the Garlekin 
method it brings much useful information on boundary and initial conditions [EMAS Version 4 
User’s Manual, 1997].  
 
In order to obtain the system of equations to be solved on finite elements the variation method is 
based on minimization of the functional which represents the work of generalized forces. In the case 
of quasi-stationary problems (current flow) the generalized work is defined by ohmic losses: 
 

∫∫∫ ⋅−∇=⋅∇−=⋅=
ttt

JdtudtJudtJEw
rrrr

)(     (2.22) 

 
or  
 

Jw
r

⋅−∇= ψ .      (2.23) 
 
The differential of virtual work is connected to unconventional scalar potential through: 
 

∫ ⋅∇=
V

dVJW
r

)( ψδδ .     (2.24) 

 
By integrating the right hand side of equation (2.24) per partes we obtain: 
 

∫ ⋅⋅
S

dSJn
rr

ψδ ,      (2.25) 

 
where S represents the surface of boundary and n a normal vector to that surface.  
 
The generalized form of the upper equation can be written by adding energy, which results from 
prescribed constant current density *J

r
 on a particular surface (excitation): 

 
∫ −⋅⋅
S

dSJJn )( *
rrr

ψδ .     (2.26) 

 
This term equals 0 in two cases: 

 if δψ equals 0 on the surface S, or if there is no change in ψ  (Dirichlet boundary condition); 
 if the normal component of current density J on the surface S equals prescribed value Jn

*  
(Neumann boundary condition). 

 
By adding this contribution to equation (2.24) we get: 
 

∫∫ ⋅⋅−⋅∇=
SV

dSJndVJW *)(
rrr

ψδψδδ .    (2.27) 

 
Considering the equations (2.1), (2.4) and (2.19) in the first term of the right hand side we obtain:  
 

∫∫ ⋅⋅−∇⋅⋅∇−=
SV

dSJndVW *)(
rr

& ψδψσψδδ .  (2.28) 

 
This relation represents the basis for solving the problem with finite element method. The first term 
on the right side represents the energy of ohmic losses, while the second term represents energy due 
to applied boundary conditions or excitations.  
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Further we assume that scalar potential in each element can be represented with the low order 
polynomial. That is similar to the development of the function in series around a particular point. 
The potential in an element can therefore be described with: 
 

K
rrrv

+⋅+⋅+⋅= )()()()()()()( 132211 trNtrNtrNr ψψψψ ,  (2.29) 
 
where Ni(r) are shape functions and ψi(t) the value of unconventional scalar potential in the ith node. 
Equation (2.29) can be also written as  
 

{ } { }T eNψ ψ= ⋅ ,     (2.30) 

 
where { } { }TNNNN K,,, 321= is a shape function vector and { } { }1 2 3, , , Teψ ψ ψ ψ= K the vector of 

unconventional scalar potentials. The size of both vectors equals the number of nodes n, 
corresponding to an element. 
 
To assign the equation for virtual work to each element we have to consider the following 
expressions:  
 

{ } { }T eNψ ψ= ⋅& & ,     (2.31) 

 
{ } { }T eNδ ψ δ ψ= ⋅ ,    (2.32) 

 
[ ] { }eNψ ψ∇ = ∇ ⋅ ,    (2.33) 

 
where [ ]N∇ is a matrix with dimensions 3 x n: 
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Virtual work in an element can be therefore expressed as: 
 

[ ] { }( ) [ ] { }( ) { } { }( ) ( )*

e e

T T
e e e e

V S

W N N dV N n J dSδ δ ψ σ ψ δ ψ= − ∇ ⋅ ⋅ ⋅ ∇ ⋅ − ⋅ ⋅ ⋅∫ ∫
rr

& . (2.35) 

 
Due to independency of unconventional scalar potential { }eψ on spatial coordinates we can write: 

 

{ } [ ] [ ] { } { } { } ( )*( )
ee

T T Te e T e e

V S

W N N dV N n J dSδ δ ψ γ σ ψ δ ψ= − ⋅ ∇ ⋅ ⋅ ∇ ⋅ − ⋅ ⋅ ⋅∫ ∫
rr

& .  (2.36) 

 
Now we can define the conductivity matrix of an element: 
 

[ ] [ ]
e

e T

V

B N N dVσ  = ∇ ⋅ ⋅ ∇  ∫    (2.37) 
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which incorporates all information about the conductivity of an element – geometry and specific 
conductivity and the vector of surface current sources: 
 

{ } { } ( )*

e

e T

S
J N n J dS= − ⋅ ⋅∫

rr ,    (2.38) 

 
where (*) denotes prescribed current value (Neumann boundary condition). Considering the two 
equations we can express the equation (2.36) for virtual work as: 
 

{ } { } { } { }T Te e e e e eW B Jδ δ ψ ψ δ ψ = − ⋅ ⋅ + ⋅  & .   (2.39) 

 
By adding up all the contributions of virtual work from each element we obtain the expression for 
virtual work of the whole model: 
 

{ } [ ] { } { } { }T TW B Jδ δ ψ ψ δ ψ= − ⋅ ⋅ + ⋅& ,   (2.40) 
 
where { }ψ consists of vectors { }eψ  of all elements in the model. A similar structure holds also for 

matrix [B] and vector {J}. 
 
By introducing the dynamical equilibrium:  
 

[ ] { } { }0
S

B Jψ= − ⋅ +&     (2.41) 
 
we obtain the final system of equations 
 

[ ] { } { }S
B Jψ⋅ =&      (2.42) 

 
or  
 

[ ] { } { }SJuB =⋅ .      (2.43) 
 
Further we have to apply boundary conditions in equation (2.43) i.e. to assign prescribed values of 
potentials to nodes. The system of equation can then be transformed by putting all unknowns 
(potentials) on the left side: 
  

fBxA ⋅=⋅ ,      (2.44) 
 
where A is a system matrix, x a vector of unknowns, B a complementary matrix and f the vector of 
boundary conditions. The matrix A is symmetric and positive definite, thus it is nonsingular and it 
has a unique solution. The system presented in equation (2.44) is then ready to be solved by an 
appropriate finite element solver. 
 

2.2.2 FINITE ELEMENT MODELLING 
 
Nowadays there is plenty of software packages designed for solving electromagnetic (EM) 
problems with numerical methods. The survey of available software packages and their capabilities 
as they were in 1997 is presented in [Mirotznik and Prather, 1997]. Despite the fact that this survey 
does not incorporate all the software packages available today, it gives directions as how to choose 
the EM package.  
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Although an EM package has to be general for different applications it also has to have specific 
features to adapt to the particular application. To circumvent this predicament, EM packages are 
usually modular. That means that the modelling process is broken down into several steps, such as: 
geometry modelling of the physical object, creation of an analytical mesh, the analysis proper and 
finally postprocessing accompanied with graphical presentation. The analysis and postprocessing 
modules are application specific and need to be designed for electrostatics, magnetostatics and 
radiation scattering problems separately. 
 
The model construction in most EM packages is done through the graphical pre-processor, which 
provides similar modelling tools to those found in common computer-aided design software (CAD). 
Additionally, the graphical pre-processor should enable the assignment of boundary conditions, 
material properties, and energy sources to the geometry. Some EM packages also support the 
importation of geometrical models from CAD programs.  
 
After defining the geometry, a mesh of small computational elements must be created. Finite 
element solvers require a mesh of non-overlapping 2D or 3D elements, such as triangles or 
tetrahedrons, respectively. Mesh generation is a critical step on the way to the solution. Well 
designed mesh produces results that are both accurate and computationally efficient. However the 
mesh design is usually a trade-off among accuracy, computation time, and memory requirements. 
The mesh generation process in most EM products is based on automated grid-meshing algorithms.  
 
The next step performed by EM software is EM analysis. Amongst 18 EM packages presented in 
the survey, nine different numerical algorithms were used.  
 
After EM analysis is performed the EM package should provide graphical visualisation of computed 
results. Modern EM packages can display fields in different graphical formats included 2D and 3D 
arrow, contour, and shaded plots. Some EM packages can also generate animated movies of EM 
field propagation.  
 
EM analyses in our laboratory at the time are being performed utilising the EMAS software package 
(Ansoft Inc, USA), Maxwell 3-D from the same vendor and FEMLAB (Comsol AB., Sweden). The 
first two mentioned software tools were also presented in the survey, while the last one was 
developed later. All of them however meet the requirements of good EM software.  
 
Results presented further in this work were computed either with EMAS or FEMLAB software. The 
software package used will be denoted next to particular solution. EMAS and FEMLAB were used 
because they allowed for changes in material properties based on electric field distribution across 
the geometry. In the EMAS software this feature was obtained by utilizing an additional programme 
developed within our laboratory. Similarly in FEMLAB software package the extended 
functionality was developed by means of Matlab functions, as FEMLAB is integrated into the 
MATLAB environment. MATLAB (MathWorks Inc., USA) is the software package aimed at 
matrix analyses, which has also an extensive set of Toolboxes for different engineering and 
scientific problems.  
 
Some of the modules involved in finite element modelling will be hereafter described in more 
detail. 
 

2.2.2.1 GEOMETRY MODELLING 
 
Most of the realistic biological tissue models are based upon CT and magnetic resonance (MR) 
images. However despite the extensive research in the field there is still no algorithm that can 
automatically determine the domain boundaries from the clinically obtained medical images. Some 
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EM programmes, such as FEMLAB, already provide support for MR image import, however the 
image filtering, scaling and domain boundary definition are still performed by humans.  
 
Further in this chapter the characteristics of CT images will be presented by focusing on issues 
related to geometry model generation. 
 

2.2.2.2 MESH GENERATION 
 
Due to complex geometries associated with bioelectric field problems and the huge number of 
degrees of freedom, mesh generation is a time consuming process. In 3D problems tetrahedron 
elements are usually used for mesh generation because they best serve for modelling of irregular 3D 
domains.  
 
There are several strategies aimed at discretization of geometry into basic tetrahedron elements. In 
bioelectric problems two approaches to mesh generation for solving with numerical methods have 
become standard: the structured partitioning strategy and Delayun triangulation strategy [Johnson, 
1994]. Other methods such as mapping, paving and octree methods are also applicable.  
 
The structured partitioning strategy starts with a set of points which define the bounding surface. 
The geometry volume is then repeatedly divided into smaller regions until a satisfactory 
discretization level has been achieved. Usually the domain is split into eight node cubic elements, 
which are then subdivided into tetrahedral elements. This method is fairly simple for programming; 
however its main disadvantage is that it allows elements to overlap interior boundaries. This 
property prevents finite element method approximation to be continuous. 
 
For a given three dimensional set of points that define the boundaries and interior regions of the 
domain the Delayun method tessellates the point cloud into an optimal mesh of tetrahedral 
elements. With the Delayun method one can create the mesh to fit any predefined geometry, 
including subsurfaces by starting with points which define all necessary surfaces and then adding 
additional points to minimize the aspect ratio. For tetrahedral elements the aspect ratio is defined: 
 

k

k
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2
34=      (2.45) 

 
where ρk denotes the diameter of the sphere circumscribed about the tetrahedron and hk the 
maximum distance between the vertices. The aspect ratio equals 1 for an equilateral tetrahedron, 
while degenerate elements have aspect ratios close to 0. Given the available set of points the 
Delayun criterion is a method for minimizing the occurrence of obtuse angles in the mesh, yielding 
elements which have aspect ratios as close to 1 as possible. The primary drawback of this method is 
that it is very demanding for programming. 
 

2.2.2.3 MESH QUALITY 
 
In the FEMLAB software package mesh quality is expressed in a similar way to the aspect ratio 
defined above. In 3D models the element quality measure for tetrahedral element is defined as: 
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where V is element volume and h1, h2, h3, h4, h5, h6 are the side lengths of a tetrahedron. q is a 
number between 0 and 1. q equals 1 in an equilateral tetrahedron. A value of q>0.6 denotes still 
acceptable element quality. 
 
In the EMAS software the mesh quality is expressed in similar way – with distortion factor [EMAS 
Version 4 User’s Manual, 1997]. Its value is based on the smallest determinant of the Jacobian 
matrix of an element. The determinant is evaluated at each integration point of the element and the 
smallest is saved. Again the ideal distortion factor is equal to 1, however in real meshes it may vary 
from 0 to 1. The closer the distortion factors to 1, the better the element quality.  
 
An additional measure of mesh quality is defined by bending of the element edges. This measure 
applies to elements with intermediate points only. Namely, the distance of the node on the element 
edge to the centre point of the edge vertices should be less than 15% of the distance of the vertices. 
 

2.2.2.4 SOLUTION METHODS 
 
The solution method in finite element modelling is required to solve the sparse system of linear 
equations of the form Ax=b, where A is a square matrix while solution x and b are vectors.  
 
There are many solution techniques aimed at solving such a system. They can in general be 
categorized into direct and iterative solvers. Representatives of the first type are for example 
Gaussian Elimination and LU decomposition methods. Amongst iterative methods there are for 
example Jacobi, Gauss-Seidel, Conjugate Gradient (CG) methods; Good Broyden, GMRES, 
TFQMR [FEMLAB User Guide and Introduction, 2001] 
 
The choice of the particular solution method depends on the size of the resulting system and also on 
accessible computer resources. Direct methods are usually much faster than iterative methods, 
however they require computer memory that suffices to the size of the system.  
 
On the other hand iterative methods can be employed when the size of the system exceeds the 
memory of the machine, however they are substantially slower than direct solvers. As the iterative 
method solves a system by generating a sequence of approximate solutions x(k) that converge 
towards the solution x=A-1b, an initial guess x(0) must be provided. The closer the initial guess is to 
x, the faster the method is.  
 
Iterative solvers can be accelerated by employing for example multigrid methods. The basic idea 
behind this is to accelerate the convergence of a known iterative method by exploring interactions 
between different discretization spaces or grids. In [Polstyanko et al., 2001] the iterative method is 
accelerated by combining the principle of a multigrid method with the decomposition property of 
the hierarchical finite elements.  
 
The convergence of iterative solvers is closely related to the condition number: 
 

min

max
2 λ

λ
κ = ,     (2.47) 

 
where λmax is largest and λmin the smallest eigenvalue of the matrix A. The condition number should 
be in an ideal example as close to unity as possible. The condition number can be improved by a 
method referred to as preconditioning.  
 
The preconditioning method applies the iterative method on the transformed system ATx=bT, where 
AT=M-1A and bT= M-1b [FEMLAB User Guide and Introduction, 2001]. The matrix M is referred to 
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as a preconditioner and it should approximate A to some degree. The better the approximation, the 
closer AT to identity matrix, making AT well conditioned with clustered values. The preconditioned 
iterative method involves the solution of linear systems My=z, which should be easy to compute. 
Thus the preconditioner should have an easily computed inverse while κ2(AT) is close to unity. 
Preconditioning methods used in the Femlab software are Diagonal scaling, SSOR (Symetric 
Succesive Over-Relaxation), Incomplete LU, Geometric Multigrid and Algebraic Multigrid. 
 

2.2.2.5 DISCRETIZATION ERROR 
 
The quality of solution approximation is affected by discretization error for the following reasons 
[Grosz et al., 1994]: 
 

 the interpolation error is produced by the approximation of the solution by picewise 
polynomials; 

 due to the fact that integration over the domain is subdivided into integrations over the 
elements, numerical integration schemes are applied; however in general the evaluation of 
weak partial differential equations does not deliver a true value which produces an 
integration error for the returned solution approximation; 

 the Dirichlet boundary condition can not be fulfilled on the total boundary of a certain 
domain, but only at those global nodes which are on the boundary of that domain; the 
resulting error is referred to as interpolation of the Dirichlet conditions; 

 when having curved boundaries of the domain, the representation of the domain with basic 
elements is only an approximation of the true domain; this occurs if the boundary of the 
domain is different than the polynomial used for the representation of the curved element 
edge; the error produced is due to representation of the domain; 

 as iterative solutions are terminated by a stopping criterion, the returned solution is not the 
exact solution of the discretized problem. 

 
 

2.3 COMPUTERISED TOMOGRAPHY (CT) 
 
CT is a method for generating cross-sectional X-ray images using a narrow X-ray beam directed 
through the target at many different angles. As X-rays pass through the various tissues of the body, 
a portion of the beam is absorbed. The loss of the X-ray from the beam is referred to as attenuation 
and differs between various tissues. Absorption properties of any tissue are represented by a linear 
attenuation coefficient. The attenuation measurement of each ray is referred to as a ray sum 
[Reddinger, 1997]. A complete set of ray sums is termed projection. The task of CT imaging is to 
reconstruct an image from its projections. That is mathematically performed by convolution of 
beams and series of attenuation profiles obtained at different angles of view [Kak and Slaney, 
1988]. 
 
The mathematical solution of the reconstruction problem from its projections was given by Radon 
in 1917. However its usage in CT imaging began in 1972 when Hounsfield invented the CT 
scanner, for which he received the Nobel Prize in medicine in 1979.  
 

2.3.1 CT IMAGE QUALITY 
 
There are several characteristics that influence the quality of CT images such as spatial resolution, 
contrast resolution, linearity, noise and artefacts. Those characteristics can be either enhanced or 
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suppressed in order to improve the quality of a CT image of a particular body region of interest 
[Reddinger, 1998]. Therefore CT image quality is dependent upon balancing these characteristics 
and parameters to produce the best possible image for the anatomical region and at the same time to 
reduce the risk of increasing the patient dose.  
 
Spatial resolution is the ability to differentiate small neighbouring objects. The edge between two 
small objects with different densities is considered to be a region of high frequency. However, the 
problem is that CT blurs those edges to a certain degree, which sometimes results in non 
differentiation between the two objects. There are methods (such as use of high pass algorithms) 
that reduce structural blurring, however they increase image noise, which consequently decreases 
contrast or soft tissue resolution. Another way of increasing spatial resolution is to decrease section 
thickness or to manipulate other factors such as pixel size, width of the detector, spacing between 
detectors, number of projections obtained in focal spot size. 
 
Contrast resolution or tissue resolution describes the ability of a CT scanner to differentiate the 
small attenuation differences on the image. Tissue absorption which is expressed with a linear 
attenuation coefficient depends on the thickness of the material, its density, atomic number and 
photon energy. Contrast resolution is also limited by noise; as noise increases, the contrast 
resolution decreases. During the reconstruction process the standard or smoothing algorithm can be 
used to enhance contrast resolution. 
 
Linearity describes the accuracy between the linear attenuation coefficient and the computer 
assigned CT number (a number assigned to each pixel). 
 

2.3.2 GEOMETRIC DISTORTIONS 
 
In addition to the characteristics mentioned above the outcome of a CT image is also affected by 
geometric distortions. Those are scaling distortion and shearing distortion. The first can be 
introduced by, for example, incorrectly reported scanner table speed, while the latter can be caused 
by, for example, incorrectly reported gantry tilt or table bending due to patient’s weight [Breeuwer 
et al., 1999; Zylka and Wischmann, 1996]. 
 

2.3.3 CT VS MRI 
 
Different imaging modes associated with MRI enhance the sensitivity and specificity of MRI. As a 
result the MRI is able to differentiate to a greater degree between soft tissues than CT [Hagemann 
and Cummins, 1983]. This is especially significant with respect to pathological lesions and tumours. 
Therefore MRI has become the preferred method for use in neuroimaging. However, MRI is usually 
not widely available as a diagnostic tool and it is considerably more expensive than CT. On the 
other hand CT continues to advance technologically which means that it is unlikely to be totally 
superseded by MRI in the near future. 
 

2.3.4 NEUROIMAGING 
 
A 2D picture obtained for example by CT scanning consists of pixels. The 3D equivalent to the 
pixel, which usually has the shape of a cube, is referred to as voxel. When imaging a slice, it is 
supposed to be one voxel thick, so that each voxel is represented by one pixel in the resulting 
image. Typical brain images are, for instance, 256 x 256 pixels. In a CT greyscale image, 
attenuation values determine the pixel brightness. The latter has values between 0 (black) and 1 
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(white). This range is divided into 256 grades of grey, which is approximately the range that can be 
distinguished by a typical human vision. 
 
The quantification of attenuation values is expressed by a CT number. When the CT number is 
given in the Hounsfield unit it is expressed as:  
 

water

watertissueCTnumber
µ

µµ −
= 1000 ,    (2.48) 

 
where µ is linear attenuation coefficient [Duliu, 1999]. The linear attenuation coefficient of water is 
0.21. The CT number assigned to water has value 0, the bone and contrast agents have value 1000, 
white matter has value 15 and grey matter 18, while fat has -100 and air -1000 [Goodwin and Tan, 
2003]. A conversion factor relates the range of CT numbers to 0-255 graded greyscale represented 
in CT image. The conversion factor can be varied for display purposes, by a procedure called 
windowing. 
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33  SSIIMMUULLAATTIIOONN  EENNVVIIRROONNMMEENNTT  FFOORR  MMOONNIITTOORRIINNGG  
PPEERRMMEEAABBIILLIISSAATTIIOONN  BBAASSEEDD  OONN  TTIIMMEE  DDIISSCCRREETTEE  
MMOODDEELL  OOFF  TTIISSSSUUEE  PPEERRMMEEAABBIILLIISSAATTIIOONN    

 
 
 
 
Permeability of cell membrane changes due to exposure to external electric field (E) above 
threshold value and consequently, the conductivity of the corresponding tissue changes. Changes in 
bulk tissue conductivity could be then considered as an indicator of tissue permeabilisation [Abidor 
et al., 1993]. However the change in bulk tissue conductivity does not provide enough information 
by itself to determine the efficacy of permeabilisation. In clinical applications of permeabilisation, 
such as electrochemotherapy, permeabilisation is efficient when all parts of the tumour are exposed 
to E intensities above reversible threshold. The tumour is then permeabilised and the passage of the 
chemotherapeutic is enabled. Similarly for in vivo electrogenetransfer the whole volume of tissue of 
interest must be exposed to E intensities above reversible threshold but at the same time remain 
below irreversible threshold. In this way the entrance of DNA is facilitated and cells are preserved 
against irreversible damage which can be caused by too high E intensities. Thus for efficient tissue 
permeabilisation we need to know for each point of tissue whether it was exposed to E intensities 
which correspond to the particular purpose of the treatment. Such information however can not be 
obtained by measuring the change in bulk tissue conductivity. 
 
The efficacy of permeabilisation can be determined by means of a permeabilisation model. Having 
a model that describes E distribution by considering the change in tissue specific conductivity due 
to permeabilisation in the whole volume of tissue at the applied pulse amplitude is important not 
only for estimating the efficacy of permeabilisation after the therapy but above all to determine the 
pulse amplitude before the therapy for effective tissue permeabilisation.  
 
In this chapter we present an analytical model of tissue permeabilisation, which describes E 
distribution in tissue at discrete time steps during permeabilisation. The model geometry consists of 
two concentric cylindrical electrodes and tissue placed in between. Such geometry was chosen 
because E distribution between two concentric electrodes can be described analytically. Another 
reason for choosing such geometry was that it provides inhomogeneous E distribution similar to the 
distribution around needle electrodes, which are used for clinical treatment of deeply seated tissue. 
In this respect the presented analytical model could assist in determination of optimal pulse 
amplitude for effective tissue permeabilisation in a non-invasive way before the treatment.  
 
The idea behind the time discrete permeabilisation model is to compute changes in specific tissue 
conductivity at discrete time steps due to exposure to E intensities according to a given dependency 
between specific conductivity and E intensity - σ(E). The E distribution computed having 
considered changed specific tissue conductivity is then used to determine the extent of tissue 
permeabilisation. In the model we assumed different σ(E) dependencies such as stepwise, linear, 
exponential and S-shaped.  
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The time discrete model is incorporated into a simulation environment that enables monitoring of 
permeabilisation by displaying E distribution, specific conductivity, and the area (volume) of 
permeabilised tissue influenced by different pulse amplitudes, distances between electrodes and 
tissue electric properties (conductivities of non-permeabilised and permeabilised tissue). The 
influence of those parameters as well as different functional dependencies on the course of 
permeabilisation was also systematically examined by performing a model parameteric study. As 
the impact of functional dependency σ(E) on tissue permeabilisation was established to be 
important, an approach towards determination of σ(E) dependency was proposed later in this 
chapter. The approach combines the experimental data, which should be obtained by in vivo 
experiments and the model of E distribution.  
 
While in the simulation environment we assumed the application of rectangular pulses, we further 
investigated the influence of the shape of the pulse applied (ramp signals) on the dynamics and 
extent of permeabilisation. 
 
As the objective of effective tissue permeabilisation is to expose a predefined volume of tissue to 
adequate E intensities, we also examined the possibility of real time control of the extent of 
permeabilisation. Thus we incorporated the model in a closed loop control scheme with a 
proportional integral controller, which was required to manipulate the extent of permeabilisation by 
changing pulse amplitude to be as close as possible to the goal of effective tissue permeabilisation.  
 
We also compared the results of the time discrete permeabilisation model with analytical 
description of E distribution for different functional dependencies σ(E) with results computed by 
the time discrete model where E distribution was computed by means of a numerical model (finite 
element model) on the same geometry. The methodology of the latter is described in detail in 
Chapter 5. By comparing the two models we tested the results and examined the advantages and 
disadvantages of numerical modelling for use in the time discrete model.  
 
Hereafter we will refer to the extent of permeabilisation on tissue level as the volume of tissue that 
was exposed to E intensities above the reversible threshold. 
 
 

3.1 ANALYTICAL MODEL OF E DISTRIBUTION BETWEEN TWO 
CONCENTRIC CYLINDRICAL ELECTRODES 

 
Our goal was to design an analytical model which describes changes in tissue conductivity due to 
applied external E as present during permeabilisation. For that purpose we selected simple geometry 
which allows for an analytical description of E distribution and at the same time gives a similar E 
distribution as experienced near needle electrodes used in clinics. 
 
The geometry consists of two concentric cylindrical electrodes and conductive material, which 
represents tissue, placed between the electrodes. We assigned the inner electrode with radius R0 
potential u and the outer electrode with radius R1 potential 0 V. A cross section of the electrodes is 
shown in Figure 3.1.  
 
Electric potential between the cylindrical electrodes as a function of radius r satisfies Laplace’s 
equation: 
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The general solution of Laplace equation is expressed as:  
 

( ) BrAr += lnϕ ,      (3.2) 
 
where parameters A and B are derived from boundary conditions. We set boundary conditions by 
taking into account potentials on the electrodes. Considering homogenous tissue conductivity 
between the electrodes and by applying boundary conditions we obtain the solution for potential 
and E respectively: 
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During permeabilisation however the conductivity of tissue changes once the applied E intensity 
exceeds reversible threshold value. For further model derivation we assume that in the whole area 
where E intensity exceeds reversible threshold E0 the conductivity increases to a constant value σ1, 
while in the area where E intensity is still below E0 tissue conductivity remains equal to σ0  i.e. the 
conductivity of a non-permeabilised tissue. Such dependency between specific conductivity and the 
electric field σ(E) was termed a stepwise dependency.  
 
 

 
 

Figure 3.1: Cross section of two concentric cylindrical electrodes. The area with increased conductivity is 
denoted with r1. 

 
Where a given value of reversible threshold E0 is higher than E(R0) and lower than E(R1) the 
conductivity of the material where E>E0 changes to σ1. As a consequence we obtain material with 
two different conductivities as shown in Figure 3.1. 
 
The potential in material with two different conductivities is then described by: 
 

( ) BrAr += ln1ϕ   for    10 rrR ≤≤ ,   (3.5) 
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( ) DrCr += ln0ϕ  for    11 Rrr ≤≤ .   (3.6) 
 

By considering the following boundary conditions: 
 

( ) )(01 tuR =ϕ , ( ) 010 =Rϕ ,  ( ) ( )1011 rr ϕϕ = ,  ( ) ( )
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we obtain parameters A, B, C and D: 
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E intensity in the area with non-permeabilised tissue is then expressed as: 
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and in the area with permeabilised tissue as: 
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The presented model describes E distribution between two concentric electrodes for the case when 
conductivity was increased in the part of tissue exposed to E above E0 i.e. between R0 and r1. The 
subsequently computed E distribution could again exceed E0 in the remaining part of the tissue with 
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conductivity σ0.  We described the propagation of these changes within a time discrete model of 
tissue permeabilisation, which is described in continuation. 
 
 

3.2 TIME DISCRETE MODEL OF TISSUE PERMEABILISATION WITH 
STEPWISE σ(E) DEPENDENCY  

 
In the time discrete model, permeabilisation is modelled as a time discrete process, where E 
distribution is computed by an analytical model at time discrete steps k=0, 1 ,..N. At k=1 electric 
field distribution is equal to the distribution in completely non-permeabilised tissue. If E 
distribution at k=1 exceeds reversible threshold E0 in part of the tissue, the conductivity of that part 
of the tissue is changed according to σ(E) dependency to value σ1. In such a way the tissue specific 
conductivity at step k=2 is computed. Based on changed tissue conductivity, E distribution in 
partially permeabilised tissue at k=2 is computed analytically considering the equations presented in 
Chapter 3.1. Again, E distribution at k=2, provided above E0, causes further changes in tissue 
conductivity at k=3. In that manner E distribution at discrete time steps is computed, until no further 
change in tissue conductivity due to exposure to E intensities above E0 is obtained.  
 
The calculation of E distribution at discrete time steps that considers the change in tissue 
conductivity during permeabilisation is shown in Figure 3.2. 
 
Conductivity determination at step k from E distribution at k-1 is presented in Equation (3.14). The 
term σ(r,k-1) is included in Equation (3.14) because the conductivity calculation also takes into 
account that once conductivity is increased at a particular point in tissue it can not decrease during 
constant pulse application.  This corresponds to experimental observations that once the tissue is 
permeabilised it remains permeabilised at least for the duration of constant pulse application. 
 

))1,(),1,((),( −−= krkrEfkr σσ  for  2≥k    (3.14) 
 
The functional dependency between specific conductivity and E used in the simulation environment 
was stepwise, as described in Chapter 3.1. 
 
The described time discrete model simulates the propagation of tissue permeabilisation, due to 
exposure of tissue to E intensities above E0. After the pulse application, reversibly permeabilised 
tissue reseals in two distinct stages, referred to as fast and slow resealing [Abidor et al., 1993, 
Hibino et al., 1993]. Modelling of tissue resealing was however outside the scope of this model. 
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Figure 3.2: Time discrete model of tissue permeabilisation – schematic presentation. 

 

3.2.1 SIMULATION ENVIRONMENT OF TISSUE PERMEABILISATION 
 
The simulation environment is based on the time discrete model of tissue permeabilisation with 
analytical description of E distribution between two concentric electrodes. By means of the 
simulation environment we wanted to investigate the extent of permeabilisation in tissue at a 
particular pulse amplitude i.e. to determine the radius between concentric electrodes up to which 
tissue is permeabilised. As pulse parameters, electrode geometry and tissue electrical properties 
influence the course of tissue permeabilisation, a further purpose of the simulation environment was 
to enable monitoring of the course of tissue permeabilisation as influenced by changes in pulse 
amplitude, tissue geometry (distance between electrodes) and tissue electric properties (conductivity 
of non-permeabilised and permeabilised tissue). 
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3.2.1.1 GRAPHICAL INTERFACE OF SIMULATION ENVIRONMENT 
 
We developed the graphical interface of the simulation environment presented in Figure 3.3 by 
means of the Matlab software (MathWorks Inc., USA). Before starting a simulation, entering of 
simulation parameters presented in Table 3.1 is required into the lower left window (Parameter 
window) of the graphical interface. Then the actuation of permeabilisation follows by pressing the 
START permeabilisation button. After starting the simulation, the propagation of permeabilisation is 
computed for 15 time discrete steps. We had determined in previous testing that this number of 
steps was sufficient to terminate the propagation of permeabilisation. 
 

Table 3.1: Meaning of simulation parameters to be entered by means of the graphical interface. 
Parameter Meaning 
R0 Radius of inner electrode 
R1 Radius of outer electrode 
Sigma0 Specific conductivity of non permeabilised tissue 
Sigma1 Specific conductivity of permeabilised tissue 
E0 Electric field reversible threshold 
E1 Electric field irreversible threshold* 
l Cylinder electrode length 
u Pulse amplitude 
*does not apply for stepwise dependency σ(E) 

 
The upper right window of the graphical interface displays E intensity at each time discrete step in 
the simulation sequence for the particular set of simulation parameters displayed in the Parameter 
window. The red line presents E distribution in non permeabilised tissue i.e. E intensity at k=1, 
which is used to compute conductivity at k=2. Conductivity at k=1 is equal to conductivity of non-
permeabilised tissue. The green line denotes the reversible threshold E0 and blue lines present E 
distribution at k=2 to k=15. We can see that at k=1 the part of tissue up to a radius of 1.6 units was 
exposed to E intensity above E0 thus the conductivity there increased to σ1. Consequently at k=2 E 
intensity changed at that radius according to the transient condition of a normal component of E, at 
the boundary of two materials with different conductivities. E distribution at k=2 caused 
permeabilisation of tissue up to radius 1.9 units. Following the same principle, E distribution in the 
next time discrete step was computed and displayed.  
 
The upper left window shows the tissue conductivity during permeabilisation used to compute E 
distribution for each of 15 time discrete steps. The red line presents tissue conductivity at k=14 and 
blue lines present tissue conductivity at k=2 to k=13. The blue line at the top left corresponds to 
tissue conductivity computed from E distribution in non-permeabilised tissue. We can see that at 
k=2 tissue up to radius 1.6 units has increased conductivity σ1. 
 
The window at the lower right presents the radius at which reversible threshold is attained for each 
of 15 time discrete steps. Again we can observe that at k=2 the radius of permeabilised tissue was 
1.6 units, at k=3 it was 1.9 units and that at the end of permeabilisation, tissue was permeabilised up 
to radius of approximately 2.25 units. 
 
In the parameter window of the graphical interface, the maximum voltage denoted as umax is also 
displayed. Maximum voltage represents the pulse amplitude that can be applied to electrodes in 
order to not exceed irreversible threshold value anywhere between the electrodes as far as non 
permeabilised tissue is concerned. We can see that the selected pulse amplitude in Figure 3.3 was 
higher than umax which means that part of the tissue was exposed to E intensities above E1. 
However at the end of permeabilisation E intensities in the entire area between the electrodes were 
below E1. Therefore the value of umax is only of an informative nature and gives orientation for 
setting up the pulse amplitude in cases when E1 must not be exceeded at anytime during 
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permeabilisation. The parameter window also displays total computed current before (i before) and 
after permeabilisation (i after), which was computed considering equations (3.15) and (3.16) 
respectively:  
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The simulation environment revealed that for the particular set of parameters (pulse amplitude, 
distance between electrodes, and conductivity of permeabilised and non permeabilised tissue) only 
part of the area between the electrodes (up to radius 2.25 units) was permeabilised. The 
permeabilisation of the entire area between electrodes would therefore require a higher pulse 
amplitude. 
 

 
Figure 3.3: Graphical interface of simulation environment of tissue permeabilisation between two concentric 

electrodes. Stepwise σ(E) dependency was employed. 
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3.3 TIME DISCRETE MODEL OF TISSUE PERMEABILISATION WITH 
ARBITRARY σ(E) DEPENDENCY  

 
Up to this point we have considered the stepwise functional dependency σ(E). However in 
biological tissue it is very unlikely that such a dependency occurs. Considering differences in cell 
size, shape and their interaction we can expect some cells to be permeabilised before others when E 
above E0 is applied. This was also observed in experiments with bleomicyn [Miklavčič et al., 2000], 
where at the reversible threshold E0  both normal and altered nuclei were found adjacent to each 
other in the middle region between the electrodes. By increasing E above E1 the loss of viability of 
some cells was expected and later of all cells which lead into saturation of the σ(E) curve at 
increased tissue conductivity σ1. This implies that σ(E) dependency could have a different profile 
than that described by a stepwise function. 
 
For this reason we extended the simulation environment presented in Chapter 3.2.1 by adding 
different functional dependencies σ(E), such as linear, exponential and an S-shaped function. This 
however required modification of the analytical description of E distribution within the time 
discrete model. Thus the analytical model was modified in order to describe an arbitrary functional 
dependency between specific conductivity and applied E.  
 
Modification of the analytical model was performed by dividing the region between the inner and 
outer electrodes into a large number of intervals denoted with n instead of just two as in the model 
previously described in Chapter 3.1. To each interval we assigned homogenous conductivity. 
Conductivity within each interval was changed according to a defined σ(E) function which can have 
an arbitrary profile. 
 
Similar to the previous model derivation (Chapter 3.1) the electric potential in ith interval out of n is 
given by 

 
( ) iii BrAr += lnϕ  for ni →=1  and ii rrr ≤≤−1 ,   (3.17) 

 
where   00 Rr =    and  1Rrn = .      

 
On boundaries between two neighbouring intervals the following boundary conditions apply: 
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We can derive constant B by writing equations (3.18) as : 

 
)(ln 101 tuBRA =+ ⇒ 011 ln)( RAtuB −= ,    (3.20) 

iiiiii BrABrA +=+ ++ lnln 11  ⇒ iiiii BrAAB +−= ++ ln)( 11 ,  (3.21) 
0ln 1 =+ nn BRA  ⇒ 1ln RAB nn −= .     (3.22) 
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By taking into account equations (3.20) and (3.21) we can express Bi+1 recursively:  
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Considering equation (3.23) for i=n, and the boundary condition in equation (3.22) we can express 
u(t): 
 

1 1
1

1 1 0

( ) ln ... ln ... lni
n i

n i

rR ru t A A A
r r R− −

− = + + + +  for 12 −→= ni . (3.24) 

 
Parameter Ai can be substituted by parameter A1 based on equation (3.20), which gives: 
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Therefore E intensity in the first interval can be expressed as:  
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and E intensity in ith interval between the electrodes can be consequently expressed as:  
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  for  ii rrr ≤≤−1  and  12 −→= nj .    (3.27) 
 

3.3.1 EXTENDED SIMULATION ENVIRONMENT 
 
In addition to stepwise dependency we added linear, exponential, and S-shaped functional 
dependencies σ(E) into simulation environment in order to investigate the influence of different 
σ(E) dependencies on the course of permeabilisation. The programme code of the extended 
simulation environment is given in Appendix. The selection of a particular functional dependency 
could be performed through the Parameter window in the simulation environment (Figure 3.4) by 
pressing the corresponding button.  
 
In the Parameter window we set values for reversible threshold to 300 V/unit and for irreversible 
threshold to 700 V/unit for all subsequent functional dependencies because we wanted to have the 
major part of non-permeabilised tissue exposed to E-intensities between the two threshold values. In 
this way we emphasised the influence of the shape of σ(E) dependency between two thresholds on 
the course of permeabilisation. The rest of the parameters were the same as when employing a 
stepwise dependency, except for parameter B, which was set for exponential and S-shaped 
dependency σ(E) separately.  
 
Figure 3.4 presents permeabilisation propagation when linear σ(E) dependency was chosen The 
linear σ(E) dependency was defined as: 
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2 2( ) *E k E nσ = − ,     (3.28) 

 
where 

2 2 0 0*n k E σ= −      (3.29) 
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Another reason for setting a lower value of E0 in the Parameter window than for the stepwise 
dependency was to have with linear dependency 50 % increase in conductivity below reversible 
threshold used in stepwise dependency. We can see that tissue permeabilisation propagated up to a 
radius of 3.5 units. Change in tissue conductivity was observed only in the first three time discrete 
steps.  
 

 
Figure 3.4: Graphical interface of simulation environment of tissue permeabilisation between two concentric 

electrodes. Linear σ(E) dependency was employed. 
 
Further, we selected exponential dependency in the simulation environment. Exponential 
dependency was defined as:  
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and BE was set to 100. Again we can observe (Figure 3.5) that permeabilisation propagation 
terminated rapidly. The radius of permeabilised tissue was lower than when employing linear 
dependency due to the gradual increase in conductivity at lower E intensities compared to linear 
σ(E) dependency.   
 

 
Figure 3.5: Graphical interface of simulation environment of tissue permeabilisation between two concentric 

electrodes. Exponential σ(E) dependency was used. 
 
Finally we tested the influence of S-shaped dependency (Figure 3.6). The latter was expressed as:  
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BS=30 and D=1. The tissue was permeabilised up to a radius of 3.4 units.  
 
Figure 3.7 presents all functional dependencies σ(E) used within the simulation environment. Based 
on results shown in Figure 3.3 to Figure 3.6can conclude that the extent of permeabilisation i.e. 
radius of permeabilisation depends on the selected functional dependency σ(E). In inhomogeneous 
E the impact of different functional dependencies σ(E) also depends on the volume of tissue 
exposed to E intensities between the two threshold values and the E field distribution between those 
thresholds. The important difference between stepwise dependency and other dependencies used 
was also that the stepwise dependency causes discontinuities in E distribution during 
permeabilisation, while the other dependencies produce continuous or at least piecewise continuous 
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E distribution. This results in smaller differences in E field distributions between the steps, which 
terminates propagation of permeabilisation earlier compared to the stepwise dependency.  
 

 
Figure 3.6: Graphical interface of the simulation environment of tissue permeabilisation between two 

concentric electrodes. S-shaped σ(E) dependency was employed. 
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Figure 3.7: Stepwise, linear, exponential and S-shaped σ(E) dependencies used within the simulation 

environment. 
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3.4 PARAMETRIC STUDY  
 
The purpose of the parametric study was to verify the time discrete model and to analyse the effect 
of tissue parameters and E distribution on the radius of permeabilisation and specific conductivity 
between the two concentric cylindrical electrodes at the end of permeabilisation propagation. In 
addition we wanted to investigate the influence of different functional dependencies σ(E) on the 
course of permeabilisation. 
 
The parametric study was carried out on the time discrete model of tissue permeabilisation 
presented in Chapter 3.1 to Chapter 3.3. In the model we changed one parameter at a time, 
preserving the rest of the parameters as constants. We examined changes in tissue parameters (E0, 
E1, σ1, B), and the parameters that influenced E distribution between the cylindrical electrodes (R1, 
u). Initial values of the parameters were E0=300 V/unit (except for stepwise σ(E) where E0=500 
V/unit), E1=700 V/unit, σ1=0.6 mS/unit, BE=100, Bs=30, R1=4 units and u=1100 V. 
 

3.4.1 INFLUENCE OF REVERSIBLE THRESHOLD E0 
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Figure 3.8: Influence of E0 on the radius of permeabilisation for (a) stepwise, (b) linear, (c) exponential and 

(d) S-shaped σ(E) dependency. E0 was changed in the range of 300 V/unit (…) to 500 V/unit (---) in 
increments of 50 V/unit (-). 

 
Reversible threshold E0 is a tissue parameter, usually referred to as key parameter for 
electropermeabilisation. It denotes the E intensity at which an increase in cell membrane 
permeability is observed and a consequent increase in tissue conductivity. Parameter E0 is usually 
determined by means of rapid tests [Belehradek et al., 1994; Gehl and Mir, 1999], which are 
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sometimes combined with numerical models. The combination of rapid test and numerical model 
for determination of reversible threshold for muscle tissue is presented in [Gehl et al., 1999] and for 
rabbit liver tissue in [Miklavčič et al., 2000]. However, the quantitative value of reversible 
threshold E0 is still unavailable for most tissues. Therefore we examined the influence of E0 on 
permeabilisation.  
 
In the analytical model we parameterized E0 in the range 300 V/unit to 500 V/unit in increments of 
50 V/unit. Figure 3.8 presents the influence of E0 on the radius of permeabilisation between two 
concentric electrodes. No matter whether a stepwise, linear, exponential or S-shaped functional 
dependency was employed, in all cases the lower the E0, the higher the radius of permeabilisation 
was obtained, as expected. In the case of stepwise dependency the whole area between the 
electrodes was permeabilised provided E0 was lower than 350 V/unit, while with linear, exponential 
and sigmoid dependency even at E0=300 V/unit permeabilisation did not reach the outer radius. 
This is due to the gradual increase of those dependencies at E0 compared to stepwise dependency. 
 
Figure 3.9 shows the effect of E0 on E distribution and specific conductivity at the end of 
permeabilisation. The horizontal lines present parameterised reversible thresholds E0. We can 
observe discontinuities in E distribution for stepwise dependency which reflected in a higher 
average number of time discrete steps (6) required for termination of permeabilisation than in the 
case of other dependencies (3). In general at lower E0 we obtained lower E intensities and higher 
specific conductivities in regions where tissue was reversibly permeabilised. 
 
Specific conductivity at the end of permeabilisation also differed for different dependencies σ(E). 
Linear, exponential and S-shaped dependencies had a small area of tissue irreversibly permeabilised 
compared to stepwise dependency. Despite similar radii of permeabilisation and irreversibly 
permeabilised tissue obtained by the linear and S-shaped dependency, the specific conductivity 
differed in the area between the two thresholds. This difference would reflect in the total current 
between electrodes which is how it could be measured.  
 
Based on the fact that at lower E0 a larger area of tissue was permeabilised and also that specific 
conductivity between electrodes at the end of permeabilisation depended on E0, we have to 
emphasise again the importance of knowing E0 in advance for effective tissue permeabilisation. 
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Figure 3.9: Influence of E0 on E distribution and specific conductivity at the end of permeabilisation 

respectively for (a) and c) stepwise, (b) and (d) linear, (e) and g) exponential and ( f) and (h) S-shaped σ(E) 
dependency. E0 was changed in the range of 300 V/unit (…) to 500 V/unit (---) in increments of 50 V/unit (-). 

Horizontal lines present permeabilisation threshold E0. 
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3.4.2 INFLUENCE OF IRREVERSIBLE THRESHOLD E1 
 
Apart from the reversible threshold E0, the irreversible threshold E1 also plays an important role in 
tissue permeabilisation, especially for the case of electro gene transfer. Namely, E1 is a tissue 
parameter at which cell necrosis occurs which is to be avoided in electro gene transfer. Values of E1 
are even more rarely reported in literature than values of E0. Determination of E1 for rabbit liver 
tissue is presented in [Miklavčič et al., 2000]. We examined the influence of E1 by changing its 
value in the range of 700 V/unit to 900 V/unit in increments of 50 V/unit. 
 
Figure 3.10 presents the radii of reversible permeabilisation for different values of E1. As expected 
in the case of stepwise dependency E1 does not influence the radius of permeabilisation. However, 
in the case of other dependencies as E1 increases, the radius of permeabilisation decreases.  
 
Specific conductivity at the end of permeabilisation (Figure 3.11) reveals that by increasing E1 the 
area of irreversibly permeabilised tissue decreases, which was expected. That was clearly visible in 
the case of linear and exponential dependency; while in the case of S-shaped dependency it was not 
so pronounced. The reason was in the quite flat shape of the S-shaped dependency near E1. Further, 
with all dependencies, excluding stepwise, when increasing E1, we obtained lower values of specific 
conductivity in the area between the two thresholds. 
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Figure 3.10: Influence of E1 on radius of permeabilisation for (a) stepwise, (b) linear, (c) exponential and (d) 
S-shaped σ(E) dependency. E1 was changed in the range of 700 V/unit (…) to 900 V/unit (---) in increments 

of 50 V/unit (-). 
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Figure 3.11: Influence of E1 on specific conductivity at the end of permeabilisation for (a) stepwise, (b) linear, 

(c) exponential and (d) S-shaped σ(E) dependency. E1 was changed in the range of 700 V/unit (…) to 900 
V/unit (---) in increments of 50 V/unit (-). 

 
 

3.4.3 INFLUENCE OF MAXIMUM CONDUCTIVITY OF PERMEABILISED TISSUE σ1 
 
Specific conductivity is a tissue electrical parameter. For most biological tissues, values of specific 
conductivity can be found in literature [Rush et al., 1963; Schwan, 1963; Gedded and Baker, 1967; 
Faes et al., 1999], but there are not many reports in literature about maximum conductivity of 
permeabilised tissue. Therefore we examined how the maximum conductivity of permeabilised 
tissue σ1 affects permeabilisation. We parameterized σ1 in the range of 0.4 mS/unit to 0.75 mS/unit.  
 
In Figure 3.12 we can see that the higher the maximum conductivity of permeabilised tissue, the 
larger the radius of permeabilisation. We can also observe a difference in radius of permeabilisation 
obtained with various σ(E) dependencies. The largest radius was attained with the linear 
dependency, while the smallest was obtained with the stepwise dependency. However at k=1 the 
tissue was permeabilised up to the same radius no matter which functional dependency was used, 
because it depended solely on the E distribution in non-permeabilised tissue and E0. 
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Figure 3.12: Influence of σ1 on radius of permeabilisation for (a) stepwise, (b) linear, (c) exponential and (d) 

S-shaped σ(E) dependency. σ1 was changed in the range of 0.4 mS/unit (…) to 0.75 mS/unit (---) in 
increments of 0.05 mS/unit (-). 

 
Figure 3.13 presents specific conductivity at the end of permeabilisation. We can see that areas of 
irreversibly permeabilised tissue differ among the various dependencies. The largest was obtained 
with stepwise dependency. Further we observed that by increasing σ1, conductivity between the two 
thresholds also increased, which would in turn give higher currents. 
 
 

3.4.4 INFLUENCE OF OUTER CYLINDER DIAMETER R1 
 
The diameter of electrodes influences the E distribution between the electrodes as described in 
Equation (3.27). The effect of the change in distance between cylindrical electrodes is also similar 
to the effect of the change in distance between two needle electrodes inserted in tissue. To examine 
the influence of inter-electrode distance on tissue permeabilisation, we parameterised the diameter 
of the outer electrode from 4 units to 6 units in increments of 0.4 units. 
 
According to equation (3.4) E distribution in non-permeabilised tissue at a particular radius depends 
on the natural logarithm of ratio between the outer and the inner electrode. The smaller the distance 
between the electrodes, the larger E intensity at a particular point between the electrodes. Therefore 
by increasing R1, E intensities were lower in the area between the electrodes and consequently less 
tissue permeabilised as shown in Figure 3.14. On top of that, with larger R1, lower E intensities 
were present near the inner electrode, which resulted in a smaller area of permeabilised tissue with 
maximal conductivity (Figure 3.15).  
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Therefore by changing the position of the electrodes we can influence the amplitude and degree of 
inhomogeneity of E distribution. Consequently we can control the area of reversibly permeabilised 
tissue.  
 
Such information is very important in electrochemotherapy and for gene transfer when determining 
the position of needle electrodes, which produce a similar inhomogeneous E distribution.  
 
Comparison of results in Figure 3.14 and Figure 3.15 between different functional dependencies 
revealed that the largest radius of permeabilisation was obtained with the linear dependancy 
followed by the sigmoid, exponential and finally stepwise dependency. 
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Figure 3.13: Influence of σ1 on specific conductivity at the end of permeabilisation for (a) stepwise, (b) linear, 

(c) exponential and (d) S-shaped σ(E) dependency. σ1 was changed in the range of 0.4 mS/unit (…) to 0.5 
mS/unit (---) in increments of 0.75 mS/unit (-). 
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Figure 3.14: Influence of R1 on radius of permeabilisation for (a) stepwise, (b) linear, (c) exponential and (d) 
S-shaped σ(E) dependency. R1 was changed in the range 4 units (…) to 6 units (---) in increments of 0.4 unit 

(-). 
 
 

3.4.5 INFLUENCE OF PULSE AMPLITUDE U 
 
Pulse amplitude u is the parameter usually used to control the extent of permeabilisation. By 
increasing pulse amplitude, E intensity at a particular point in tissue increases. The effect is similar 
to the previously described influence of changes in cylinder diameter.  
 
For illustration of the impact of u on permeabilisation we parameterised u in the range of 900 V to 
1150 V. As expected at higher u the radius of permeabilisation was larger (Figure 3.16). Further, we 
observed that amongst the different functional dependencies linear dependency resulted in a larger 
radius, then sigmoid, exponential and stepwise dependency followed.  
 
Specific conductivity in the area between the two threshold values was higher when higher pulse 
amplitudes were applied (Figure 3.17), which was also in accordance with experimental 
observations. 
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Figure 3.15: Influence of R1 on specific conductivity at the end of permeabilisation for (a) stepwise, (b) linear, 
(c) exponential and (d) S-shaped σ(E) dependency. R1 was changed in the range of 4 units (…) to 6 units (---) 

in increments of 0.4 unit (-). 
 
 

3.4.6 INFLUENCE OF PARAMETER BS IN S-SHAPED FUNCTIONAL DEPENDENCY 
 
We can consider parameter BS as a tissue parameter, provided specific conductivity in tissue follows 
an S-shaped dependency. Namely, parameter BS in an S-shaped dependency defines the steepness of 
the function: the smaller the value of BS the steeper the S-shaped dependency. We parameterised BS 
in the range 20 to 50, to observe its impact on the course of permeabilisation between two 
concentric electrodes. 
 
In Figure 3.18 we can see that the steepness of the S-shaped dependency did not significantly 
influence the radius of permeabilisation, with lower BS values the decrease in radius was hardly 
visible. However it had some impact on specific conductivity at the end of permeabilisation 
between the two threshold values. At higher E intensities (close to the inner electrode) the lower the 
BS the higher the specific conductivity, while at lower E intensities (closer to the outer electrode) the 
lower the BS the lower the specific conductivity. 
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Figure 3.16: Influence of pulse amplitude u on the radius of permeabilisation for (a) stepwise, (b) linear, (c) 
exponential and (d) S-shaped σ(E) dependency. u was changed in the range of 900 V (…) to 1150 V (---) in 

increments of 50 V (-). 

 
 

3.4.7 INFLUENCE OF PARAMETER BE IN EXPONENTIAL FUNCTIONAL 
DEPENDENCY 

 
Similarly to the S-shaped dependency, in exponential dependency, parameter BE also reflects tissue 
properties: the smaller the parameter BE, the steeper the exponential dependency. We were changing 
parameter BE in the range of 60 to 160 in increments of 20. As shown in Figure 3.19 a steeper 
exponential dependency σ(E) resulted in a smaller radius of permeabilisation. A steeper dependency 
σ(E) also caused lower specific conductivity between the two thresholds. 
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Figure 3.17: Influence of pulse amplitude u on specific conductivity at the end of permeabilisation for (a) 

stepwise, (b) linear, (c) exponential and (d) S-shaped σ(E) dependency. u was changed in the range of 900 V 
(…) to 1150 V (---) in increments of 50 V (-). 
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Figure 3.18: Influence of parameter BS in S-shaped functional dependency σ(E) on (a) radius and (b) E 

distribution at the end of permeabilisation. Parameter BS was changed in the range of 5 (…) to 55 (---) in 
increments of 10 (-). 
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Figure 3.19: Influence of parameter BE in exponential functional dependency σ(E) on (a) radius and (b) E 

distribution at the end of permeabilisation. Parameter BE was changed in the range of 60 (…) to 160 (---) in 
increments of 20 (-). 

 
 

3.5 INFLUENCE OF THE SHAPE OF INPUT SIGNAL 
 
Within the simulation environment and parameteric study we assumed the application of 
rectangular pulses due to the fact that the use of rectangular pulses has been found to have many 
advantages over other pulse shapes as described in Chapter 1.8. These advantages are the reason 
that rectangular pulses are predominantly used in in vivo applications of tissue permeabilisation.  
 
Having a time discrete model of tissue permeabilisation we can however examine tissue 
permeabilisation for other pulse shapes, including shapes which have not been tested experimentally 
yet. In this chapter we therefore examined the influence of ramped signals i.e. linearly decreasing 
and linearly increasing pulses on the course of tissue permeabilisation. 
 
Figure 3.20 to Figure 3.23 present tissue permeabilisation when stepwise, linear, exponential and S-
shaped σ(E) dependencies were used in the model, respectively. The left hand side of each figure 
presents the input signal and results computed by the time discrete model when a linearly increasing 
input signal was applied. Equivalently, the right hand side presents the input signal and results for 
the case of linearly decreasing input signal application. On each side, in the first row the input 
signal of duration 15 time units is displayed. The minimum amplitude of the input signal was 500 
V, while the maximum was 1000 V. Below the input signal, the E distribution at time discrete steps 
during permeabilisation is shown, followed by the specific conductivity in the line below. At the 
bottom, the radius of tissue permeabilisation for each time discrete step is presented. 
 
In Figure 3.20 to Figure 3.23 we can see that when a linearly increasing input signal is applied E 
distribution in permeabilised tissue is actually higher than when a linearly decreasing input signal is 
applied. This is due to the fact that with a linearly increasing input signal, at the beginning of pulse 
application less tissue is permeabilised at the particular time discrete step than with a linearly 
decreasing signal. The tissue permeabilisation with the latter signal is already complete after the 
first two or three time discrete steps. Also in case of σ(E) dependencies other than stepwise, the 
change in tissue conductivity at the beginning of a linearly increasing pulse application is smaller 
than in the case of a linearly decreasing signal. The latter maximally increases the tissue 
conductivity at the beginning of pulse application. Considering all the cited reasons, the voltage 
drop in permeabilised tissue is thus smaller in the case of a linearly increasing input signal, resulting 
in higher E intensity in permeabilised tissue than in the case of a linearly decreasing signal. 
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The comparison of radii of permeabilised tissue in Figure 3.20 to Figure 3.23 shows that the extent 
of tissue permeabilisation (radius up to which tissue was permeabilised) was similar no matter 
whether a linearly increasing or a linearly decreasing input signal was applied. However, when a 
linearly decreasing input signal was applied the maximal radius of permeabilisation was already 
obtained at the beginning of pulse application, while in the case of a linearly increasing input signal, 
the maximal radius of tissue permeabilisation was obtained just before the end of pulse application. 
 
We further compared the radius of permeabilisation shown in Figure 3.20 to Figure 3.23 with the 
radius obtained by application of a rectangular pulse with amplitude 750 V – the average amplitude 
of the ramped signals. The comparison performed for all σ(E) dependencies (Table 3.2) showed that 
the radius of permeabilisation obtained by constant pulse amplitude was significantly smaller than 
the radius obtained when the ramped signals were applied. Thus we can conclude that maximal 
amplitude in the pulse affects the extent of permeabilisation. 
 
 

Table 3.2: Extent of permeabilisation for different shapes of input signal and different dependencies σ(E). 
 Linearly increasing pulse Linearly decreasing pulse Rectangular pulse 
σ(E) Radius of permeabilisation (unit) 
Stepwise 1.75 1.61 1.12 
Linear 2.77 2.81 1.97 
Exponential 2.52 2.53 1.83 
S-shaped 2.63 2.72 1.89 
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Figure 3.20: The left hand side presents the shape of a linearly increasing input signal (a) and corresponding E 

distribution (c), specific conductivity (e) and radius of permeabilisation (g), computed by the time discrete 
model. Equivalently the right hand side presents E distribution (d), specific conductivity (f) and radius of 
permeabilisation (h) for a linearly decreasing input signal (b). The stepwise σ(E) dependency was used. 
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Figure 3.21: The left hand side presents the shape of a linearly increasing input signal (a) and corresponding E 

distribution (c), specific conductivity (e) and radius of permeabilisation (g), computed by the time discrete 
model. Equivalently the right hand side presents E distribution (d), specific conductivity (f) and radius of 

permeabilisation (h) for a linearly decreasing input signal (b).The linear σ(E) dependency was used. 
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Figure 3.22: The left hand side presents the shape of a linearly increasing input signal (a) and corresponding E 

distribution (c), specific conductivity (e) and radius of permeabilisation (g), computed by the time discrete 
model. Equivalently, the right hand side presents E distribution (d), specific conductivity (f) and radius of 
permeabilisation (h) for a linearly decreasing input signal (b).The exponential σ(E) dependency was used. 
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Figure 3.23: The left hand side presents the shape of a linearly increasing input signal (a) and corresponding E 

distribution (c), specific conductivity (e) and radius of permeabilisation (g), computed by the time discrete 
model. Equivalently, the right hand side presents E distribution (d), specific conductivity (f) and radius of 
permeabilisation (h) for a linearly decreasing input signal (b).The S-shaped σ(E) dependency was used. 
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3.6 REAL TIME CONTROL OF TISSUE PERMEABILISATION 
 
In the previous chapter it was shown that the extent of permeabilisation as well as the dynamics of 
permeabilisation can be manipulated by the electric pulse shape. As for effective tissue 
permeabilisation the electric pulse amplitude which permeabilises the desired volume of tissue has 
to be defined, within this chapter we investigated the feasibility of real time control of tissue 
permeabilisation. Feasibility of real time control was examined by means of the time discrete model 
of tissue permeabilisation with stepwise dependency σ(E) presented in Chapter 3.1 to Chapter 3.3. 
Considering the model presented, the control task was to provide the electric pulse amplitude that 
permeabilises tissue up to a predefined radius which represents the goal of effective tissue 
permeabilisation. The radius of permeabilised tissue was controlled by a closed loop control 
algorithm, which defines pulse amplitude according to the reference radius and the current radius of 
permeabilisation.  
 
The corresponding control scheme is shown in Figure 3.24. The permeabilisation process is 
described by the time discrete permeabilisation model denoted as permeabilisation in the control 
scheme. The reference value for the control algorithm Rref is the radius of tissue to be permeabilised. 
The control variable (the model input) is the pulse amplitude u. The manipulated value is the radius 
of permeabilised tissue r. A proportional integral (PI) controller was implemented to control the 
model output r. The use of a PI controller is justified by the fact that it is capable of steady-state 
control error elimination and it gives sufficient transient response in the case of a first order system. 
In time domain the PI controller has the following form: 
 

∫+= dtteKeKtu IP )()( ,     (3.35) 
 

where e is the difference between Rref and r, Kp is the proportional gain and KI the constant of the 
integral part. The transfer function of the PI controller, which is denoted as the Laplace transform of 
the system unit impulse response, is the following:  
 

s
K

KsG I
PPI +=)( .      (3.36) 

 
The parameters of the PI controller were derived by means of a cancellation controller design 
(Isermann et al., 1992). The latter is designed by prescribing the desired input-output relation to the 
closed loop system. The transfer function of the closed loop system is given by: 
 

)()(1
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where GR and GP are controller and process transfer functions, respectively. From equation (3.37) 
the controller transfer function follows: 
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Considering the step response of our model (Figure 3.25), permeabilisation can be approximately 
described by a first order model. The transfer function of a first order model is given by 
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+
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where K denotes the gain and T the time constant of the model. Our goal was to force the closed 
loop model to behave like the model described by the desired transfer function: 
 

1
1)(

+
=

nTs
sGw ,      (3.40) 

 
where nT denotes the time constant of the closed loop model. If the closed loop time constant is to 
be shorter than the model time constant, parameter n should be in the range between 0 and 1. 
 
Considering equations (3.38), (3.39) and (3.40) we can express the transfer function of the 
controller as: 
 

nTKsnK
sGR

11)( += .     (3.41) 

 
By comparing equation (3.41) with (3.36) we can obtain parameters of the PI controller: 
 

nK
KP

1
=   and   

nTK
KI

1
= .   (3.42) 

 
The gain of the model K=216 was computed from the model step response. The time constant of the 
model was also derived from the model step response shown in Figure 3.25, where step responses 
were given for pulse amplitudes in the range of 900 V to 1300 V, in increments of 50 V. For each 
time discrete step we assumed a time unit of 1 µs. That was speculative and could be determined 
only by comparison with the step response of a corresponding experimental system. In Figure 3.25 
we can see that due to the nonlinearity of the system, time constants differ according to the input 
signal. For use in transfer function the shortest time constant was selected i.e. T=1 µs, in order to 
satisfactorily control the dynamics at lower pulse amplitudes also. 
 

 
Figure 3.24: Control scheme. 

 
Parameter n was selected to obtain a shorter time constant of the closed loop model compared to the 
model time constant (n=0.3). The resulting parameters of the PI controller were therefore KP=720 
and KI=720.  
 
Figure 3.26 presents simulation results of control i.e. the controlled variable r and the control signal 
u when different reference values Rref were set in the control scheme. For example, if Rref is equal to 
3.5 units, the control variable value in a steady state reached u=1329.8 V (Figure 3.26 (a) and (b)). 
When the reference was set to Rref=3 units, the corresponding pulse amplitude in a steady state was 
u=1255.5 V (Figure 3.26 (c) and (d)), similarly for Rref=2.5 units and Rref=2 units, in a steady state 
the pulse amplitudes obtained were u= 1160.2 V and u=1039.7, respectively (Figure 3.26 (e) to (h)).  
 
As observed from the results in Figure 3.26, despite using the shortest time constant T in 
computation of PI controller parameters, the model control gave satisfactory results in the presented 
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range of reference values. However for better performance at a particular set point, parameter tuning 
should be redefined or a gain-scheduling PI controller can be implemented. 
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Figure 3.25: Model step response at different pulse amplitudes. 

 
 

3.7 COMPARISON OF ANALYTICAL MODEL AND FINITE ELEMENT 
MODEL 

 
For the same geometry of two concentric cylindrical electrodes we designed a time discrete model 
of tissue permeabilisation where E was computed by a finite element method. The methodology of 
the time discrete finite element (FE) model will be explained later in Chapter 5. At this point we 
wanted to compare results obtained by the analytical and FE model for different dependencies σ(E). 
We used the same parameters in the analytical model and FE model when comparing results for a 
particular σ(E) dependency. 
 
The left hand side of Figure 3.27 presents conductivities at the end of permeabilisation computed by 
the analytical model, while the right hand side presents conductivities computed with the FE model 
for different dependencies σ(E). The distance on the x axis is denoted as the distance between the 
inner and outer radius of concentric cylindrical electrodes. We can see that in the case of stepwise 
dependency the FE model gives distorted results at permeabilisation radii obtained in discrete time 
steps – the points of discontinuity of E distribution. This is due to FE interpolation between nodes. 
This problem can be minimised by generating very dense mesh in the whole region where we 
expect discontinuities in E distribution to occur. For stepwise dependency σ(E) we also calculated 
the total current before and at the end of permeabilisation. With the analytical model we computed 
current before permeabilisation ibefore=2.99 A and after permeabilisation iafter=4.19 A, while the FE 
model gave ibefore=2.88 A and iafter=3.79 A. The difference was small and resulted from the 
discretisation of evaluation points inherent to FE modelling. 
 
Further comparison of the analytical and FE model for linear, exponential and S-shaped σ(E) 
dependency showed that there were no such differences between the models as occurred with 
stepwise dependency. The reason was the smoother E distribution obtained when employing those 
dependencies. Namely, a smoother distribution is not as sensitive to the mesh density. 
 
The major difference between the analytical and FE model was the time spent on solving the model, 
which in the case of FE model was significantly longer. 
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Figure 3.26: Controlled variable - model response (radius) and control variable (voltage) for different 

reference values: Rref=3.5 units (a) and (b); Rref=3 units (c) and (d); Rref=2.5 units (e) and (f); Rref=2 units (g) 
and (h). 
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 (a) (b) 

  
 

(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
Figure 3.27: Comparison of specific conductivity at the end of permeabilisation computed by analytical model 

(left) and FE model (right) for different functional dependencies σ(E). Stepwise dependency: (a) analytical 
model, (b) FE model; linear dependency: (c)  analytical model, (d) FE model; exponential dependency: (e) 

analytical model, (f) FE model; S-shaped dependency: (g) analytical model, (h) FE model. 
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3.8 DETERMINATION OF σ(E) DEPENDENCY 
 
With the model parametric study we confirmed that parameters of σ(E) dependency play an 
important role in tissue permeabilisation. Their impact of course is related to the distribution of the 
E in tissue. For use in permeabilisation models σ(E) dependency has to be determined for each 
tissue, which requires specially designed experiments and corresponding models of tissue 
permeabilisation. Therefore in this chapter we present one approach towards determination of σ(E) 
dependency from experiments on rat liver tissue. 
 
The approach is based on determination of approximate threshold values by measuring Cr51-EDTA 
uptake. Namely Cr51-EDTA can only enter permeabilised cells, and it leaks out from necrotic cells. 
Therefore Cr51-EDTA can be considered as an indicator of the volume of reversibly permeabilised 
tissue.  
 
As the total current reflects the specific conductivity of the tissue we optimized the precise 
thresholds and the shape of σ(E) dependency by minimizing the difference between modelled 
current and current measured in experiments.  
 

3.8.1 EXPERIMENTS 
 
In vivo experiments were performed at the Institute Gustave-Roussy, France on rat liver tissue in 
accordance with European Council directives and French legislation regarding animal welfare and 
care. Rats were kept anaesthetised for the duration of the experiment. At the beginning of the 
experiment the Cr51-EDTA was injected intravenously and after a few minutes the rat liver was 
isolated from the abdomen by surgical intervention. The tissue was then placed between two plate 
electrodes as shown in Figure 3.28 and exposed to electrical treatment i.e. a sequence of eight 
square wave pulses of duration 100 µs and repetition frequency of 1 Hz. The amplitude of pulses 
was in the range between 50 to 500 V i.e. an electric field in the range 110 V/cm to 1100 V/cm. 
Pulses were delivered by Jouan GHT 1287B, France pulse generator. The applied voltage and 
resulting current were acquired by high voltage and current probes respectively and stored on-line 
by oscilloscope (LeCroy, France). Animals were sacrificed after 24 hours. Blocks of liver tissue 
exposed to the electric treatment and blocks of non-exposed tissue of the same size were then taken 
out. Both blocks were weighted and gamma counted. The difference in measured activity per gram 
between the two blocks indicated the net uptake of Cr51-EDTA caused by electropermeabilisation.  
 
Another set of experiments was performed under the same electrical treatment, however without 
Cr51-EDTA injection, thus the number of experiments with voltage and current measurements was 
higher than the number of experiments where Cr51-EDTA measurement was included. 
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Figure 3.28: Plate electrodes used in experiments. 

 

3.8.2 OPTIMISATION OF PARAMETERS OF σ(E) DEPENDENCY 
 
We assumed homogenous E distribution in the area between the two plate electrodes. This was also 
confirmed by the FE model, where slightly increased E distribution was found only at the electrode 
edges. Due to the negligible difference in E we used the simple analytical model based on equations 
for steady electric current in a volume conductor instead of the FE model in order to determine σ(E) 
dependency. Specific conductivity in homogenous E between two plate electrodes is denoted as: 
 

i d
u A

σ = ,      (3.43) 

 
where i is measured total current, u pulse amplitude, A the tissue surface in contact with electrodes 
and d the distance between the electrode.  
 
The average tissue surface in contact with the electrodes in our experiments was estimated to be 
88.5 mm2 - smaller than the surface of the electrodes. The distance between the electrodes was 4.4 
mm as shown in Figure 3.28. We determined specific conductivity of non-permeabilised tissue as 
the mean value of measured specific conductivity at E intensities where no Cr51-EDTA uptake was 
observed. Similarly we defined specific conductivity of irreversibly permeabilised tissue by 
averaging measured specific conductivities computed at higher E intensities than the E intensity at 
which Cr51-EDTA uptake decreased significantly (above 680 V/cm). In this way we obtained 
σ0=1.41 mS/cm and σ1=3.10 mS/cm.  
 
The approximate E thresholds were also determined by means of Cr51-EDTA uptake. Between two 
neighbouring E intensities i.e. where no Cr51-EDTA uptake was measured and where the first 
increase in Cr51-EDTA uptake was found we set the range for E0. Further, between two E intensities 
where Cr51-EDTA uptake was still increased and where Cr51-EDTA uptake dropped we defined the 
range for E1. The measured Cr51-EDTA uptake and determined ranges for E0 and E1 are shown in 
Figure 3.29. 
 
In continuation we assumed an S-shaped dependency between specific conductivity and E intensity. 
Such a dependency was used because it best describes experimental observations. Those 
observations revealed that at reversible threshold, at first some cells are permeabilised, and then by 
increasing the E intensity neighbouring cells are also permeabilised, while when E exceeds 
irreversible threshold the death of some cells is observed yielding to tissue necrosis with further 
increases in E. 
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Figure 3.29: Average Cr51-EDTA uptake (*) and range of E0 (dashed lines) and E1 (full lines). 

 
Thus electropermeabilisation parameters subject to optimisation were E0, E1 and parameters BS and 
D of S-shaped dependency presented in Equation (3.33). The constraints on E0 and E1 were set 
according to the range determined by Cr51-EDTA uptake i.e. 272 V/cm <E0< 457 V/cm and 544 
V/cm <E1< 762 V/cm. The optimisation goal was to minimise the objective function f representing 
the difference between measured (i) and modelled (im) total current: 
 

0 1, , ,
( , )min m

E E B D
f i i .     (3.44) 

 
The objective function f(i,im) was expressed as: 
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where j denoted measurement at applied voltage uj.  
 
A constrained nonlinear optimisation method was used. The minimum of the objective function was 
found at f(i,im)=0.129. Optimal parameters were E0=272 V/cm, E1=762 V/cm, BS=61, D=1.1. We 
can see that optimized threshold values reached bounds, which could mean that lower reversible and 
higher irreversible threshold would give even better results of the objective function. However, as 
the S-shaped dependency is very flat at the threshold values, the determination of threshold values 
is very sensitive to the accuracy of current measurements used to compute the objective function. 
We believe that current measurements were subjected to measurement error because surface of 
tissue in contact with electrodes differed amongst experiments. On the other hand Cr51-EDTA 
measurements were performed in the region of tissue in the middle between the electrodes, thus 
they should be more accurate. The combination of the current and Cr51-EDTA measurements for 
determination of σ(E) dependency was therefore sensible in case of plate electrodes, where the 
current measurements are affected by the alteration in surface of tissue in contact with electrodes. 
On the other hand in case of, for example needle electrodes, the surface of tissue in contact with 
electrodes could be determined more accurately.  
 
Figure 3.30 presents measured and modelled current by using optimised parameters in σ(E) 
dependency.  
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Figure 3.31 presents the shape of functional dependency σ(E) and specific conductivity computed 
from u and i measurements.  
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Figure 3.30: Total current measured by experiments (*) and total current computed by model (full line). 
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Figure 3.31: Specific conductivity computed from measurements (*) and specific conductivity obtained by 

model (full line). 
 
 

3.9 DISCUSSION 
 
A time discrete model of tissue permeabilisation with an analytical description of E distribution was 
designed for the geometry of two concentric cylindrical electrodes. The methodology proposed 
could also be used for other geometries which allow for an analytical description of E distribution. 
The important contribution of the geometry used was that such geometry provides an 
inhomogeneous E distribution similar to the distribution around needle electrodes as used for 
treatment of deeply seated tissue in clinics. In this respect the presented model could assist in 
determination of optimal pulse amplitude for effective tissue permeabilisation in a non-invasive 
way before the treatment (see Chapter 6). 
 
The time discrete model was incorporated into a simulation environment that presents the course of 
permeabilisation by displaying E distribution, specific conductivity, and radius of permeabilised 
tissue. As pulse parameters, the geometry and tissue electrical properties influence the course of 
tissue permeabilisation, a further purpose of the simulation environment was to provide monitoring 
of tissue permeabilisation as influenced by changes in those parameters. The time discrete 
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simulation of tissue permeabilisation revealed that at constant pulse amplitude and stepwise σ(E) 
dependency, permeabilisation propagation terminated after a few time discrete steps. The number of 
time discrete steps at which changes in E distribution due to permeabilisation were present 
depended on E intensity and tissue parameters. As stepwise σ(E) dependency was not very likely to 
occur in biological tissue, we extended the time discrete model to describe arbitrary functional 
dependency σ(E). Based on such a model the time discrete simulation of tissue permeabilisation 
when linear, exponential and S-shaped dependencies were used was presented within the simulation 
environment.  
 
The influence of E distribution and different functional dependencies σ(E) on the course of 
permeabilisation was systematically examined by performing a model parameteric study afterwards. 
The parameteric study revealed that tissue parameters (E0, E1, S1, B) influence the radius of 
permeabilisation and specific conductivity at the end of permeabilisation. It also confirmed that the 
distribution of external E defined by parameters R0 and u, controls permeabilisation. This yielded 
the conclusion that pulse amplitude and electrode position should be very carefully determined in 
order to permeabilise the pre-required volume of tissue with given σ(E) dependency.  
 
Based on the parametric study we also inferred that when continuous (S-shaped) or at least 
piecewise continuous (linear, exponential) functional dependencies σ(E) were used, 
permeabilisation propagation was terminated even earlier than in the case of stepwise dependency 
σ(E). Those dependencies namely smoothed the effect of the transition condition on the border 
between two materials with different conductivities, which in the case of stepwise dependency 
caused discontinuities in E distribution and prolonged propagation of permeabilisation.  
 
Further, the differences caused by the shape of functional dependencies σ(E) depended on E 
distribution in tissue. The more tissue exposed to E intensity between the two thresholds, the more 
pronounced the differences caused by the shape of functional dependencies σ(E). Considering E 
distribution between two concentric electrodes, the largest radius of permeabilised tissue was 
obtained with a linear dependency. Such dependency σ(E) assumed a proportional increase in 
conductivity due to E intensity in the whole area between the two threshold values. Exponential 
dependency σ(E) however assumed that at lower E intensities a gradual increase in conductivity 
was present and that it increased exponentially with higher E intensities. The S-shaped dependency 
caused a gradual increase at lower intensities, then a steep increase around the inflection point and 
later again, a gradual increase just below E1. Because E intensity in non-permeabilised tissue 
between the electrodes dropped with 1/r, less tissue was exposed to higher intensities than lower. 
This was the reason why the linear dependency, which caused the largest increase at lower E 
intensities, resulted in a larger radius of permeabilisation than the other dependencies.  
 
Linear and exponential dependencies are piecewise continuous at both threshold values, which 
could hardly be justified in biological tissue. It is only the S-shaped dependency which is 
continuous in the whole range. The S-shaped dependency also better fits the permeabilisation 
process which was observed experimentally in [Miklavčič et al., 2000] to be at E0 present in some 
cells, then with higher E-intensities it expanded to other cells. After reaching E1 the first necrotic 
cells were observed leading to a whole tissue necrosis at higher E intensities. Based on the above 
results and experimental observations further in this work we used the S-shaped dependency. The 
constant D in equation (3.33) in the S-shaped dependency enables the translation of inflection point 
at other E intensities than the mean value between the two thresholds. In this way by changing 
either of parameters BS or D we can transform the S-shaped dependency to resemble a more linear 
or more exponential dependency in the area between the two thresholds.  
 
While within the simulation environment and parametric study we assumed the application of a 
rectangular pulse, it was a further question of interest to investigate the influence of pulse shape 
(linearly decreasing and linearly increasing or ramp signal) on the dynamics and extent of 
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permeabilisation. Modelled tissue permeabilisation at applied ramp signals showed that similar radii 
of permeabilised tissue were obtained no matter whether a linearly increasing or linearly decreasing 
input signal was applied. However, when a linearly decreasing input signal was applied, the 
maximal radius of permeabilisation was obtained in the beginning of the pulse application, while in 
the case of a linearly increasing input signal the maximal radius of tissue permeabilisation was 
obtained just before the end of pulse application. The comparison of ramp signals with a rectangular 
pulse of amplitude equal to the average amplitude of the ramp signals showed that the radius of 
permeabilisation obtained by a rectangular pulse was significantly smaller than the radii obtained 
when the ramp signals were applied. It seems that the maximal amplitude in the pulse greatly affects 
the extent of permeabilisation. 
 
Thus, as the radius of permeabilisation can be manipulated by adequate pulse shape, we further 
examined the possibility of real time control of tissue permeabilisation on the time discrete model. 
The permeabilisation control, performed by a closed loop control algorithm with proportional 
integral controller showed that such an approach could be used to control the effectiveness of 
permeabilisation. However, tuning of controller parameters which was based on the model step 
response would in real applications require specially designed experiments to obtain the step 
response. To avoid this, model based determination of the controller parameter could be used, 
which of course requires an accurate and reliable model of tissue permeabilisation. In the presented 
control scheme we considered the radius of the permeabilised tissue as the controlled variable. In 
case of in vivo permeabilisation control it is difficult to measure the radius or the volume of 
permeabilised tissue (in real geometries the volume of permeabilised tissue would be the equivalent 
to the radius used in presented analytical model). Measurement of bulk tissue conductivity, which is 
usually performed, could not be used for assessment of the volume of permeabilised tissue, as it 
does not provide information about whether a specific point of tissue was permeabilised. A possible 
approach for determining the volume of permeabilised tissue could be electric impedance 
tomography, but this method does not provide on-line data. Another approach would be model 
based control, i.e. to determine the volume of permeabilised tissue by means of a time discrete 
model. However, analytical description of E distribution is possible only for simple geometries, 
while in the case of complex geometries, numerical methods should be considered. 
 
Thus we performed a comparison of analytical and numerical models to test the feasibility of 
employing a numerical model in a time discrete simulation of tissue permeabilisation. Both models 
predicted a similar change in specific conductivity at the end of permeabilisation for different 
dependencies σ(E).  The comparison showed that computation of the numerical model is time 
consuming and that the accuracy of the time discrete model is limited due to discretisation of the 
solution in evaluation points. The latter has a significant impact when distinctive inhomogeneities 
or even discontinuities are present in the solution. Such a problem however can be reduced by 
generating denser mesh in that region. Therefore the use of a numerical model in a time discrete 
simulation of tissue permeabilisation is feasible. Even more, when modelling complex geometries it 
represents the only possible solution. However, a numerical model can not be used for model based 
control as it is time consuming and thus can not provide the on-line data needed for real time 
control. 
 
On the other hand the application of the controller is reasonable when we also want to control the 
dynamics of tissue permeabilisation. Considering the problems mentioned above and the fact that 
rectangular pulses have been found experimentally to be effective, as well as when applied they 
provide sufficient dynamics of permeabilisation the determination of the rectangular pulse 
amplitude that would permeabilise a given volume of tissue in a steady state is more important than 
the control of the dynamics of phenomenon. The determination of rectangular pulse amplitude for 
effective permeabilisation could be performed by other means, such as for example the model based 
optimisation.  
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For determination of optimal pulse amplitude based on the proposed time discrete model, the  σ(E) 
dependency should be known in advance. Therefore at the end we proposed an approach for 
determination of σ(E) dependency. The approach combined experimental results and a model of E 
distribution. Experimental results comprised measured uptake of Cr51-EDTA and total current. The 
former was used to determine the approximate range of thresholds for reversible and irreversible 
tissue permeabilisation, while the latter was used for model based optimisation of  σ(E) 
dependency, where the approximate threshold range was considered as a constraint. The 
combination of measurements of Cr51-EDTA and total current minimized the influence of 
measurement errors, as Cr51-EDTA and current are measured by different measurement methods. 
However model based optimization of  σ(E) dependency on current only could also be used, 
provided a reliable model of tissue permeabilisation is employed and satisfactorily accurate current 
measurements are available. 
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44  FFIINNIITTEE  EELLEEMMEENNTT  MMOODDEELLLLIINNGG  OOFF  NNEEEEDDLLEE  
EELLEECCTTRROODDEESS  IINN  TTIISSSSUUEE  FFRROOMM  TTHHEE  PPEERRSSPPEECCTTIIVVEE  
OOFF  FFRREEQQUUEENNTT  MMOODDEELL  CCOOMMPPUUTTAATTIIOONN  

 
 
 
Electric field (E) distribution in tissue is a key factor influencing the effectiveness of 
electropermeabilisation. In the previous chapter the E distribution in tissue between two concentric 
electrodes was computed by means of an analytical model. The analytical model of E distribution 
was also used to determine σ(E) dependency in rat liver tissue between two plate electrodes. The 
development of both analytical models was feasible because tissue and electrodes formed simple 
geometry.  
 
However for tissue permeabilisation other electrode configurations are also used such as needle 
electrodes, needle arrays, wire electrodes, etc. [Gilbert et al., 1997; Mir et al., 1997; Ramirez et al., 
1998; Hofmann, 2000]. In such cases the use of numerical methods is almost unavoidable for 
calculation of E distribution in tissue. Widely used numerical methods for that purpose are the finite 
element (FE) and the finite difference (FD) methods [Gehl et al., 1999; Miklavčič et al., 2000].  
 
In the previous chapter we also presented that a time discrete model of tissue permeabilisation 
requires several calculations of E distribution to determine the extent of permeabilisation at applied 
pulse amplitude. Analytical calculations of electric fields were not time consuming and thus the 
influence of several calculations was negligible. However if we want to use numerical methods 
instead of analytical to describe E distribution within a permeabilisation model we have to be aware 
that numerical methods are in general computationally demanding and thus time consuming. 
 
Therefore, simplifications in the modelling process which can decrease computational efforts and at 
the same time preserve the accuracy of the result i.e. E distribution in our case are more than 
welcome.  
 
In this chapter we focused on simplifications, which can be employed to modelling of needle 
electrodes with the FE method. Needle electrodes, compared to other electrodes mentioned above, 
are routinely used in in vivo experiments, because deep penetration of the field is obtained. Needle 
electrodes also present a very complex task for FE modelling, due to their curved shape and usually 
large disproportions in terms of size with respect to the surrounding tissue dimensions.  
 
We have therefore investigated how to model needle electrodes in FE model in order to hasten the 
solution process. Different needle geometries (4, 8 and 12 faceted) were tested on an FE model with 
one pair of needle electrodes. The results were evaluated by comparing computed total current and 
measured current in tissue phantoms. Proposed needle electrode geometry was then examined in 
needle arrays with 2, 3 and 4 pairs of needle electrodes. The results of all examples were validated 
by comparison of computed total current and measured current on phantom tissue.  
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4.1 EXPERIMENTS 
 

4.1.1 SAMPLE 
 
Experiments were performed at The Institute of Pharmacology and Structural Biology in Toulouse, 
France. Tissue phantom was used instead of real tissue in all experiments, with electrical parameters 
and characteristics close to real tissue. Tissue phantom was made from gelatine (2.4% w/v) in 
phosphate buffer (concentration 20 mM, pH = 7.4) and NaCl (concentration 150 mM). This is 
actually a gel with some rigidity when cooled. Due to the moisture of the gel a good electrical 
contact is obtained with electrodes inserted in the gel. Tissue phantom conductivity was 1.5 S/m. 
Fresh gel was prepared in a buffer before each experiment and its conductivity was measured.  
 
The phantom tissue was prepared in a petri dish of 35 mm diameter. The thickness of the gel used in 
experiments was either 2, 4 or 6 mm and it was controlled by pouring a given volume of hot liquid 
gel in the dish. 
 

4.1.2 ELECTRICAL MEASUREMENTS 
 
Needle electrodes were placed in a holder as described in [Gehl et al., 1999] and shown in Figure 
4.1, i.e. non conductive material with needles in the array placed 2 mm apart. The two arrays were 
6.5 mm apart. The arrays had place for up to 4 needles. Needle diameter was 0.5 mm. The tip of the 
needle was always in contact with the bottom of the dish. Therefore the length of the needle in 
contact with the gel was equal to the thickness of the gel. Needle tips were oriented towards each 
other as shown in Figure 4.4, left. 
 
The voltage pulse was delivered by a high voltage square wave pulse generator (Jouan PS 10, 
France). A resistor R (about 1 ohm) was inserted in series with the electrode array to monitor the 
current. Both the voltage pulse delivered by the generator and the voltage across the resistor R were 
digitized (8 bit resolution) and stored on line with a transient recorder (Data Lab DL 905, UK). The 
stored signals were observed on an oscilloscope and analyzed on a MacIntosh LCIII microcomputer 
(Apple, USA) by using an ADA4 interface with an Excel subroutine. The system as shown in 
Figure 4.2 was calibrated for the current by using an ohmic calibrated high power resistor in place 
of the needle array. A linear current response of the system was observed for increasing values of 
the applied voltage (100 to 1000 V). Lower applied voltages (0 to 100 V) were studied with 
increments of 25 V. In experiments, applied voltage was up to 500 V, in increments of 100 V. The 
pulse duration was 0.1 ms. By plotting current by voltage (U/I) ratio during the pulse delivery, 
material conductivity was observed to be constant. Under our experimental condition (sampling rate 
1 µs), no delay between voltage and current signals was observed and negligible transient response 
of current comparing to pulse length was detected, which indicated pure ohmic behaviour of the gel. 
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Figure 4.1: Position of needle electrodes and holder in petri dish, view in xy plane (left); yz and zx plane 

(right). 
 

 
 

 
Figure 4.2: Pulse generator and acquisition unit. 

 
Several experiments with needle electrodes differing in the number of needles, distance between the 
needles and also gel thickness (2 mm, 4 mm and 6 mm) were carried out. Each experiment was 
performed in three replicates, which all together sum up to 50 experiments. Reproducibility of 
replicate accuracy in each experiment was high, which was the reason to conclude three replicates 
per experiment were enough. 
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4.2 MODELLING 
 
A three dimensional FE model of a gel in petri dish with inserted needle electrodes was designed 
using EMAS software.  
 
The geometry under the study was moderately complex, involving few physical objects (gel, 
needles) with specific geometrical and material properties. To simplify the modelling and solution 
process the basis of FE approach is to divide volume into many finite elements, each with much 
simpler properties. In the EMAS software, when automatic mesh generation was selected, finite 
elements had the shape of tetrahedrons. Finite elements with an additional mid-side node on each 
element edge are referred to as quadratic elements. The curved element edge option enabled mid-
side nodes to be placed outside the straight line connecting corner nodes. In such a way a curved 
element edge was obtained, which lead to a better representation of curved geometries. 
 
Mesh was denser in regions around the electrodes than at the edge of a petri dish. The reason for 
such meshing was a steep change in E distribution expected close to electrodes. Another reason to 
create denser mesh around the electrodes was that the dimension of the electrodes was significantly 
smaller than dimensions of the surrounding gel. 
 

4.2.1 NEEDLE ELECTRODES 
 
Modelling of cylindrical shapes with FE method is a demanding task. Namely, such a shape has to 
be approximated with a huge number of basic elements such as bricks or tetrahedrons. This problem 
is usually solved by allowing a certain deviation between geometry edge and finite element edge, 
using elements with curved boundaries and by generating very dense mesh in the curved region (at 
the edge of the electrodes). However, very dense mesh results in computational complexity of 
models.  
 
Needle electrodes in our model represented a problem of such type. Due to the fact that their size 
was 70 times smaller than the size of the surrounding gel, very dense mesh had to be generated in 
the region around the electrodes. Despite using quadratic tetrahedron elements with curved edges 
the modelling of cylindrical electrodes was inadequate. For generating a better solution, very dense 
mesh was required. Therefore in order to simplify the modelling process we approximated 
cylindrical electrodes with 4, 8 and 12 faceted shapes. Needle tips of 2 mm length were modelled in 
all needle approximations. Another point was to investigate whether electrodes could be modelled 
as hollow, solid or they had to be approximated as tubes having a certain wall thickness, like the 
needles used in experiments. Figure 4.3 shows the 4, 8 and 12 faceted electrodes in plane 
perpendicular to their length, as well as the solid and tube electrode. 
 

 
Figure 4.3: Cross section of 4, 8 and 12 faceted, solid and tube electrodes. 

 
Another issue of interest was to determine if modelling of needle tips can be ignored, as shown in 
the middle of Figure 4.4, or they have to be modelled in such a way as to correspond to real tips, as 
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shown in Figure 4.4, left and to investigate the influence of the tip orientation as shown in Figure 
4.4, right. 
 

 
Figure 4.4: Modelling needle electrodes. Left: tips-in; centre: no tips; right: tips-out. 

 
In order to determine which simplifications can be employed without seriously affecting modelling 
results, we designed all needle geometries mentioned above, computed total current and compared 
the result with current measurements from the experiments. These comparisons were performed on 
the experiments with a single needle pair. Based on validation of results on a single needle pair the 
most adequate needle geometry was selected and used in models with 2, 3 and 4 needle pairs. In all 
models E amplitude was observed in two planes, i.e. xy plane, perpendicular to electrode lengths, 1 
mm below the surface and yz plane crossing in the middle between the electrodes. 
 

4.2.2 TISSUE WITH A SINGLE PAIR OF NEEDLE ELECTRODES 
 
Needle electrode geometries used for simplified representation of cylindrical electrodes were 
hollow 4, 8, 12 faceted, solid (stainless steel) and tube electrodes with modelled tips and 8-faceted 
needles without modelled tips. Due to the fact that in the FE model constant voltage was applied to 
the surface of the electrodes (Dirichlet boundary condition), we preserved the same electrode 
surface in cases of 4, 8 and 12 faceted electrodes, as for cylindrical electrodes (o=2πr=1.57 mm). 
The inner distance between electrodes was kept constant at 6.5 mm for all electrode geometries. 
Total currents computed for all types of electrodes and different gel thicknesses are summarized in 
Table 4.1.  
 

Table 4.1: Measured currents and total currents computed by models with different needle geometries. 

Current (A) Thickness of 
gel (mm) Measure

ment 
4-facet, 
tips in 

8-facet, 
tips in 

8-facet, 
tips out 

12-facet, 
tips in 

Solid, 
tips in 

Tube, 
tips in 

8-facet, 
no tips 

2 1.00 1.23 1.25 1.25 1.26 1.25 1.26 1.38 
4 2.60 2.60 2.64 2.63 2.64 2.63 2.64 2.76 
6 4.00 3.98 4.02 4.01 4.02 4.01 4.02 4.13 

 
Relative difference between measured (yo) and modelled (ym) current was expressed as: 
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The relative difference computed by considering currents from Table 4.1 showed that different 
electrode geometries used in FE models did not differ significantly among each other. The maximal 
difference in relative error amongst models was 3%, except for needles without modelled tips where 
it was 15%. However, we observed that computed total current significantly differed from the 
measurement for all experiments with gel thickness equal to 2 mm. In experiments with gel 
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thickness equal to 4 and 6 mm, computed total current with the FE model did not differ from the 
measured one by more than 2%, except for needles without modelled tips, where it was 6%. 
 
In FE models the number of finite elements or nodes in the model affects the time spent on solving 
the model [Polstyanko et al., 2001], because the differential equation is discretized into a series of 
finite element equations, which form a system of linear equations to be solved. Models with needle 
electrode geometries examined in our study also differed in the number of finite elements. Default 
finite element size, which had to be determined according to EMAS software at the beginning of 
automatic mesh generation, was the same in all cases. The programme itself then generated denser 
mesh in critical regions, i.e. around curved or smaller objects. The difference in CPU time spent on 
solving model with the smallest mesh (CPUtime4) - according to the number of elements that was 
the mesh in model with 4 faceted needle electrodes and CPU time spent for solving other models 
(CPUtimem) - was expressed in relative terms as 
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The largest relative difference was obtained in the model with solid needle electrodes (57%) and the 
smallest in the model with hollow 8 faceted electrodes (7%), while models with 12 faceted and tube 
electrodes differed by about 15% and the model with untipped electrodes by 20%, from the model 
with 4 faceted needle electrodes. CPU time was measured on the same computer with the same 
applications running at the time of the FE model computations.  
 
Due to the fact that the distance between the inner edges of electrodes was kept constant in all 
models no matter if they were 4, 8 or 12 faceted, the gel volume between them was not the same, 
because needle electrodes differed in cross-section surface. The relative difference between the 
cross-section surface of a cylindrical electrode and faceted electrodes was expressed as:  
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where So denotes the cross-section surface of a cylindrical electrode and Sm the cross-section surface 
of either 4, 8 or 12 faceted electrodes. The relative difference RS was the highest for 4-faceted 
electrodes (22%) and the smallest with 12 faceted electrodes (2%), while with 8 faceted electrodes it 
was 5%. 
 
Based on information gathered on all needle electrode models, and the validation of corresponding 
models with current measurements, we defined a criteria function in order to determine which 
electrodes were the most suitable for implementation in further models. The criteria function was 
expressed as a weighted sum of absolute values of relative difference between model and 
measurement e, relative difference in CPU time spent on solving model Rt and relative difference in 
cross-section surface RS: 
 

1 2 3t SJ w e w R w R= + + .     (4.4) 
 
Table 4.2 shows the value of criteria function for all needle electrode geometries used in models. 
The smaller the value of the criteria function the better the electrode geometry used. All weights 
used in the criteria function represented in Table 4.2 were equal to 1. However, if a certain factor in 
the criteria function needs to be exposed, the corresponding weight in the criteria function can be 
changed.  
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Table 4.2: Value of criteria function J for all needle electrode geometries used. 

Criteria function J Thickness of 
gel (mm) 4-facet, 

tips in 
8-facet, 
tips in 

8-facet, 
tips out 

12-facet, 
tips in 

Solid, tips 
in 

Tube, tips 
in 

8-facet, 
no tips 

2 45 36 34 42   63 42   53 
4 22   9   9   5   58 20   22 
6 22 12 21 18   62 22   29 
Σ 90 57 64 65 183 84 104 

 
According to the results of criteria function in Table 4.2 the best supplement for cylindrical needle 
electrodes in the FE model were 8 faceted needle electrodes with modelled tips. Furthermore we 
observed that tip modelling played a very important role, especially in models with thin gel, where 
the length of needle tip was equal to gel thickness, which was the case with 2 mm gel. No 
significant difference in current was observed between the tip out and tip in configurations 
presented in Figure 4.4 left and right. 
 
 

4.3 CURRENT BASED MODEL VALIDATION 
 
Figure 4.5 shows E distribution computed by the model with 8-faceted needle electrodes in xy, yz 
and xz plane, respectively. Due to the lack of measured E distribution we cannot evaluate the E 
distribution obtained by models in details. However in [Miklavčič et al., 1998; Miklavčič et al., 
2000] it was shown that FE models can be efficiently used for computing E distribution in tissue 
around needle electrodes. 

 
Figure 4.5: Amplitude of E computed by model with 8-faceted needle electrodes. Gel thickness was 4 mm. 
Voltage applied was 500 V. (a): xy plane, depth 1 mm below surface; (b): yz plane crossing in the middle 

between the electrodes; (c): xz plane. 

 
We therefore performed current based model validation by comparing total computed and total 
measured current in experiments. This method is much faster than imaging methods used to validate 
E distribution in tissue. The applicability of the method was demonstrated in [Miklavčič et al., 
1998] where experimental current density obtained by Current Density Imaging (CDI) method 
[Serša et al., 1997] was qualitatively compared with current density obtained by an FE model. The 
comparison was performed for two different needle electrode sets producing different current 
densities and E distributions. Modelled and measured current densities showed strong correlation 
for both electrode sets. Also, total current measured during CDI was very similar to total current 
obtained by the FE model for both electrode sets. Therefore FE model validation with experimental 
current measurements can be used as a fast method of rough model validation, provided material 
properties and geometry are properly described in the model.  
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We performed current based model validation on models with 8 faceted needle electrodes. The first 
group of measurements used for model validation consisted of needle arrays with 2, 3 and 4 needle 
pairs. The two arrays were 6.5 mm apart and the distance between needles in array was always 2 
mm. In the second group of measurements used for model validation only 2 needle pairs were used. 
The two arrays were again separated by 6.5 mm, however the distance between neighbouring 
needles in the array was either 2, 4 or 6 mm. 
 

4.3.1 NEEDLE ARRAYS WITH 2, 3 OR 4 NEEDLES IN ARRAY 
 
The results obtained by the FE model for the first group of measurements are shown in Table 4.3. 
Figure 4.6 gives the E distribution obtained by the FE model with 8-faceted needle electrodes for 
the arrays with 2, 3 and 4 needle electrode pairs respectively (in all cases the gel thickness was 4 
mm and voltage applied was 500 V). 
 

Table 4.3: Measured and modelled current and relative difference between them for needle arrays. Voltage 
applied was 500 V. 

No. of electrode 
pairs 

Thickness of gel 
(mm) 

Measurement, 
Current (A) Model, Current (A) Relative error (%) 

2 1.33 1.86 -40 2  
4 3.56 3.88   -9 
2 1.78 2.36 -33 3  4 4.45 4.90 -10 
2 2.44 2.83 -16 4  4 5.33 5.78   -8 

 
Based on the results in Table 4.3 the problem with the discrepancy between the model and 
measurement persisted in cases with 2 and 3 needle pairs for gel thickness equal to 2 mm. However, 
in the case with 4 needle electrode pairs and gel thickness of 2 mm the discrepancy between the 
model and the measurement decreased. Furthermore, the relative difference between the model and 
the measurement increased to 9% ±1% for all experiments with gel thickness equal to 4 mm, which 
was about 7% higher than in the model with a single needle pair used to determine needle geometry 
for FE modelling. Measurements with 6 mm gel thickness were not performed, due to safety 
limitations of the generator. 
 
The degree of electroporation and E distribution using needle arrays with four needle pairs were 
investigated in [Gehl et al., 1999]. The E distribution shown in Figure 4.6(c) is comparable to their 
results. In Figure 4.6 the change in E distribution around the electrodes can be observed when 
additional needle pairs were added. This information is of great importance in cases of 
electrochemotherapy or gene transfer when a predefined volume of tissue needs to be exposed to an 
E greater than the threshold value. As seen in Figure 4.6, as the number of needles in the array 
increases, the E between electrodes turns out to be more homogenous and a higher value of E can be 
obtained between the electrodes. A more homogenous E distribution with 3 electrode pairs can be 
also seen in Figure 4.7(a), where comparison of the E along the x and along the y axis in the region 
between the electrodes is shown for 1 electrode pair and 3 electrode pairs. In Figure 4.7(b) the 
comparison of E distribution between 1, 2, 3 and 4 electrode pairs is shown along the y-axis. 
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Figure 4.6: Amplitude of E around 2, 3 and 4 needle pairs approximated by 8-faceted needle electrodes in FE 
model in xy plane, i.e. plane perpendicular to the electrodes, depth 1 mm below surface: (a) 2 needle pairs; (b) 

3 needle pairs; and (c) 4 needle pairs and in a yz plane, crossing in the middle between arrays: (d) 2 needle 
pairs; (e) 3 needle pairs; and (f) 4 needle pairs. Voltage applied was 500V. 
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Figure 4.7: (a): Comparison E(x) at y=0 and E(y) at x=0 for 1 electrode pair and 3 electrode pairs. (b): 
Comparison E(y) for 1, 2, 3, and 4 electrode pairs. x-axis represents the distance from the centre between 
electrodes i.e. at x=0 when E(y) is shown and at y=0 when E(x) is shown. Electrodes placed at x=-3.5 and 

x=3.5 have different polarities. 
 

4.3.2 DISTANCE BETWEEN NEEDLES IN ARRAYS 
 
Modelling results, i.e. the total current and the relative difference between the model and the 
measurement for the second group of measurements used for model validation are shown in Table 
4.4. All measurements from the second group were performed only with 4 mm gel thickness. Figure 
4.8 presents E distribution for the cases where two electrode pairs were placed at distances of 2, 4 
and 6 mm. 
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Figure 4.8: Amplitude of E around two electrode pairs in xy plane, i.e. perpendicular to the electrodes, depth 1 
mm below surface: (a) d=2 mm; (b) d=4 mm; and (c) d=6 mm, and in yz plane, crossing in the middle 

between arrays: (d) d=2 mm; (e) d=4 mm; and (f) d=6 mm. Voltage applied was 300 V. 

 
Table 4.4: Measured and modelled current and relative difference between them for needle arrays with 2 

needle pairs and gel thickness 4 mm. Voltage applied was 300 V. 

Distance between needle 
pairs (mm) Measurement, Current (A) Model, Current (A) Relative error (%) 

2 2.30 2.33 -1 
4 2.70 2.63  3 
6 2.70 2.81 -4 

 
Results in Table 4.4 show that the current computed by the model fit the measurement very well. 
Figure 4.8 displays the change in E distribution as a result of increments in distance between the 
two neighbouring needle pairs. By increasing the distance between the needle pairs, the E in the 
middle of the arrays decreases. This result is also observed in Figure 4.9, where E distribution along 
the x and y axis is shown, in the area between electrodes (distance 0 denotes centre between 
electrodes). If the two needle pairs were placed far apart, interaction between both pairs decreased 
and finally the two pairs behaved as two independent pairs. This is also shown in Figure 4.9(b), 
where the curve representing E(y) for 2 electrode pairs at distance 6 mm already has bimodal 
distribution. Figure 4.10 shows the volume of gel exposed to E above the value indicated on the x 
axis. Information in Figure 4.8 to Figure 4.10 can be used to determine optimal distance between 
electrodes to achieve the objective of electropermeabilisation – required permeabilised volume of 
tissue. 
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Figure 4.9: (a) E(x) at y=0; and (b) E(y) at x=0 for 2 needle pairs, with distance between needles with the same 
polarity as parameter. x-axis represents distance from the centre between electrodes i.e. at x=0 when E(y) is 

shown and at y=0 when E(x) is shown. Electrodes placed at x=-3.5 and x=3.5 have different polarities. 
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Figure 4.10: Volume of gel exposed to E above the amplitude indicated on x axis, with distance between the 
needle pairs d as parameter. Voltage applied was 300 V. Total volume of gel observed was 2450 mm3 - the 

volume of a cube with the diagonal equal to the diameter of the petri dish. 

 
 

4.4 ANALYSIS OF DIFFERENCES BETWEEN MODEL AND 
MEASUREMENT 

 
As found during the model validation phase, measured current and current computed by the FE 
model differed in cases with gel thickness of 2 mm.  
 
In order to obtain deeper insight into the reasons for such deviations we plotted graphs with all 
current measurements (for all voltages and each gel thickness), along with currents computed by the 
FE model. Due to the linear character of the model, results for other voltages than those presented in 
Table 4.1, Table 4.3 and Table 4.4 were obtained by scaling.  
 
Figure 4.11 shows approximation of measured and modelled current with the first order polynomial 
- line for the experiments with 1, 2, 3 and 4 needle electrode pairs. In the legend corresponding 
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polynomial coefficients are displayed. Comparison of both polynomials shows that they have 
similar slope in all cases. This is also confirmed by equations representing the first order 
polynomial: 
 

1 1y k x n= + ,     (4.5) 
 
where k1 represents the line slope. The polynomial representing the model always intercepts zero 
crossing, as expected, while the polynomial representing the measurement always had certain bias, 
which was the same as constant n1 in the corresponding linear equation. Furthermore we analyzed 
possible elements that could cause bias such as influence of a change in gel thickness, deviations in 
electrode diameter, effect of change in distance between arrays and change in distance between two 
electrode pairs due to possible inaccuracies in experimental setup. 
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Figure 4.11: Measured, computed current and computed current with 50V shift added to model (a) 1 needle 
pair; (b) 2 needle pairs; (c) 3 needle pairs; (d) 4 needle pairs. Gel thickness was either 2 mm or 4 mm. 

Measurements are fitted with first order polynomial, whereas modelled currents are computed by scaling 
modelled current obtained at 500 V. 

 

4.4.1 ANALYSIS OF MEASUREMENTS ON PHANTOMS 
 
When performing measurements, special attention was paid to several factors in order to provide 
precise current results. Such factors were, for example, the conductance of the gel, thickness of the 
gel in the petri dish, angle between needle electrodes and the gel, and local heating close to the 
electrodes where the current density is high.  
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The conductance of gel was controlled by conductometer in a vessel where gel was stored. Before 
each experiment a fresh gel was poured into a petri dish from the vessel. During the pulse 
application, plotting of U/I ratio was observed in order to determine if conductance changed during 
the pulse. The temperature in the laboratory where the experiments were performed was kept 
constant, which could otherwise affect the conductivity of the gel. Another possible source of 
measurement error would also be the angle between electrode position and the gel. The angle was 
adjusted mechanically, which was coarse and therefore it is possible that needle position was not 
precisely perpendicular to the gel in all experiments.  
 
The change in conductance and deviations in angle between electrodes and gel (i.e. the length of the 
contact between the gel and the electrodes) contributed mostly to random measurement error, which 
was determined to be negligible. In that respect the comparison of measurements and model in 
Figure 4.11 also showed influence of bias greater than random error. Namely, slopes of 
measurement and model polynomials being parallel to each other confirmed that the conductivity 
used in the model was close to that used in experiments. There were also very small deviations 
around the measurement line which, if they existed, could indicate random measurement error. And 
finally, based on the fact that replicate results in all experiments were very close to each other we 
can conclude that the random measurement error was negligible. The total measurement error, 
which consists of bias and random error, was therefore equal to bias error. 
 
A possible source of bias error could be small deviations in gel thickness, deviations in distance 
between electrodes and in distance between arrays which depended on the accuracy of holder 
dimensions. Another possible source of bias error could be electrode polarization [Plonsey, 1969], 
which could have decreased measured current compared to modelled current. All the potential 
contributions were checked systematically. 
 

4.4.1.1 THICKNESS OF GEL 
 
A critical control was to check the thickness of the phantom. As described in the Chapter 4.1.2, the 
thickness of the gel was obtained from the values of the volume of the liquid gel. This was 
measured at 37°C. Due to the temperature dilatation coefficient of the gel and of the pipette, some 
inaccuracies might be present in the effective values of the volume and as such in the gel thickness 
after cooling to 20°C. This was checked by mechanical means with a precision of 0.2 mm. All 
thicknesses were correct in the central part of the dish within this precision. But due to the meniscus 
effect, the gel was thicker along the edge of the dish. Therefore all electrical measurements were run 
by inserting the electrodes only in the central part of the gel. We checked the effect of small 
changes in the thickness (±0.2 mm) on the computed current for a 500 V pulse using the two needle 
electrode set-up. As shown in Table 4.5, a good improvement in the fit between measurements and 
simulations, provided the thickness decreased was obtained with the thin gel (2 mm), while it 
increased the difference with thicker gel (4 mm and 6 mm). 
 

Table 4.5: Simulated variations in thickness of gel. 

Current (A) Current (A) Current (A) Thickness of 
gel (mm) Measuremen

t 
8-facet 

Thickness of 
gel (mm) 8-facet 

Thickness of 
gel (mm) 8-facet 

2 1.00 1.25 1.8 1.13 2.2 1.37 
4 2.60 2.64 3.8 2.51 4.2 2.76 
6 4.00 4.02 5.8 3.89 6.2 4.14 
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4.4.1.2 ELECTRODE DIAMETER 
 
Simulations were run under the assumption that the electrode diameter was different than declared. 
No significant change in the relative difference between experiments and simulation (up to 3%) was 
obtained for the three different gel thicknesses, provided that relative change in electrode diameter 
was within ±10%. 
 

4.4.1.3 DISTANCE BETWEEN ARRAYS 
 
As the electrode holder was mechanically drilled, some imperfections were present in the distance 
between the two electrodes. This was introduced in the model but was observed not to improve the 
relative differences significantly (improvement up to 2%) provided the distance between arrays was 
changed by ±5%. 
 

4.4.1.4 DISTANCE BETWEEN TWO ELECTRODE PAIRS 
 
For the same technical reason, whether the distance between electrodes in an array might alter the 
simulated current, the influence of change in distance was checked. The distance between two 
electrode pairs was altered up to ±5%. Again no significant improvement in the relative difference 
was detected (improvement up to 1%). 
 

4.4.1.5 LOW VOLTAGE RESULTS AND VOLTAGE SHIFT 
 
A 0.1 ms pulse with different low voltages was applied to a two needle electrode set-up inserted in a 
6 mm gel. As shown in Figure 4.12, a non linear dependence of the current on the applied voltage, 
when less than 50 V, was observed. No current flowed between the electrodes when 25 V were 
applied. A sharp increase was only observed when the voltage was above 50 V. Nonlinear current -
voltage dependency indicated an electrode polarization effect. Based on the results at low voltages 
shown in Figure 4.12, a 50 V shift (simulating electrochemical effects at tissue – electrode 
interface) was added to the model. A significant improvement in the fit between the model and the 
measurement in the current – voltage plot was obtained whatever the electrode array or the gel 
thickness as shown in Figure 4.11. The 50 V shift was introduced in the models only when voltage 
above the nonlinear part of current - voltage dependency was used. 
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Figure 4.12: Current under low voltage pulse conditions. Thickness of gel was 6 mm. 
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Electrochemical effects at the electrode – tissue interface are in general influenced by electrode 
chemical nature, sample composition and electrical parameters. In [Pliquett et al., 1996] it was 
shown for aluminium electrodes that the calculated E using electrode voltages and geometries alone 
could be significantly higher than the real E present in the tissue. In [Loste et al., 1998] it was also 
presented that aluminium electrodes demonstrate higher electrochemical effects than stainless steel 
electrodes. Thus the voltage drop at the electrode - tissue interface needs to be evaluated and 
correction for electrochemical effects needs to be taken into account in models, which in our model 
was introduced with a 50 V shift. 
 

4.4.2 ANALYSIS OF REASON OF MODELLING ERROR  
 
In our FE models cylindrical needle electrodes were simplified by 8 faceted electrodes. Our analysis 
of optimal needle electrode geometry has shown that 12 faceted electrodes, which were closer to 
cylindrical electrodes, did not perform better than 8 faceted electrodes regarding relative current 
difference. Therefore we assumed that this approximation did not introduce a significant part in the 
modelling error.  
 
On the other hand comparison of 8-faceted needles with modelled tips and without modelled tips 
has shown, that tip modelling significantly affected current at 2 mm gel thickness. Tip modelling 
could therefore be one of the reasons for the discrepancy in modelled and measured current at 2 mm 
gel thickness. However, further improvement in tip modelling would not have brought additional 
improvement because tip-in and tip-out orientation did not give significantly different results. 
 
Another source of modelling error could also be the mesh density. Namely scarce mesh could give 
distorted results. In FE modelling it was therefore important to recompute the same model with 
different mesh densities. Our results with different mesh densities did not differ significantly, so we 
assumed that mesh densities used were sufficiently high.  
 
 

4.5 DISCUSSION 
 
The method of modelling needle electrodes in the FE model, which hastened the solution process 
was proposed and validated by measurements on a phantom tissue. Based on the results of criteria 
function, 8 faceted needle electrodes were proposed as a substitute for cylindrical needles. Results 
showed that such a simplification could be used without serious impact on model results.  
 
The model relative difference in total current, which was evaluated during model validation on 
measurements, was 9% for gel thickness of 4 mm. This difference was not due to approximation of 
needles with faceted shape nor could it be explained by geometrical inaccuracies (gel thickness, tip 
modelling, and inter electrode distance) between the model and the real system. The bias was due to 
the low voltage behaviour which was non-ohmic. This could not be predicted by the simulation. 
However, based on low voltage measurements, a 50 V voltage shift was introduced in the model 
and bias error was sharply decreased for applied voltages above 100 V. The relative difference 
between modelled and measured current decreased from 9% to 3% for gel thickness of 4 mm.  
 
Current measurement was also examined as a means of FE model validation [Miklavčič et al., 
1998]. Provided model geometry and material properties are known and properly modelled, an FE 
model producing current results which correspond to measured results could be used for at least 
rough estimation of E distribution in tissue. This information is of great importance for effective 
tissue electroporation in electrochemotherapy and in vivo tissue gene transfection. Based on known 
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E distribution, pulse parameters (especially amplitude) and needle electrode positions could also be 
optimized.  
 
Additionally, such an FE model could be used for estimation of maximal current, for different 
needle electrode geometries and given tissue properties (geometry, conductivity). Maximal current 
could be determined and preset in the electroporator in order to protect tissue against damage. 
Maximal current and required voltage for effective tissue electropermeabilisation at given electrode 
geometry are also important in designing power supply and capacity of elctroporators. 
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55  VVAALLIIDDAATTIIOONN  OOFF  TTIIMMEE  DDIISSCCRREETTEE  MMOODDEELL  OOFF  TTIISSSSUUEE  
PPEERRMMEEAABBIILLIISSAATTIIOONN    

 
 
 
Modelling of electric field (E) distribution in tissue is complex and demanding due to the sometimes 
inhomogeneous and anisotropic tissue electrical properties and usually complex tissue geometry. 
Analytical models can be employed only for simple geometries and under the condition that tissue 
geometry, anisotropies and inhomogeneities can be described within the same coordinate system. 
For example Dev et al. in [Dev et al., 2003] developed the analytical model of potential and E 
distribution around six needle electrodes. Their model is applicable only to 2D problems and tissue 
with homogenous electrical properties. In Chapter 3 we also presented a time discrete model of 
tissue permeabilisation with an analytical description of E distribution. However despite the ability 
of our model to describe inhomogeneous tissue properties, it is designed only for a geometry 
consisting of two concentric cylindrical electrodes.   
 
Therefore for modelling E distribution in tissue in most cases numerical modelling techniques are 
still the only techniques applicable. Predominantly finite element (FE) method and finite difference 
(FD) methods are applied. Both numerical methods have been successfully used and also validated 
by comparison of computed and measured E distribution [Miklavčič et al., 1998; Gehl et al., 1999; 
Miklavčič et al., 2000].  
 
There are several software products available for numerical modelling of electromagnetic problems. 
Sophisticated finite element software products provide support for 3D analysis and handle time 
domain and frequency domain problems [Mirotznik and Prather, 1997]. However most of the 
products do not provide possibility to dynamically change material properties (e.g. specific 
conductivity, permittivity) based on computed output variables (e.g. E intensity) in the material. 
This feature is needed to describe the course of electropermeabilisation, in the manner described in 
Chapter 3 on analytical model. Our group tested three software packages for finite element 
modelling (introduced in Chapter 2) and found two packages suitable for the development of a time 
discrete permeabilisation model. Those were the EMAS (Ansoft Inc., USA) and FEMLAB (Comsol 
Inc., Sweden) software packages. Both of them however required substantial efforts for 
development of additional programme codes that enabled dynamical changes of material properties. 
 
In this chapter we therefore present a time discrete model of rabbit liver tissue permeabilisation with 
inserted needle electrodes. E distribution around the needle electrodes is computed numerically with 
a finite element method. The model consists of a sequence of static models, which describe E 
distribution at discrete time steps during permeabilisation. In this way the model presents the 
dynamics of electropermeabilisation since, according to distribution of E intensities from the 
preceding time discrete step, tissue conductivity is changed in the next step. The functional 
dependency between specific conductivity and E intensity was S-shaped as introduced in Chapter 3. 
Estimation of the S-shape function parameters was based on in vivo current measurements. The 
model was then validated on experimentally obtained total current measurements and areas of 
reversibly and irreversibly permeabilised rabbit liver tissue. Measurements of reversibly and 
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irreversibly permeabilised tissue were used from published work of Miklavčič et al. [Miklavčič et 
al., 2000] which were performed on the same tissue geometry and electrode design. 
 

5.1 EXPERIMENTS 
 
In vivo experiments were performed at the Institute Gustave-Roussy, France on rabbit liver tissue in 
accordance with European Commission Directives and French legislation concerning animal 
welfare. Three rabbits were used in the experiments. Animals were kept anaesthetised for the entire 
duration of the experiments. A subxypoid incision was made and the liver was gently exteriorised 
and exposed to electrical treatment. Electrical treatment was performed through two parallel needle 
electrodes (Figure 5.1) inserted perpendicularly to the tissue surface approximately 7 mm in depth. 
In the experiments, three different needle diameters were used: φ=0.3 mm, φ=0.7 mm and φ=1. 1 
mm. The inner distance between the needles was always 8 mm as in Miklavčič et al., 2000. Eight 
rectangular monophasic pulses of 100 µs duration and 1 Hz repetition frequency were applied. 
Pulses were delivered by pulse generator Jouan GHT 1287B, St.Herblain, France. Applied pulse 
amplitudes were in the range of 200 V - 1200 V. The applied voltage and resulting current were 
acquired by high voltage and current probes respectively and stored on-line by a digital oscilloscope 
(LT344, LeCroy Corporation, USA). Altogether 13 experiments were performed with needles of 
diameter 0.3 mm and again with needles of 1.1 mm diameter, whereas 43 experiments were 
performed with 0.7 mm diameter needles. These experiments were performed in the same way as in 
the previous work of our group [Miklavčič et al., 2000], with the difference that in previous 
experiments reversibly and irreversibly permeabilised areas of tissue were determined, while the 
current was not measured. In the present experiments total current was measured. Therefore the 
results of both experiment sets were used in the present study for the purpose of the model 
parameter estimation and model validation. 
 

 

  
Figure 5.1: Needle electrodes used in experiments. Left: side view; right: top view. 

 
 

5.2 TIME DISCRETE PERMEABILISATION MODEL WITH NUMERICAL 
CALCULATION OF E DISTRIBUTION 

 
The time discrete model is based on the hypothesis that the change in tissue conductivity caused by 
E intensity follows σ(E) dependency. When a constant voltage is applied to tissue with inserted 
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needle electrodes, it results in inhomogeneous E distribution in tissue. According to σ(E) 
dependency and as a result of the tissue exposure to inhomogeneous E distribution, the tissue 
conductivity becomes heterogeneous. Namely in the volume of tissue exposed to E intensity above 
reversible threshold the tissue conductivity increases, while in the rest of the tissue the conductivity 
remains unchanged. 
 
Having tissue with conductivity increased in such a way still exposed to constant voltage, we obtain 
an E distribution which differs from the distribution in completely non-permeabilised tissue. In part 
of the tissue with increased conductivity the potential drop is lower than in part of still non-
permeabilised tissue. As a consequence E intensities are higher in part of still non-permeabilised 
tissue compared to the previous distribution of E intensities. Consequently, increased E intensities 
cause a change of conductivity according to σ(E) dependency in that part, too. The process 
continues in this manner until the increase in E intensity in part of non-permeabilised tissue is not 
high enough to further change conductivity. The propagation of tissue permeabilisation is then 
terminated.  
 
Following this idea a sequence of static finite element (FE) models was designed in order to 
describe the electroporation process at time discrete intervals. In each static model (step) tissue 
conductivity was determined based on the E distribution and specific conductivity from the previous 
step in the sequence, as described in equation (5.1):  
 

( , , , ) ( ( , , , 1), ( , , , 1))x y z k f E x y z k x y z kσ σ= − − ,  for  2≥k   (5.1) 
 
where E denotes electric field intensity, σ denotes tissue conductivity and k the step in the 
modelling sequence. In equation 5.1, the conductivity computation takes into account that once the 
conductivity is increased at a particular point in tissue during step k-1 it can not drop even though in 
step k electric field Ek-1 would imply that.  In the first step (k=1) we assume homogenous tissue 
conductivity i.e. conductivity of completely non-permeabilised tissue. 
 
A three dimensional FE model was built using FEMLAB software produced by Comsol, Sweden. 
The model geometry is shown in Figure 5.2. 
 

 
Figure 5.2: Model geometry. 
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The E distribution in a FE model was described with equations for steady electric currents in 
volume conductor. Voltage was applied as a Dirichlet boundary condition to the surface of the 
needles. The needle electrodes were modelled as 8 faceted hollow shapes [Šel et al., 2003] instead 
of cylinders, which we described in Chapter 4, to give proper results and at the same time spend less 
computing power. Due to the fact that needles were significantly smaller than the surrounding 
tissue, a FE mesh was designed to be much denser in regions around electrodes than at the edge of 
the parallelepiped.  
 
 

5.3 PARAMETER ESTIMATION  
 
In our experimental condition (sampling rate was 25 MS/s), no significant delay between voltage 
and current was observed and also negligible transient response was detected with respect to the 
pulse length, which was the reason to consider only the ohmic behaviour of the tissue in the model. 
For the illustration the voltage and the current during the first pulse are presented in Figure 5.3.  
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Figure 5.3: Voltage (a) and current (b) during the first pulse. 

 
Parameter estimation of σ(E) dependency was carried out on a subset of experiments with current 
measurements. For each needle electrode diameter, we selected measurements at three different 
voltages, i.e. around reversible threshold, above irreversible threshold and in the middle between the 
two thresholds. Threshold voltages were chosen according to published values for rabbit liver tissue 
in [Miklavčič et al., 2000]. The conductivity of non-permeabilised tissue (σ0) was determined at 
low voltages, far below reversible threshold. The obtained value for rabbit liver (σ0=0.067 S/m) was 
smaller than the mean values for human liver tissue reported in the literature [Faes et al., 1999; 
Geddes and Baker, 1967; Rush et al., 1963; Schwan and Key, 1957]. However in [Geddes and 
Baker, 1967], the lack of agreement between the measurements in the low frequency region and at 
body temperature is reported for the liver conductivities of other mammals – for example the range 
of liver conductivity for a guinea pig was between 0.025 and 0.440 S/m. The value of non 
permeabilised rabbit liver conductivity obtained in our experiments is well within this range.  
 
The σ(E) dependency was described by following an S-shape function: 
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The electropermeabilisation tissue parameters subject to estimation were thus E0, E1, σ1 and S-shape 
function parameters BS and D. Parameters were estimated by optimising modelled current to be 
close to the measured current, obtained in experiments. Current measurement was used to determine 
the extent of membrane permeabilisation in pellets [Abidor et al., 1993]. It was also suggested that 
current can be used for in vivo measurement of the change in conductance due to permeabilisation 
[Davalos et al., 2002]. Therefore current measurement was also used in our study to determine the 
change in tissue conductivity resulting from membrane permeabilisation. 
 
Estimated parameter values were E0=460 V/cm, E1=700 V/cm, σ1=0.2412 S/m, BS=30 and D=10. 
Figure 5.4 presents σ(E) dependency based on these estimated parameters. Comparison of measured 
and modelled current is presented in Table 5.1. 
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Figure 5.4: Optimised dependency σ(E). 

 
As already explained in Chapter 3.8 the reason for choosing the S-shape function to describe σ(E) 
dependency was that by considering differences in cell size, shape and their interaction we can 
expect some cells to be permeabilised before others when E above E0 is applied. That could result in 
a gradual increase in tissue conductivity at E0 described by the σ(E) curve. By increasing E above 
E1 the loss of viability of some cells is expected and later of all cells which again leads into gradual 
saturation of σ(E) curve. Similarly, Teissie et al. [Teissie et al., 1999] described the influence of 
cell size on electropermeabilisation. They stated that the population of permeabilised cells increases 
with an increase in field intensity. 
 

Table 5.1: Modelled current computed on estimated parameters at three different voltages for needle 
diameters 0.3, 0.7 and 1.1 mm. The relative error is expressed as the difference between measured and 

modelled current, divided by measured current. 
φ (mm) Up (V) Measured I (A) Modelled I (A) Rel. error (%) 

0.3 617 0.58 0.62   -7 
0.3 815 0.90 0.92   -3 
0.3 1023 1.11 1.23 -11 
0.7 507 0.54 0.55   -1 
0.7 704 0.87 0.90   -3 
0.7 909 1.20 1.28   -7 
1.1 508 0.49 0.60 -23 
1.1 707 1.04 1.02     2 
1.1 911 1.46 1.43     2 

 
Another reason for choosing the S-shape dependency was that in electrooptical and 
conductometrical relaxation measurements during electropermeabilisation in the suspension of the 
salt filled vesicles [Neumann and Kakorin, 1996; Neumann et al., 1999] it was observed that a 
massive conductivity increase as a function of E intensity had similar shape. 
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5.4 MODEL VALIDATION  
 
The time discrete permeabilisation model with S-shape σ(E) dependency was validated in the 
presence of inhomogeneous E distribution. Validation was based on experiments where electrical 
treatment was performed with needle electrodes inserted in liver tissue.  
 
The observed outputs at each step in the time discrete model, which represented values at discrete 
time intervals of electropermeabilisation, were E distribution and total current. During simulations it 
was ascertained that under the conditions used in experiments (applied voltages, number and pulse 
duration), a sequence of five time discrete steps sufficed for termination of electropermeabilisation 
process, which in other words meant that no change in conductivity was obtained with further steps. 
This was also in agreement with results of the analytical model presented in Chapter 3.3.1. 
 

5.4.1 VALIDATION OF THE E INTENSITY OBTAINED IN THE LAST STEP OF THE 
TIME DISCRETE MODEL ON THE AREA OF REVERSIBLY PERMEABILISED 
TISSUE 

 
The area of reversibly permeabilised tissue was determined by means of the bleomycin method in 
experiments on rabbit liver tissue. Experiment description and details of the method are given in 
[Miklavčič et al., 2000]. Experiments with a needle diameter of 0.7 mm revealed that when 
increasing voltages were applied to the needles, at 527 ±30 V the nuclei started to become altered in 
the middle region between the two electrode insertions, which reflected the permeabilisation of the 
cell membranes and entrance of bleomycin in that region of the tissue. Therefore, we ran 
simulations of the time discrete permeabilisation model at 520 V in order to compare the computed 
E distribution with experimental results.  
 
Figure 5.5 presents E distribution and total current in five consecutive steps computed by the model. 
Figure 5.5(a) shows E intensity in non-permeabilised tissue, while Figure 5.5(e) shows E intensity 
at the end of the permeabilisation process. During the propagation of permeabilisation, as shown in 
Figure 5.5(b) and Figure 5.5(c), intensity of E exceeds reversible threshold value in the whole area 
between electrodes; even more, in some parts it also exceeds irreversible threshold value. However, 
at the end of the permeabilisation propagation, modelled E distribution corresponds to the situation 
as observed in experiments. During pulse application, E intensity causes a change in membrane 
permeability which allows for transfer of ions - current carriers. Consequently tissue conductivity 
increases, which does not however bring the same increase in membrane permeability for molecules 
such as bleomycin. Namely, molecule transport occurs predominantly after the pulse [Puc et al., 
2003]. Total current in each of 5 time discrete steps is shown in Figure 5.5(f). 
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(e)                                k=5 (f) 
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Figure 5.5: E intensity during electropermeabilisation as obtained in five consecutive steps of the time discrete 

electropermeabilisation model. (a): 1st step, (b): 2nd step, (c): 3rd step, (d): 4th step and (e): 5th step and total 
current at each step (f). Needle diameter was φ=0.7 mm. Voltage applied was 520 V. 
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Increase in tissue conductivity caused a modification in E distribution, which consequently caused 
another change in tissue conductivity and propagation of permeabilisation. This was a dynamic 
process, during which E intensity was changing very fast in the region between and around 
electrodes. Consequently we presumed that E intensity above irreversible threshold value did not 
persist in the region between electrodes long enough to cause irreversible changes in cell 
membranes. We can also observe this in Figure 5.8(b), where the current computed in each step of 
the permeabilisation model was compared to the current measured during the first pulse. At 500 V 
the first three steps occurred in less than half the duration of the pulse length. In that first half, E 
intensity was permanently changing as was the current. After the third step, the E intensity 
stabilised, and consequently the current. The steady E intensity could then influence the increased 
membrane permeability for bleomicyn through the formation of long lived stable pores, which 
enabled the diffusive transport of bleomycin across the permeabilised cell membrane after the pulse 
application. Subsequently, we compared E distribution of the fifth step with the reversibly 
permeabilised area obtained in experiments. In Figure 5.5(e) we can observe that in the middle 
between the electrodes, E intensity is just around the reversible threshold E0=460 V/cm, which is in 
accordance with experimental results. 
 

5.4.2 VALIDATION OF E INTENSITY OBTAINED IN THE LAST STEP OF THE TIME 
DISCRETE MODEL ON THE AREA OF IRREVERSIBLY PERMEABILISED 
TISSUE 

 
In previous work of our group [Miklavčič et al., 2000] experiments were performed on rabbit liver 
tissue with needle electrodes in order to determine the area of tissue necrosis at different pulse 
amplitudes. In Figure 5.6 the black line presents the contour of tissue necrosis as determined during 
those experiments. The contour is compared to E intensity computed in the last step of the model 
presented in Chapter 5.2. The dark red area presents the area of tissue exposed to E above 
irreversible threshold (E0=700 V/cm) which corresponds very well to the necrosis contours (black 
contours) obtained in experiments. 
 

5.4.3 VALIDATION OF THE CURRENT OBTAINED IN THE LAST STEP OF THE TIME 
DISCRETE MODEL ON TOTAL CURRENT AT THE END OF THE PULSE 

 
The total current obtained in the fifth step and the measured current at the end of the first pulse in 
rabbit liver tissue are compared in Figure 5.7 for needle diameters of φ=0.3 mm, φ=0.7 mm and 
φ=1.1 mm. In Figure 5.7 the root mean square error (RMSE) and Theil’s inequality criteria (TIC) 
measures are given, which illustrate the agreement between modelled and measured current. RMSE 
and TIC measure for current are expressed as: 
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respectively. In Equations (5.3) and (5.4) N denotes the number of measurements, im denotes 
modelled current and i measured current in jth measurement out of N. With respect to results  
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Figure 5.6: Comparison of irreversibly permeabilised tissue computed by model (dark red area) and area of 

tissue necrosis determined in experiments (black contour). Needle diameter and applied voltage were 
(a): φ=0.3 mm, U=960 V, (b): φ=0.7 mm, U=960 V and (c):φ=1.1 mm, U=952 V. 
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Figure 5.7: Total current at the end of pulse. Comparison of computed (full line) and measured current 
(asterisk) at different voltages for needles with diameter (a): φ=0.3 mm, (b): φ=0.7 mm and (c):φ=1.1 mm. 
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presented in Figure 5.7, TIC for needle electrodes with diameter 0.3, 0.7 and 1.1 mm was 0.06, 0.09 
and 0.05, respectively. As the TIC value can be in the range between 0 and 1, and considering the 
fact that values below 0.3 indicate good agreement [Murray-Smith, 1995], we can say with 
confidence that excellent agreement between the modelled and the measured current was obtained. 
 

5.4.4 VALIDATION OF THE CURRENT OBTAINED AT TIME DISCRETE STEPS 
COMPUTED BY THE MODEL ON TIME COURSE OF MEASURED TOTAL 
CURRENT DURING THE FIRST PULSE 

 
The total currents for each of five time discrete steps of electropermeabilisation model at different 
voltages for all needle diameters and measurement of current obtained during the first pulse are 
shown in Figure 5.8. The discrete time intervals, at which the model results are presented, were 
determined by calibrating the kinetics of the model to the measurements and by assuming 
independency of time intervals on pulse amplitude.  
 
Comparisons of measurements showed nonlinear increases in current when different voltages are 
applied, which was significant for all needle diameters. In principle, an increase in current which is 
not proportional to the increase in voltage reflects the increase in tissue conductivity. It was 
observed that the model also predicted this increase in amplitude, for all needle diameters.  
 
We further observed (Figure 5.8) that at low voltages, below permeabilisation threshold, the current 
remained constant after the pulse rise time. This was also predicted by our model. However, at 
higher voltages, above reversible threshold, the current increased during the whole pulse length, 
while modelled current increase was moderate. The difference could result from tissue heating and a 
consequent increase in conductivity [Duck, 1990]. Another reason for increased tissue conductivity 
could be also ion dissociation. Both effects could have occurred in tissue but were not incorporated 
into the model at this stage.  
 
The comparison of modelled current results with the current dynamics of the first pulse is a 
preliminary result. Further investigations have to be carried out in order to determine how tissue 
conductivity depends on the duration of exposure to E intensity and increases in temperature T at 
higher pulse amplitudes, i.e. to determine σ(E,T,t) dependency. 
 
Results of the time discrete permeabilisation model, presenting permeabilisation at discrete time 
intervals were compared only to the first pulse. Namely, the first pulse had a similar time course to 
the others in the train of pulses, as shown in Figure 5.9(b), where the applied pulse amplitude was 
700 V (Figure 5.9(a)). In Figure 5.8(b) we can observe that at 700 V in non permeabilised tissue 
(circle symbol at t=0.2 µs) the current response would be 0.35 A. However the current at the end of 
pulse was 0.82 A, which was a result of increased conductivity due to tissue permeabilisation (the 
same was predicted by the model). That is evidence of tissue permeabilisation already during the 
first pulse. As current responses had similar shapes when the following pulses were applied we 
presume that during pauses between the pulses the tissue resealed, at least concerning the small 
pores that contribute to current conductance [Chang and Reese, 1990]. Note that in Figure 5.9 the 
pauses between pulses (1 s) were skipped, by employing the segmentation feature of the 
oscilloscope which enabled acquisition of pulses only.  
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Figure 5.8: Current for five consecutive time discrete steps of the electropermeabilisation model (open 

symbols) and measured current during the first pulse (full line) at different applied voltages (expressed as 
parameter) and needles with diameter (a): φ=0.3 mm, (b): φ=0.7 mm and (c):φ=1.1 mm. 
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Figure 5.9: Train of 8 pulses: (a) applied voltage, (b) resulting current. Needle diameter was 0.7 mm. Pulses 

were acquired using the segmentation feature of the oscilloscope, which enabled the acquisition of pulses 
only. 

 
 

5.5 DISCUSSION 
 
We presented the development and validation of the time discrete model of tissue permeabilisation. 
In the model we first assumed S-shaped σ(E) dependency and then estimated its parameters by 
means of experimental current results. Amongst estimated parameters we also obtained values of 
reversible and irreversible E thresholds. Estimated E thresholds were: 460 V/cm for reversible and 
700 V/cm for irreversible threshold. Those values appeared to be higher than values previously 
published by our group [Miklavčič et al., 2000]. As the new thresholds are higher we can also 
expect the calculated induced TMP to be higher from previously published. Therefore we examined 
the reasons for the difference between previously published and presently obtained thresholds in 
detail. The results are presented in the following two subchapters. At the end of this chapter the 
mechanisms that occur during permeabilisation are described as revealed by means of the time 
discrete permeabilisation model. 
 

5.5.1 COMPARISON WITH PREVIOUSLY PUBLISHED E THRESHOLD VALUES 
 
Permeabilisation threshold values as obtained in Chapter 5.3 (E0=460 V/cm, E1=700 V/cm) differ 
from values previously published by our group [Miklavčič et al., 2000] (E0=362 V/cm, E1=637 
V/cm). The reason being that previous permeabilisation thresholds were determined based on E 
distribution in non-permeabilised tissue. Here we will explain why they differ. 
 
As E distribution around needle electrodes resembles an E distribution between two cylindrical 
concentric electrodes we based the explanation of the difference between thresholds on the 
analytical model of E distribution with S-shaped σ(E) dependency, presented in Chapter 3.3.1.  
 
Figure 5.10 explains the influence of E distribution on the reversible threshold determination. The 
full red line in Figure 5.10 presents E intensity in non-permeabilised tissue as a function of distance 
between two concentric cylindrical electrodes (k=1). E0-real denotes the real E threshold value in 
the tissue. The dashed blue lines present E distribution, computed by the analytical time discrete 
permeabilisation model in steps two and three. According to E intensity of non-permeabilised 
tissue, permeabilisation in the first step of the analytical permeabilisation model occurs in tissue 
somewhere up to a distance of approximately 2 units (where the red line crosses green line denoted 
as E0-real). The permeabilisation model takes into consideration the increased conductivity obtained 
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in that part to compute E distribution in the second time discrete step by the analytical model. The 
resulting E distribution (second step) crosses the green line E0-real at a distance of approximately 
2.45 units, meaning that tissue was permeabilised up to that distance in the second step. In the next 
step, tissue was permeabilised up to a distance of 2.6 units indicated on the x axis. In further steps, 
E-intensity in part of non-permeabilised tissue did not exceed E0-real meaning that at the end of the 
permeabilisation propagation tissue was permeabilised up to a distance of 2.6 units  
 
However if we consider E distribution in completely non-permeabilised tissue and the fact that 
tissue was permeabilised up to 2.6 units to determine reversible E threshold, we would obtain 
reversible threshold at E intensity where the vertical blue line crosses the E distribution of 
completely non-permeabilised tissue (red line). This threshold is shown in the green line denoted 
E00. The difference between E0-real and E00 explains why the thresholds obtained by our sequential 
model are higher than the thresholds previously published in [Miklavčič et al., 2000]. 
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Figure 5.10: E distribution during electropermeabilisation, compared to the E distribution of non-

permeabilised tissue. 
 
Taking into account that molecules, which differ in size, shape and in electrical properties use 
different transport mechanisms (diffusion, electroosmosis, electrophoresis) [Puc et al., 2003] to 
cross the cell membrane during permeabilisation, different transfer rate coefficients and time 
courses can be related to their transport. The dependence of transport of ions and small molecules 
on an applied external E is schematically shown in Figure 5.11. According to that, the reversible 
threshold presented in Chapter 5.3 reflects the threshold for ion conduction and possibly small 
molecules which enter by diffusion. The transport kinetics of larger molecules is more complicated 
and occurs in several temporally distinct stages [Neumann et al., 1999; Wolf et al., 1994]. It also 
appears that transport of larger molecules requires either long-lived stable pores or, according to 
[Neumann and Kakorin, 1996], it requires critical pore density for DNA translocation through 
permeabilised membrane patches following a cooperative scheme. Considering the fact that 
membrane permeabilisation for ions is fast, it causes rapid changes in E intensities across the tissue 
and consequently the propagation of permeabilisation. After this process is terminated the steady 
distribution of E intensities is present for longer period of pulse duration. We presume that steady E 
intensities influence the appearance of long lived stable pores enabling the transfer of molecules 
such as bleomycin which occurs predominantly after the pulse by diffusion. Steady E intensities 
could also be responsible for the state of membrane permeabilisation which enables transport of 
DNA across the cell membrane by electrophoresis. Additionally, the steady E intensity can be used 
for assessment of E thresholds related to permanent cell membrane damage, such as the irreversible 
E threshold value 700 V/cm, at which cell necrosis was observed.     
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Figure 5.11: Hypothetical presentation of the transport of ions and small molecules due to permeabilisation as 

functions of applied E intensity. 
 

5.5.2 COMPARISON WITH PREVIOUSLY PUBLISHED INDUCED CRITICAL 
TRANSMEMBRANE POTENTIAL  

 
When exposing cells to an external E, transmembrane potential (TMP) is induced. At critical TMP 
value (TMPc) cell membrane permeabilisation occurs. Reported values of TMPc at room 
temperature are between 0.2 to 1 V [Hibino et al., 1993, Teissie and Rols, 1993, Tsong, 1991]. The 
relation between the external E and TMP for spherical cells is expressed by Schwan’s equation:  
 

ϑcosfRETMP =      (5.6) 
 
where R is a cell diameter, f a numerical factor and ϑ the angle between cell radius vector and E 
vector. By taking into account the average diameter of hepatocytes being 21.8 ±2.7 µm and by using 
the value of factor f=1 which corresponds to densely packed cells – such as in tissue, we computed 
the value of TMPc. Considering E threshold values E0=460 V/cm and E1=700 V/cm, we obtained 
TMPc=0.50 V and TMP for irreversible threshold equal to 0.76 V. As expected, computed TMPc is 
slightly higher than our previously published value [Miklavčič et al., 2000], however it is still well 
within the range of reported values in the literature. 
 

5.5.3 PERMEABILISATION PROCESS AS REVEALED BY MEANS OF MODEL 
VALIDATION 

 
The development and validation of the time discrete permeabilisation model provided means for 
better understanding mechanisms which occur during permeabilisation. When comparing modelled 
and simulated total currents and the areas of reversibly and irreversibly permeabilised tissue several 
hypotheses arose aimed at explaining the permeabilisation process.  
 
First, the basis for accurate presentation of permeabilisation with a time discrete model is to have 
σ(E) dependency known in advance.  
 
Second, the comparison of current computed by the model at time discrete steps and the current 
measured during 8 pulses showed that after each pulse, ion conductivity is the same as before the 
pulse. However during the pulse, conductivity increases significantly due to permeabilisation.  
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According to one of the commonly accepted theories of cell electropermeabilisation [Neumann et 
al., 1999; Weaver and Chizmadzev, 1996] which explains the electropermeabilisation phenomena 
by the formation of a large number of metastable pores and reduced number of stable long lived 
pores, the metastable pores (provided already hidrophilic pores) could be responsible for increased 
current conduction during the pulse application. While the small number of stable pores does not 
contribute a significant part in current conduction, they do however enable the transfer of small 
molecules after the end of the pulse. After the end of the pulse application, metastable pores reseal 
in the time range of microseconds [Abidor et al., 1993; Hibino et al., 1993] (fast resealing). 
Therefore, the situation concerning current conductance is repeated after the first pulse. When 
several pulses are applied, more of stable long-lived pores are formed with cooperative effect 
[Marrink et al., 2001]. Those pores reseal in the second stage of membrane resealing which can take 
as long as a few minutes [Abidor et al., 1993; Hibino et al., 1993].  
 
Another explanation could be based on the model of pore formation energy [Abidor et al., 1993; 
Weaver and Chizmadzev, 1996]. In the presence of an E the free energy of pore formation is lower 
than after the pulse application. This means, that the pulse reduces the free pore energy, therefore 
easing pore formation and consequently current flow. After pulse application, the pore radii 
decreases and free energy is increased. Such a situation needs to be overcome with the following 
pulse, which results in a similar current response as in the first pulse. 
 
Third, the comparison of current in five sequential steps of the model and the measured current in 
the first pulse showed that at higher pulse amplitudes a permanent, however moderate increase in 
measured current is present after the current rise time, which was not observed in modelled current. 
We assume that the measured current increase was due to ion dissociation or it resulted from tissue 
heating and consequent increase in conductivity. That implies that σ(E) dependency should also 
incorporate the influence of temperature T. For future work that requires determination of σ(E,T) 
dependency. 
 
Fourth, fast dynamic changes of E intensity during tissue permeabilisation influence the change in 
tissue conductivity, however even if E intensities are higher than the irreversible threshold value 
they do not necessarily cause cell necrosis. Only when steady E intensities are present for a certain 
period of pulse length and if higher than irreversible threshold, they can cause cell necrosis. Model 
validation has therefore shown presence of a time component in σ(E) dependency, which has to be 
incorporated, i.e. σ(E,T,t) dependency needs to be defined in future work.  
 
Fifth, during permeabilisation, two transport mechanisms were present: fast ion transport, which is 
reflected in the change of tissue conductivity and the slow transport, which indicates the transport of 
small molecules (bleomycin…). Both transports are presumably initiated at the same threshold 
value, however their dynamics are different. Due to the fact that ion transport is very fast, the 
consequent change in tissue conductivity causes further rapid changes in E distribution which 
propagates permeabilisation. The final result is distribution of decreased E intensities across the 
permeabilised tissue than at the beginning of pulse application. The system behaves as if it had a 
specific negative feedback, which preserve cells from irreversible damage [Abidor et al., 1993]. 
After this process is terminated it seems to be only final steady E distribution that influences the 
origination of long lived stable pores, enabling transport of small molecules across the cell 
membrane.  
 
Model validation also showed that the model predicted the change in total current in accordance 
with measurements as well as estimating the reversibly and irreversibly permeabilised volume of 
tissue. Therefore, a validated time discrete permeabilisation model can be used for simulation of the 
permeabilisation process. That could be very important in clinics where electrode set-up (position) 
and electrode parameters (amplitude only) can be estimated by means of simulation before the 
treatment in order to achieve effective permeabilisation of a particular tissue volume.  
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66  MMOODDEELL  BBAASSEEDD  OOPPTTIIMMIISSAATTIIOONN  OOFF  
EELLEECCTTRROOPPEERRMMEEAABBIILLIISSAATTIIOONN  PPAARRAAMMEETTEERRSS  

 
 
 
 
As electric field (E) distribution in tissue can be controlled by the applied pulse amplitude and 
electrode design, determination of optimal electropermeabilisation parameters (EP) is crucial for 
effective tissue permeabilisation. In the case of electrochemotherapy, effective 
electropermeabilisation is achieved when the entire volume of the tumour is exposed to E intensities 
above reversible threshold, while in electrogenetransfer, for effective permeabilisation, the 
subjected tissue should be exposed to E intensities above reversible and at the same time below the 
irreversible threshold. The determination of optimal EP parameters (amplitude, electrode design) 
should therefore consider the requirements of the particular application of permeabilisation. 
 
There are different approaches towards optimisation of EP parameters. Usually they are based on 
information of in vitro [Rols and Teissie, 1990] and also in vivo [Gehl and Mir, 1999] tests used to 
determine the E intensity needed for tissue permeabilisation. Model based approaches to 
optimisation of EP parameters however have not been used so far, due to the lack of models 
describing tissue permeabilisation.  
 
Thus within this chapter we investigated the feasibility of model based optimisation of EP 
parameters. We conducted the optimisation on the time discrete model of tissue permeabilisation 
presented in the previous chapters. We considered pulse amplitude and distance between the 
electrodes (where applicable) as EP parameters subject to optimisation. In that respect we designed 
several models with different electrodes (plate and needle electrodes) to investigate the feasibility of 
model based optimisation of EP parameters. We first examined the optimisation of EP parameters 
on models with simple geometry and ultimately we extended the optimisation to the complex 
geometry of a human brain with a tumour. The goal of the optimisation in all models was to 
permeabilise the whole tumour, i.e. to expose the entire area of the tumour to E intensity values 
above reversible threshold as used in electrochemotherapy, assuming this leads to 100% 
effectiveness of electrochemotherapy. 
 
At the beginning of this chapter the optimisation problem in electrochemotherapy is defined and a 
model based optimisation of EP parameters is presented on simple geometries. In continuation the 
generation of the 3D geometry model of a brain with a tumour from CT images of a head is 
described. This is followed by optimisation of EP parameters for electrochemotherapy of this 
particular brain tumour. 
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6.1 DEFINITION OF THE OPTIMISATION PROBLEM  
 

6.1.1 NONLINEAR CONSTRAINED OPTIMISATION 
 

In general, the minimization of an objective function can be subject to different constraints. In most 
real life optimisation applications the values of the parameters to be optimised are limited within a 
certain interval. When the parameters to be optimised are constrained with linear (in)equalities, the 
constraints are referred to as linear constraints, while where the parameters to be optimised have to 
satisfy nonlinear (in)equalities the constraints are denoted as nonlinear.  
 
Thus a nonlinear constrained optimisation problem has the form: 

 

)(min xf
nx ℜ∈

      (6.1) 

 

subject to    u
Ax

xc
x

l ≤















≤ )( ,      (6.2) 

 
where ℜ→ℜnf :  is a linear or nonlinear objective function, mnc ℜ→ℜ: is a vector of constraint 
functions, A is a matrix, and l an u are vectors of bounds. Ax thus presents a set of linear constraints, 
while c(x) presents nonlinear constraints [Friedlander, 2002; Optimisation Toolbox for use with 
Matlab, 1999].  
 

6.1.2 OPTIMISATION PROBLEM IN ELECTROCHEMOTHERAPY  
 
The goal of the optimisation of EP parameters for application in electrochemotherapy is to have in a 
steady state the entire volume of the tumour exposed to E intensities just above the reversible 
threshold. In general, parameters subject to optimisation could be pulse parameters (shape, 
amplitude, frequency, pulse duration) and electrode parameters (shape and position of the 
electrodes). Optimisation of all the stated parameters requires a permeabilisation model comprising 
all those parameters. The development of such a model however is too complex and probably would 
result in a model describing only a narrow range of input parameters.  
 
Within our work we focused on the optimisation of two parameters: pulse amplitude u and the 
distance between electrodes d based on the time discrete model of tissue permeabilisation.  
 
Considering that the objective function has the following form: 
 

)),(,(min
,

duEEf rdu
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The function to be minimized is defined with TIC measure: 
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where Er denotes reference value i.e. the reversible threshold to be reached by optimisation and 
Ej(u,d) the E intensity at jth point in the tumour. Those points represent parts of the tumour where the 
lowest E intensity is expected. 
 
For electric pulse application we assumed the use of the Cliniporator prototype. This is an 
electroporation device, developed within the Cliniporator project, supported by The European 
Commission within the 5th framework programme (grant QLK3-1999-00484). Taking into account 
the technical limitations of the Cliniporator, which can supply maximal voltage umax=1000 V and 
maximal current imax=16 A, we defined constraints on voltage (u), subject to optimisation: 
 

max0 uu <<      (6.5) 
 
and we set a limitation on current as a nonlinear constraint of the following form: 
 

( ) ( )( ) 0,, max1 ≤−= iduiduc ,    (6.6) 
 
where i(u,d) denotes the total current computed by the model. In addition we wanted to ensure that 
E in predetermined points j of the tumour exceeds reversible threshold. Thus we set additional 
nonlinear constraints for each evaluation point j: 
 

( ) ( )2 , ( , ) 0r jjc u d E E u d= − ≤ .     (6.7) 
 
Constraints on the second optimisation parameter – distance d were set considering the 
characteristic of each particular geometry model and by considering the electrode holder 
dimensions. Thus they will be described next for each model. 

 
 

6.2 TISSUE SPECIFIC CONDUCTIVITIES USED IN MODELS 
 
With respect to the final goal i.e. to optimise EP parameters aimed at electrochemotherapy of a 
brain tumour based on real geometry extracted from CT images, we used tissue electric parameters 
which correspond to brain and tumour tissue in all further models. 
 
The specific conductivity of brain tissue reported in literature for animals (cow, pig, and rabbit) at 
low frequency and at body temperature was 0.17 S/m, with grey matter conductivity 0.35 S/m and 
white matter 0.15 S/m [Geddes and Baker, 1967]. The same value i.e. 0.17 S/m was reported for 
average human brain conductivity in [Barber and Brown, 1984], while the measurement at 1kHz 
reported in [Schwan, 1963] estimated specific human brain conductivity in the range between 0.20-
0.22 S/m. Considering a possible increase in conductivity at 1 kHz, we used the lower value of 
human brain conductivity (0.17 S/m) in this work.  
 
There were no reported values of brain tumour conductivity in literature available to us. Thus we 
based the value of brain tumour conductivity on the fact, that tumour tissue has higher conductivity 
than surrounding tissue [Surowiec et al., 1988; William et al., 1994; Smith et al., 1986]. The 
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increased value of tumour conductivity compared to surrounding tissue was reported to be between 
2-4 times higher for breast tissue [Surowiec et al., 1988] and 6-7 higher for liver tissue at 1 kHz 
[Smith et al., 1986]. Considering this in all subsequent models we set the conductivity of brain 
tumour tissue to be 2.23 times larger than the conductivity of non-permeabilised brain tissue, which 
corresponds to 0.38 S/m. 
 
We approximated  σ(E) dependency of both brain and tumour tissue with an S-shaped function for 
the reasons presented in Chapter 3. Figure 6.1 displays both σ(E) dependencies of brain and tumour 
tissue, respectively. Parameters of both σ(E) dependencies are shown in Table 6.1. The reversible 
and irreversible E thresholds of tumour tissue were based on estimated values for a subcutaneous 
tumour presented in [Pavšelj, 2002]. The rest of the values except for specific conductivity of non-
permeabilised brain and tumour tissue were defined hypothetically. This is not questionable for use 
in feasibility study, however for application on real tissue, σ(E) dependency should be exactly 
defined, for example by the method proposed in Chapter 3.8 or Chapter 5.3. 
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Figure 6.1: σ(E) dependency of brain tissue (a), tumour tissue (b). 

 
 

Table 6.1: Parameters of S-shape dependency σ(E) for brain and tumour tissue. 
Tissue σ0(S/m) σ1(S/m) E0(V/cm) E1(V/cm) BS D 
Brain 0.17 0.35 350 650 30 3 
Tumour 0.38 0.95 250 450 25 4 

 
 

6.3 OPTIMISATION OF EP PARAMETERS ON DIFFERENT 
GEOMETRIES 

 
Optimisation of EP parameters was performed on models with plate electrodes and needle 
electrodes. In models with plate electrodes the geometry of the tissue was chosen to satisfy the 
dimensions of Cliniporator plate electrodes with respect to the distance between the electrodes, 
while in the case of needle electrodes we used real geometry of a brain with a tumour. The needle 
electrode geometry was also designed to take into account the dimensions of Cliniporator needle 
electrode holder. 
 
Optimisation was carried out on the following models: 

 tissue with the tumour between two plate electrodes, 
 tissue with the tumour and two plate electrodes positioned on the top, 
 brain with the tumour having a needle electrode array inserted. 
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6.3.1 MODEL OF TISSUE WITH THE TUMOUR BETWEEN TWO PLATE 
ELECTRODES  

 
The tissue was modelled as a block with dimensions 8 mm x 16 mm x 10 mm, with a sphere 
representing a tumour of radius 2 mm in the centre of the block. The tissue was positioned between 
two plate electrodes that were 8 mm apart. The surface of each electrode in touch with the tissue 
was 10 mm x 7 mm. The geometry and its mesh consisting of 1378 nodes are shown in Figure 6.2. 
 
(a) (b) 

  

 
Figure 6.2: Geometry of tissue between two plate electrodes (a), meshed geometry (b). 

 

6.3.1.1 PULSE AMPLITUDE OPTIMISATION 
 
With the particular geometry, the relevant parameter subject to optimisation was pulse amplitude u, 
because the distance between two plate electrodes was determined by the thickness of the tissue. 
 
The optimisation procedure is shown schematically in Figure 6.3. We set the initial value for u at 
u0=100 V which represented the starting point for the optimisation. Linear and nonlinear constraints 
on u, i(u), and E(u) were as defined in Chapter 6.1.2. The objective function evaluation is based on 
computing E1 in the last step of the time discrete permeabilisation model in a selected point of the 
geometry. The point with coordinates x1=0, y1=2, z1=0 was selected at the edge of the tumour. As 
plate electrodes should provide homogeneous E, we could also have selected this point to be in 
other parts of the tumour. However we were interested in the E intensity at the point on the edge of 
the tumour which is most distant to the electrodes, thus we selected this point. Considering the 
threshold parameter for reversible permeabilisation of the tumour E0=250 V/cm we used a slightly 
higher reference value Er=255 V/cm in the objective function (defined in equation (6.4)) to ensure 
the field in the selected point to be above reversible threshold. During optimisation based on the 
time discrete permeabilisation model, E and current were evaluated in three time discrete steps. The 
reason was that prior to optimisation we evaluated that three steps were sufficient for the 
termination of permeabilisation propagation. 
 
The minimum of the objective function obtained by optimisation was f(u)=0.0002 and the optimal 
parameter value u=286.5 V. There were no constraints reached such as bounds on u as evident in 
Table 6.2. Also, nonlinear constraints i.e. i(u)<16 A and E(u)>Er were satisfied. 
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Figure 6.3: Schematic presentation of optimisation procedure. 

 
 

Table 6.2: Optimisation parameters and results. 
Er u0 u f(u) Ei(u) i(u) 

255 V/cm 100 V 286.5 V 0.0002 255.1 V/cm 0.80 A 
 
Figure 6.4, Figure 6.5, and Figure 6.6 present specific conductivity and E distribution in yz, xz and 
xy planes respectively at applied voltage u=286.5 V. Electric field and specific conductivity are 
shown at three consecutive steps of the time discrete permeabilisation model. We can observe that 
in the third step the whole volume of the tumour was permeabilised i.e. exposed to E intensities just 
above 255 V/cm. This resulted in a moderate, almost unobservable, increase in conductivity of the 
tumour compared to the conductivity of the non-permeabilised tumour with respect to σ(E) 
dependency shown in Figure 6.1. From the optimisation point of view this is an excellent result, 
however for effective electrochemotherapy it depends on the accuracy of the reversible threshold 
determination. Thus for effective electrochemotherapy it would be better to define reference value 
Er to be higher i.e. in between the reversible and irreversible thresholds. On the other hand, this 
excellent result is advantageous for electrogene transfer, because we can determine the optimal 
pulse amplitude to be applied to plate electrodes which can reversibly permeabilise cells, without 
causing cell death. 
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 (a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.4: Three consecutive steps computed by the model at u=286.5 V in yz plane at x=0: (a) and (b) 

specific conductivity and E, respectively in the first step; (c) and (d) specific conductivity and E, respectively 
in the second step; (e) and (f) specific conductivity and E, respectively in the third step. 
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 (a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.5: Three consecutive steps computed by the model at u=286.5 V in xz plane at y=1.95: (a) and (b) 

specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E respectively 
in the second step (e) and (f) specific conductivity and E respectively in the third step. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.6: Three consecutive steps computed by the model at u=286.5 V in xy plane at z=0: (a) and (b) 

specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E respectively 
in the second step (e) and (f) specific conductivity and E respectively in the third step. 
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6.3.2 MODEL OF TISSUE WITH TWO PLATE ELECTRODES ON TOP 
 
The model presented in this chapter was designed with the purpose of investigating the optimisation 
of two parameters at a time, i.e. pulse amplitude u and the distance between the electrodes d. 
Considering this, we positioned two plate electrodes on the top of the tissue with dimensions of 20 
mm x 8 mm x 12 mm. The surface of each electrode in contact with the tissue was 1 mm x 7 mm. 
The centre of the sphere representing the tumour of radius 2 mm was 3 mm below the surface where 
electrodes were placed. The model geometry and corresponding finite element mesh are shown in 
Figure 6.7. The mesh consisted of 759 nodes. 
 
(a) (b) 

 
Figure 6.7: Geometry of tissue with two electrodes on top (a), meshed geometry (b). 

 

6.3.2.1 PULSE AMPLITUDE AND ELECTRODE DISTANCE OPTIMISATION 
 
E1 was computed in the third time discrete step of the model at a point with coordinates x1=0, y1=-5, 
z1=0 where the lowest value of E in the tumour was present. As in the previous model Er was 255 
V/cm, due to the same electrical tissue properties. Also the same were the bounds on u and 
nonlinear constraints for i(u,d) and E(u,d). We set the initial value for u at u0=100 V and for d at 
d0=9 mm. The bounds for d were dmin=5 mm and dmax=18 mm. 
 
During optimisation based on the time discrete permeabilisation model, three steps were computed 
for the same reason as in the previous model. The difference from the previous model however was 
that this model required a new geometry definition and consequently new mesh generation in each 
iteration of the optimisation (Figure 6.8). The reason was the change in distance between the 
electrodes during optimisation which caused a change of model geometry. In each optimisation 
iteration new geometry and new mesh were generated automatically. Due to the fairly simple model 
geometry we did not encounter any problems with mesh generation.  
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Figure 6.8: Schematic presentation of the optimisation procedure. 

 
Optimisation terminated with an active constraint on d. Therefore the optimal value of d was 5 mm, 
while the optimal value for u was u=958.4 V. The obtained minimum value of the objective 
function was f(u,d)=0.0007. Initial parameter and optimisation results are summarized in Table 6.3. 
 

Table 6.3: Initial parameters and optimisation results. 
Er u0 d0 u d f(u,d) E1(u) i(u) 

255 V/cm 100 V 9 mm 958.4 V 5 mm 0.0007 255.3 V/cm 0.78 A 
 
Figure 6.9, Figure 6.10, and Figure 6.11 present the specific conductivity and E distribution in yz, xz 
and xy planes respectively for the three consecutive steps where plate electrodes were positioned at 
distance d=5 mm and the voltage applied was u=958.4 V. We can observe that in the third step the 
entire volume of the tumour was permeabilised i.e. exposed to an E intensity above 255 V/cm. Plate 
electrodes positioned on top of the tissue produce inhomogeneous E distribution in tissue. Therefore 
the region of the tumour close to the electrodes was irreversibly permeabilised, while the most 
distant region of the tumour i.e. the deepest, was exposed to E intensities just above reversible 
threshold. This sufficed for complete permeabilisation of the tumour, provided the reversible 
threshold is accurately determined. In this model we could also have increased reference value Er 
distincly above the reversible threshold (and still below irreversible threshold) to ensure 
permeabilisation. However this would require a higher pulse amplitude, which could yield to 
irreversible permeabilisation of healthy tissue situated just below the electrodes where the highest E 
intensities are present. Therefore when inhomogeneous E distribution is present the reference value 
for optimisation should be determined just above reversible threshold. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.9: Three consecutive steps computed by the model at d=5 mm and u=958.4 V in zy plane (x=0): (a) 

and (b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 
respectively in the second step (e) and (f) specific conductivity and E respectively in the third step. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.10: Three consecutive steps computed by the model at d=5 mm and u=958.4 V in xz plane (y=-4.95): 

(a) and (b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 
respectively in the second step (e) and (f) specific conductivity and E respectively in the third step. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.11: Three consecutive steps computed by the model at d=5 mm and u=958.4 V in xy plane (z=0): (a) 

and (b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 
respectively in the second step (e) and (f) specific conductivity and E respectively in the third step. 
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6.3.3 MODEL OF THE BRAIN TUMOUR WITH INSERTED NEEDLE ELECTRODES 
 
A substantial part of the model based optimisation of EP parameters for electrochemotherapy of a 
brain tumour was the generation of brain model geometry from CT images. Therefore we will first 
describe the geometry model generation and then present the results of model based optimisation of 
EP parameters. 
 

6.3.3.1 IMAGE PROCESSING OF THE BRAIN CT IMAGES 
 
Brain CT images of a patient with a brain tumour were scanned at the Institute of Oncology, 
Ljubljana, Slovenia. The brain scan consisted of 22 slices, each 5 mm thick. The imaging plane was 
rotated by 24 degrees with respect to the horizontal plane (tilt: -24 degrees). The CT images were 
stored in Digital Imaging and Communications in Medicine (DICOM) file format. Information 
about the image data is given in DICOM metadata structure.  
 
For the purpose of 3D brain geometry reconstruction from CT brain images, we used every second 
slice to avoid generating too complex geometry for subsequent mesh generation. Figure 6.12 
presents the original CT images obtained from the Institute of Oncology. As seen in Figure 6.12, the 
bone (skull) is represented in white, while the liquid and the air are represented in black colour. 
Considering the wide range of attenuation values, it is hard to expect to differentiate between the 
white and the grey matter on CT images in Figure 6.12. 
 
Our goal was to design a 3D geometry model representing a brain and a brain tumour. We 
performed CT brain image processing using Matlab software and 3D geometry generation from 
processed images with Femlab software. Our goal also was to design a process of 3D model 
generation which requires the least amount of human interaction possible. 
 

6.3.3.2 3D BRAIN GEOMETRY MODEL GENERATION 
 
As our primary interest was investigation of the feasibility of optimising the positioning of 
electrodes and pulse amplitude for electrochemotherapy of a brain tumour and due to the lack in 
differentiation between soft tissues, we decided to model the brain as a homogenous tissue for the 
purpose of 3D brain geometry model generation. In addition we also modelled the 3D geometry of 
the brain tumour. 
 
The first step in 3D brain geometry model generation was to determine the edge of the brain from 
CT images. CT images were imported into Matlab using the dicomread function [Image Processing 
Toolbox for use with Matlab, 2002] which is a special purpose function aimed at reading DICOM 
files. The output of the dicomread function, provided the CT slice image in the DICOM file consists 
of a single frame greyscale image, is an m by n array of greyscale values representing pixel values. 
In our specific case we obtained an array of 512 x 512 pixel values for each of 22 CT images.  
 
We determined the edge of the brain by means of a greyscale threshold value, which we detected on 
the border between the brain and the skull, and a contour function, which creates contour curves of 
the image at a predefined threshold value. The contour curves of imported CT images are given in 
Figure 6.13. We can see that the same threshold value was also found in other locations of the 
image. In addition to the brain edge, the skull edge and the CT pillow edge, were also found, which 
resulted in several contour curves of a single CT image.  
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Figure 6.12: Original CT images obtained from the Institute of Oncology. Figures (a) to (j) represent every 
second slice, from the 1st to 19th image scanned at the Institute, i.e. (a) represents 1st slice, (b) represents 3rd 

slice, etc. The tumour is visible on image (c) and (d). 
 
Therefore we programmed a special function to automatically extract the brain edge curve from the 
contour curves shown in Figure 6.13. The function detects the brain edge curve by computing the 
difference between the maximum and minimum distance in the direction from back to front of each 
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contour curve. The largest difference was always obtained with the skull contour and the second 
largest with the brain contour curve, which is how the brain edge contour was detected.  
 
In Figure 6.14 the brain edge contour curves are shown in red on the top of the imported CT images. 
We can see that they match brain edges very well. 
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Figure 6.13: Contour curves obtained on imported CT images at the predefined threshold value determined on 

the border between the brain and the skull. Contours in figures (a) to (j) correspond to CT images in Figure 
6.12 (a) to (j). 
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Figure 6.14: Brain edge contour curves (red) on top of the imported CT images. Figures (a) to (j) correspond 
to CT images in Figure 6.12 (a) to (j). 
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Figure 6.15: Contour curves (red), equidistant points with linear interpolation (green), equidistant points with 
spline interpolation (blue). Figures (a) to (j) correspond to CT images in Figure 6.12 (a) to (j). 

 
For further 3D brain geometry model generation from the sequence of brain contour curves we had 
to define the same number of points on each contour curve that split each curve object into the same 
number of edges. Those edges are then mapped with curve edges of precedent and subsequent slice 
to form the 3D brain geometry model. For that purpose we designed a function that automatically 
inserts a predefined number of equidistant points on the contour curve of each CT image as shown 
in Figure 6.15, green line. We created edges between the equidistant points on the contour curve 
(Figure 6.15, red line) by spline interpolation (Figure 6.15, blue line). We used the latter contours 
for 3D geometry model generation by using cubic lofting.  
 
When lofting, the distance between CT slices had to be defined. We derived the distance by 
counting the number of pixels which represent 10 mm on the scale at the bottom of the CT image 
(Figure 6.12) and determined 10 mm to be equal to 22 pixels. Thus by taking every second slice, 
which were 5 mm apart, we used 22 pixels distance between slices for lofting. The resultant 3D 
brain geometry model is presented later in this chapter. 
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The described process of 3D brain geometry model generation is almost fully automatic. From the 
user it requires only to set the greyscale threshold value of the brain edge, which is needed for the 
generation of brain contour curve. However if other organs (parts of body) are to be modelled in 
such a way, their edges need to be unambiguously differentiated from the rest of the body or in 
other words CT images must have high spatial resolution and in the case of soft tissue the images 
must also have high contrast resolution. Apart from this the possibility remains that several contours 
are obtained at the same threshold value, which requires the user to determine which of the contour 
curves represent the organ of interest by aid of the special function we programmed and presented 
earlier in this chapter.  
 

6.3.3.3 3D TUMOUR GEOMETRY MODEL GENERATION 
 
The problem of low spatial resolution and low contrast resolution were present in CT images under 
our study therefore preventing unambiguous differentiation of the tumour from the rest of the brain. 
Consequently, the 3D geometry model generation described above required modification. 
 
Instead of automatically determining the edge of the tumour, we defined the edge manually. For that 
purpose we enlarged the area where the tumour was observed and used pixel mapping in order to 
increase the intensity of the enlarged part of CT image. The pixel mapping process assigns new 
values from the user defined output interval (lowOUT – highOUT) to input pixel values from the 
user defined input interval (lowIN to highIN). The remainder of the values are clipped.  
 
On the enlarged part of the CT image with increased intensity we manually selected a polygonal 
region just on the edge of tumour and in this manner acquired the coordinates for the edge of the 
tumour. The selected polygonal region is superimposed on the CT scans in Figure 6.16.  
 
Due to the fact that the tumour was visible in the 4th, 5th, 6th and 7th CT image, we used each of these 
images for the 3D tumour geometry model generation, not only every second as in the case of the 
3D brain geometry model generation. 
 
The rest of the 3D tumour geometry model generation was the same as with the brain: from creating 
equidistant points on the edge curve shown in Figure 6.17 in green, spline interpolation between the 
points (Figure 6.17, blue) and lofting the latter by taking into account the distance 11 pixels 
between the slices. 
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Figure 6.16: Manually selected polygonal region (red), which defines the edge of the tumour on top of 

imported brain CT images. Figures (a) to (d) represent CT images 4-7 consecutively. 
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Figure 6.17: Manually determined tumour edge (red), equidistant points with linear (green) and spline 
interpolation (blue). Figures (a) to (d) correspond to CT images in Figure 6.16 (a) to (d). 

 

6.3.3.4 3D GEOMETRY MODEL PRESENTATION 
 
The generated 3D geometry model of the brain, tumour and skull (obtained in the same way as for 
the brain geometry) is shown in Figure 6.18. We rotated the combined 3D geometry by -24 degrees 
(tilt -24 degrees) with respect to the horizontal plane (xy plane) in order to obtain a real position as 
in a standing human.  
 
We designed the 3D geometry model of the head exactly by following the procedure described 
above. If the obtained geometry does not represent the realistic object, it is because of inherent 
problems in CT imaging as described in Chapter 2.3.2. Another reason could also be patient 
movement during the CT scan. 
 
Further, we displayed the yz projection of the combined geometry on the CT image of the patient 
head scanned in sagital plane (Figure 6.19). However in order to compare the yz model projection 
with the CT image in sagital plane we had to adjust the model to fit the proportions of the head. 
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(a) (b) 

(c) (d) 

Figure 6.18: Generated 3D geometry model of the skull, brain and tumour: (a) 3D perspective, (b) xy 
projection, (c) yz projection and (d) xz projection. 

 

 
Figure 6.19: CT image in sagital plane with yz projection of the modelled 3D geometry. 
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6.3.3.5 NEEDLE ELECTRODE INSERTION AND MESH GENERATION 
 
Before inserting an array of needle electrodes, we scaled the 3D brain geometry to correspond to 
real dimensions of the head i.e. divided the geometry by the number of pixels that correspond to 1 
mm. Then we rotated the geometry to have the scanning plane parallel to the xy plane for better 
visualisation of results. 
 
The array of needle electrodes was designed to correspond to the Cliniporator holder. Needles of 0.7 
mm in diameter were placed in two rows with different polarities. The rows were 8.7 mm apart 
(centre of needles). The distance between the centres of neighbouring needles in the row was 3.2 
mm.  
 
We inserted the needle electrode array in the brain geometry through the area where the tumour was 
closest to the edge of the brain. The depth of needle penetration (14 mm) was chosen not to exceed 
the dimension of the tumour in the direction towards the centre of the brain, which would otherwise 
damage healthy brain tissue. We also took care when inserting needle electrodes that the resulting E 
distribution will cover the greatest area of tumour possible. Figure 6.20 presents the position of the 
needle array with respect to the brain and tumour. On the right hand side of the same figure the 
close up is shown. Details of the needle array insertion in the tumour are shown in Figure 6.21. We 
can see that the tumour has a very irregular shape and that certain needles are placed very close to 
the edge of tumour. 
 
The described geometry is very demanding for automatic mesh generation for the following 
reasons: 

 the geometry consists of many curved objects; 
 curved objects significantly differ in dimensions (dimension ratio, brain to needles was 140 

to 0.7); 
 the distance between the boundaries of two curved objects is very small (the tumour is near 

the edge of the brain). 
 
Even though employing automatic meshing, the mesh generation was a long process subject to 
initial mesh parameter tuning. The obtained mesh is presented in Figure 6.22. We can see that the 
mesh was very dense in the region around the electrode insertion and inside the tumour. The mesh 
consisted of 8916 nodes. 
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(a)  

 

 
 
 
 

(b)  
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(d)  

 

 
 
 

 

Figure 6.20: Insertion of the needle electrode array in the brain geometry with a close up of the tumour. (a) 3D 
perspective, (b) xy plane, (c) xz plane, (d) yz plane. 
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(a) (b) 

  
(c) (d) 

  
Figure 6.21: Details of needle array insertion in tumour: (a) 3D perspective, (b) yz plane, (c) xy plane, (d) xz 

plane. 
 

(a) (b) 

  
 
(c) (d)                                                                  

  
Figure 6.22: Finite element mesh of the brain with a tumour and inserted needle electrode array: (a) 3D 

perspective, (b) 3D mesh in cross section parallel to needle length, (c) 3D close up of tumour in cross section 
parallel to needle length, (d) close up of tumour in yz plane. 



Chapter 6 

 

 127

6.3.3.6 SIMPLIFYING BRAIN GEOMETRY FOR THE OPTIMISATION PURPOSE  
 
Optimisation itself is time consuming because it requires several model evaluations. Each 
evaluation of the FE brain model takes tens of minutes. On top of that the part of the brain far from 
electrodes does not influence E distribution in the tumour, yet it adds to the time required for 
solving the model. Therefore we simplified the 3D brain geometry by substituting the brain with a 
block and preserving the same position of the tumour and electrodes. The block was positioned as to 
correspond to the edge of the brain close to the tumour (Figure 6.23). The FE mesh of the block 
with a tumour and needle electrodes had 6165 nodes (30% fewer than the mesh of the brain 
geometry).  
 
(a) (b) 

  

(c) (d) 

  

Figure 6.23: Position of the block aimed at substituting brain geometry with respect to the brain: (a) 3D view, 
(b) xy plane, (c) yz plane, (d) xz plane. 

 

6.3.3.7 OPTIMISATION OF EP PARAMETERS BASED ON MODEL OF BRAIN WITH TUMOUR 
 
Five points were selected for assessment of E intensity at the end of permeabilisation propagation 
and computation of the objective function during optimisation: E1(x1=60.34 mm, y1=174.4 mm, 
z1=30 mm), E2(x2=54.55 mm, y2=170.7 mm, z2=34 mm), E3(x3=55.26 mm, y3=167 mm, z3=11.06 
mm), E4(x4=53 mm, y4=158.5 mm, z4=20 mm), and E5(x5=54.55 mm, y5=159 mm, z5=15 mm). They 
are critical as they represent points on the edge of the tumour where the lowest E intensities could 
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be present. Those points are shown in Figure 6.24 (a), Figure 6.25 (a) and Figure 6.26 (a). The 
reference value of E to be reached in each of those points was Er=255 V/cm. 
 
The parameters subject to optimisation were either pulse amplitude u or a combination of u and 
distance d between two electrode pairs. We first used the same constraints on u, i(u,d), and E(u,d) as 
described in Chapter 6.1.2.  
 
When incorporating the distance between electrodes as a parameter for optimisation we utilized two 
electrode pairs in an electrode holder instead of four and defined d as the distance between two 
electrode pairs with different polarity. Optimisation of the distance between electrodes required new 
mesh generation for each distance as shown in Figure 6.8. Therefore we tested mesh generation for 
different distances between electrodes in advance and found it impossible to build the mesh at 
certain distances. Therefore we transformed the problem of distance optimisation into a problem of 
optimisation of discrete distances at which mesh generation succeeded. The transformed 
optimisation problem was required to find the minimum of the objective function subject to one 
continuous parameter u and one discrete parameter d. This is a so called mixed integer 
programming problem [Fletcher and Leyffer, 1994], which can be solved either by optimising 
continuous parameter at each value of discrete parameter or by using special purpose algorithms, 
such as Tree-search algorithm for mixed integer programming problems [Dakin, 1965]. 
 
We used the first approach, because only two discrete distance values applied to our problem. Even 
more with increased distances between electrode pairs the mesh generation failed. Thus we used 
geometry with 4 needle pairs and then simulated the change in distance by applying voltage to two 
needle pairs with different polarity distanced either at 3.2 mm or 9.6 mm. Therefore the 
optimisation procedure as shown schematically in Figure 6.3 was employed in all further models. 
However if several discrete values of d were present we would consider optimisation based on a 
Tree-search algorithm. 
 

6.3.3.7.1 PULSE AMPLITUDE OPTIMISATION OF TWO NEEDLE PAIRS 3.2 MM APART 
 
We applied voltage to two electrode pairs at distance d1=3.2 mm and set the initial value for u at 
u0=200 V. During optimisation in each model evaluation, three time discrete steps were computed 
in the permeabilisation model. However the optimisation provided no feasible solution. The reason 
was that nonlinear constraints were in contradiction. Namely, the constraint which required E 
intensity in selected points of the tumour to be above the reference value of E intensity i.e. Ej>Er 
could be satisfied only if total current was higher than 16 A. As the latter is the objective limitation 
of the Cliniporator, we omitted the nonlinear constraint on E intensity in further optimisations of 
this model because it can not be achieved with such a generator.  
 
The minimum of the objective function obtained by optimisation without considering the nonlinear 
constraint on E was f(u,d1)= 0.1907. The constraint on u was active, which means that the resulting 
optimal voltage was u=1000 V at d1=3.2 mm. Total current was 15.07 A. In evaluation points the 
electric field reached the following values: E1=200.3 V/cm, E2=173.6 V/cm, E3=169.3 V/cm, 
E4=196.6V/cm, and E5=138.6 V/cm. E intensity did not exceed reversible threshold in any of those 
points, which means that the tumour was not completely permeabilised. The reason for the 
discrepancy was reached boundary on pulse amplitude u which if higher would give E intensities 
closer to reversible threshold value in points of interest. 
 
Figure 6.24, Figure 6.25, and Figure 6.26 present E distribution and specific conductivity in three 
time discrete steps of permeabilisation in yz, xz and xy plane respectively at applied voltage u=1000 
V. We can see that some parts of the tumour were permeabilised while others were not. As a 
consequence, in order to achieve complete permeabilisation of the tumour the treatment should be 
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repeated considering a new position of electrodes that would permeabilise areas of the tumour 
which remained non-permeabilised in the first treatment. This, however, is outside the scope of this 
work. 

 

  
(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

Figure 6.24: Three consecutive steps computed by the model at u=1000.0 V in yz plane (x=54.44 mm): (a) and 
(b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 

respectively in the second step (e) and (f) specific conductivity and E respectively in the third step. The 
distance between two needle pairs with different polarity was d1=3.2 mm. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.25: Three consecutive steps computed by the model at u=1000.0 V in xz plane (y=174.4 mm): (a) and 

(b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 
respectively in the second step; (e) and (f) specific conductivity and E respectively in the third step. The 

distance between two needle pairs with different polarity was d1=3.2 mm. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.26: Three consecutive steps computed by the model at u=1000.0 V in xy plane (z=20 mm): (a) and 

(b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 
respectively in the second step (e) and (f) specific conductivity and E respectively in the third step. The 

distance between two needle pairs with different polarity was d1=3.2 mm. 
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6.3.3.7.2 PULSE AMPLITUDE OPTIMISATION OF TWO NEEDLE PAIRS 9.6 MM APART 
 
Voltage was applied to two electrode pairs at distances of 9.6 mm. The initial value set for u was 
u0=200 V. The value of the objective function at the end of optimisation was f(u,d2)= 0.1921. The 
constraint on current was active, i.e. i(u,d2) was 15.99 A. The resulting optimal voltage was u=915.3 
V at d2=9.6 mm.  
 
The electric field reached the following values at evaluation points: E1=340.1 V/cm, E2=267.3 
V/cm, E3=256.0 V/cm, E4=107.7V/cm, E5=130.1 V/cm. Compared to the previous model (d1=3.2) 
the present model exceeded reversible threshold at three evaluation points (E1, E2, E3), however at 
two points (E4, E5), it was far below the threshold. One of the points was also far above threshold. 
Thus the minimum of the objective function was higher than in the previous model, which implied 
that electrodes at distance d1=3.2 mm and at applied voltage u=1000 V performed better than 
electrodes at distance 9.6 mm and applied voltage u=915.3 V, with respect to the defined objective 
function.  
 
Specific conductivity and E distribution for the three consecutive steps in yz, xz and xy plane are 
shown in Figure 6.27, Figure 6.28, and Figure 6.29, respectively. Again we see that parts of the 
tumour were not permeabilised which would again require repositioning of the electrodes and 
therapy repetition. 
 
 

6.3.3.7.3 PULSE AMPLITUDE OPTIMISATION OF FOUR NEEDLE PAIRS 
 
Voltage was applied to four electrode pairs. All electrodes in a row were at the same potential. One 
row had a potential of 0 V, while the other was set to an initial value of u0=200 V – the starting 
point for the optimisation.  
 
The minimum of the objective function obtained by optimisation was f(u)=0.1869. Again the 
constraint on current was active, i.e. i(u) was 16.00 A, preventing any further increase in pulse 
amplitude. Thus the resulting optimal voltage was u=701.0 V. The electric field reached the 
following values at evaluation points: E1=276.9 V/cm, E2=227.5 V/cm, E3=216.7 V/cm, E4=128.6 
V/cm, and E5=120.8 V/cm. The reversible threshold value was exceeded at only one point. The 
current constraint is obviously governing the extent of permeabilisation, because at higher voltages 
(which would cause higher currents) the E at the evaluation points would be closer to threshold 
value. 
 
Specific conductivity and E distribution for the three consecutive steps in yz, xz and xy plane are 
shown in Figure 6.30, Figure 6.31, and Figure 6.32, respectively. Again we see that regions of the 
tumour were not permeabilised. Their permeabilisation would require repositioning of the 
electrodes and repetition of therapy. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.27: Three consecutive steps computed by the model at u=915.3 V in yz plane (x=54.44 mm): (a) and 

(b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 
respectively in the second step; (e) and (f) specific conductivity and E respectively in the third step. The 

distance between two needle pairs with different polarity was d2=9.6 mm. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.28: Three consecutive steps computed by the model at u=915.3 V in xz plane (y=174.4 mm): (a) and 

(b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 
respectively in the second step; (e) and (f) specific conductivity and E respectively in the third step. The 

distance between two needle pairs with different polarity was d2=9.6 mm. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.29: Three consecutive steps computed by the model at u=915.3 V in xy plane (z=20 mm): (a) and (b) 
specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E respectively 
in the second step; (e) and (f) specific conductivity and E respectively in the third step. The distance between 

two needle pairs with different polarity was d2=9.6 mm. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.30: Three consecutive steps computed by the model at u=701.0 V in yz plane (x=54.44 mm): (a) and 

(b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 
respectively in the second step; (e) and (f) specific conductivity and E respectively in the third step. Voltage 

was applied to four needle pairs. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.31: Three consecutive steps computed by the model at u=701.0 V in xz plane (y=174.4 mm): (a) and 

(b) specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E 
respectively in the second step; (e) and (f) specific conductivity and E respectively in the third step. Voltage 

was applied to four needle pairs. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.32: Three consecutive steps computed by the model at u=701.0 V in xy plane (z=20 mm): (a) and (b) 
specific conductivity and E respectively in the first step; (c) and (d) specific conductivity and E respectively 

in the second step; (e) and (f) specific conductivity and E respectively in the third step. Voltage was applied to 
four needle pairs. 
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6.3.3.7.4 PULSE AMPLITUDE OPTIMISATION OF EACH ELECTRODE PAIR FROM THE NEEDLE 
ARRAY 

 
Voltage was applied to four electrode pairs. Electrodes in one row were set to potential 0 V. 
Electrodes in another row were each set to a different potential – subject to optimisation. Initial 
values were u01=200 V, u02=300 V, u03=200 V, u04=300. The same constraints on u and i were used 
as in the previous model. 
 
The optimisation was repeated three times. The initial values for each subsequent optimisation were 
the optimised parameters obtained from the previous optimisation. Optimisation settings were 
refined with each optimisation.  
 
The minimum of the objective function computed with the last optimisation was f(u)=0.1575. 
Constraint on current was again reached i.e. i(u)=15.99 A. The resultant optimal pulse amplitudes 
were u1=802.3 V, u2=191.9 V, u3=671.2 V, u4=1000.0 V. The electric field reached the following 
values at evaluation points: E1=264.8 V/cm, E2=237.1 V/cm, E3= 275.5 V/cm, E4=141.7 V/cm, and 
E5=135.6 V/cm. At thwo points (E1, E3), E exceeded the reversible threshold while at the other three 
it was below. Despite this, the obtained pulse parameters gave superior results compared to 
parameters obtained in Chapters 6.3.3.7.1 to 6.3.3.7.3. 
  
Figure 6.33, Figure 6.34, and Figure 6.35 present specific conductivity and E in yz, xz and xy plane, 
respectively in models with applied optimal pulse parameters. 
 
 

6.3.3.7.5 PULSE AMPLITUDE OPTIMISATION WITHOUT CONSTRAINTS ON U AND I 
 
As none of the previous optimisations yielded complete permeabilisation of the tumour we 
examined a hypothetical example, in which the pulse generator had no constraints on u and i.  
 
Electrodes in one row were set to potential 0 V. Electrodes in another row were each set to a 
different potential – subject to optimisation. The initial values were u01=200 V, u02=300 V, u03=200 
V, u04=300 V. There were no constraints set except a nonlinear constraint on E, which required E 
intensity in selected points to be above or equal to reference value Er.  
 
The minimum of the objective function obtained was f(u)=0.1762. Total current was 28.70 A with 
optimal potentials applied to electrodes in one row: u1=1088.2 V, u2=485.7 V, u3=1200.1 V, 
u4=1880.9 V. The electric field reached the following values at evaluation points: E1=255.0 V/cm, 
E2= 313.8 V/cm, E3=474.7 V/cm, E4=256.3 V/cm, and E5=255.0 V/cm. According to the obtained E 
intensities in selected points the total volume of the tumour should be permeabilised. 
  
Figure 6.36, Figure 6.37, and Figure 6.38 present specific conductivity and E in yz, xz and xy plane, 
respectively computed by models at applied optimal pulse parameters. We can see that in selected 
planes the complete area of the tumour was exposed to E intensities above reversible threshold in 
the third step computed by the time discrete model. Some regions of the tumour at its edge were 
exposed to E intensities just above reversible threshold, while other regions of the tumour were 
exposed to E intensities above irreversible threshold. Thus in the former regions, entrance of the 
chemotherapeutic is enabled, while in the latter regions cell death is caused due to exposure to 
excessive E intensities. For effective electrochemotherapy, this is a satisfactory result.  
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.33: Three consecutive steps computed by the model in yz plane (x=54.55 mm). The potential 

assigned to needle pairs was u1=802.3 V, u2=191.9 V, u3=671.2 V, u4=1000.0 V. (a) and (b) present specific 
conductivity and E respectively in the first step; (c) and (d) present specific conductivity and E respectively in 

the second step; (e) and (f) present specific conductivity and E respectively in the third step. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.34: Three consecutive steps computed by the model in xz plane (y=174.44 mm). The potential 

assigned to needle pairs was u1=802.3 V, u2=191.9 V, u3=671.2 V, u4=1000.0 V. (a) and (b) present specific 
conductivity and E respectively in the first step; (c) and (d) present specific conductivity and E respectively in 

the second step; (e) and (f) present specific conductivity and E respectively in the third step. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.35: Three consecutive steps computed by the model in xy plane (z=20 mm). The potential assigned to 

needle pairs was u1=802.3 V, u2=191.9 V, u3=671.2 V, u4=1000.0 V. (a) and (b) present specific 
conductivity and E respectively in the first step; (c) and (d) present specific conductivity and E respectively in 

the second step; (e) and (f) present specific conductivity and E respectively in the third step. 
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(a)                              k=1 (b)                              k=1 
  

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.36: Three consecutive steps computed by the model in yz plane (x=54.55 mm). The potential 
assigned to needle pairs was u1=1088.2 V, u2=485.7 V, u3=1200.1 V, u4=1880.9 V. (a) and (b) present 
specific conductivity and E respectively in the first step; (c) and (d) present specific conductivity and E 

respectively in the second step; (e) and (f) present specific conductivity and E respectively in the third step. 
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(a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.37: Three consecutive steps computed by the model in xz plane (y=174.44 mm). The potential 
assigned to needle pairs was u1=1088.2 V, u2=485.7 V, u3=1200.1 V, u4=1880.9 V. (a) and (b) present 
specific conductivity and E respectively in the first step; (c) and (d) present specific conductivity and E 

respectively in the second step; (e) and (f) present specific conductivity and E respectively in the third step. 
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 (a)                              k=1 (b)                              k=1 

(c)                              k=2 (d)                              k=2 

(e)                              k=3 (f)                              k=3 

 
Figure 6.38: Three consecutive steps computed by the model in xy plane (z=20 mm). The potential assigned to 

needle pairs was u1=1088.2 V, u2=485.7 V, u3=1200.1 V, u4=1880.9 V. (a) and (b) present specific 
conductivity and E respectively in the first step; (c) and (d) present specific conductivity and E respectively in 

the second step; (e) and (f) present specific conductivity and E respectively in the third step. 
 



Chapter 6 

 

 146 

6.3.3.8 OPTIMAL EP PARAMETERS APPLICATION ON BRAIN GEOMETRY 
 
The optimal pulse parameters and values of Ei at the evaluation points obtained on the geometry 
consisting of a block with a tumour and needle array inserted are summarized in Table 6.4, where 
model 1 refers to the model with two electrode pairs at a distance of 3.2 mm (Chapter 6.3.3.7.1), 
model 2 refers to a distance of 9.6 mm between electrode pairs (Chapter 6.3.3.7.2), model 3 refers 
to the model with 4 needle pairs with rows at the same potential (Chapter 6.3.3.7.3) and 4 to the 
model with different potentials among the needle pairs (Chapter 6.3.3.7.4). Model 5 presents the 
example without constraints on u and i (Chapter 6.3.3.7.5). Model 6 however presents the model of 
the brain with a tumour where the optimal EP parameters were applied as obtained on the block 
geometry. Those were the same parameters as used in model 4. Comparison of the results obtained 
from model 4 and model 6 shows that substitution of real brain geometry with a block did not 
significantly deteriorate the E distribution in the tumour. 
 
Table 6.4: Summary of EP parameters, optimisation results and Ei in evaluation points obtained in the model 

with a block (model 1 to 5) and the model of a brain (model 6). 
Model f(u,d) u (V) i (A) d E1 (V/cm) E2 (V/cm) E3 (V/cm) E4 (V/cm) E5 

(V/cm) 
1 0.1907 1000.0 15.07 3.2 200.3 173.6 169.3 196.6 138.6 
2 0.1921 915.3 15.99 9.6 340.1 267.3 256.0 107.7 130.1 
3 0.1869 701.0 16.00 / 276.9 227.5 216.7 128.6 120.8 
4 0.1575 u1=802.3 

u2=191.9 
u3=671.2 
u4=1000.0 

15.99 / 264.8 237.1 275.5 141.7  135.6 

5 0.1762 u1=1088.2 
u2=485.7 
u3=1200.1 
u4=1880.9 

28.70  255.0 313.8 474.7 256.3 255.0 

6 0.1586 u1=802.3 
u2=191.9 
u3=671.2 
u4=1000.0 

15.96 / 311.6 227.8 269.4 148.4 136.9 

 
Figure 6.39 and Figure 6.40 present E distribution and specific conductivity respectively in the last 
step of the model describing permeabilisation in a brain with a tumour. We can observe that 
increased E values were concentrated within the tumour which is particularly advantageous because 
in this manner healthy brain tissue is not exposed to higher E intensities that can cause irreversible 
brain cell damage. 
 
Further we established that with the particular needle array holder we can not permeabilise the 
entire volume of the tumour with a single needle array insertion considering the constraints on 
voltage and current supplied by the Cliniporator. However by employing optimisation we can 
determine pulse amplitude parameters that can permeabilise the tumour to a great extent. This can 
consequently decrease the number of needle array insertions and reduce associated tissue damage. 
 
Unfortunately the drawback of the presented model based optimisation is the limited ability to 
change needle position if the model has a complex geometry. Model based optimisation namely 
depends on automatic mesh generation. However in a complex geometry, automatic mesh 
generation can fail or at least require manual tuning of mesh parameters. Therefore the problem of 
electrode position can be solved only by generating mesh in predefined positions and then 
optimising the EP parameters across those positions. On the other hand, for simple geometries as 
presented in Chapter 6.3.2 the electrode distance can be optimised without difficulty. 
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 (a)                              k=3 (b)                              k=3 

 
(c)                              k=3 (d)                              k=3 

 
(e)                              k=3 (f)                              k=3 

 
Figure 6.39: E distribution in the brain with a tumour at the end of permeabilisation at applied pulse parameters u1=802.3 

V, u2=191.9 V, u3=671.2 V, u4=1000.0 V. (a) and (b) whole geometry and close up of tumour, respectively in yz plane 
(x=54.55 mm); (c) and (d) whole geometry and close up of tumour, respectively in zx plane (y=174.4 mm); (e) and (f) 

whole geometry and close up of tumour, respectively in xy plane (z=20 mm). 
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(a)                              k=3 (b)                              k=3 

 
(c)                              k=3 (d)                              k=3 

 
(e)                              k=3 (f)                              k=3 

 
Figure 6.40: Specific conductivity of the brain with a tumour at the end of permeabilisation at applied pulse 

parameters u1=802.3 V, u2=191.9 V, u3=671.2 V, u4=1000.0 V. (a) and (b) whole geometry and close up of tumour, 
respectively in yz plane (x=54.55 mm); (c) and (d) whole geometry and close up of tumour, respectively in zx plane 

(y=174.4 mm); (e) and (f) whole geometry and close up of tumour, respectively in xy plane (z=20 mm). 
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6.4 DISCUSSION 
 
The goal of the model based optimisation was to determine optimal EP parameters to be applied for 
effective electrochemotherapy by minimizing the difference between the reference value Er and E 
intensities computed at selected points of the tumour. The value of Er was selected just above the 
reversible threshold. Optimisation also considered the technical limitations of the generator and the 
requirement to have E intensity at selected points of the tumour above reversible threshold, which is 
needed for effective electrochemotherapy.  
 
The feasibility of model based optimisation of EP parameters was examined first on a simple 
geometry representing tissue with the tumour placed between two plate electrodes. The parameter 
subject to optimisation was pulse amplitude. The application of the optimised pulse amplitude 
yielded E intensity almost equal to the reference value Er in the selected point of the tumour. As E 
between plate electrodes is relatively homogeneous compared to other electrode designs, the entire 
tumour was also exposed to E intensities just above the reversible threshold. From the optimisation 
point of view this is an excellent result, however for effective electrochemotherapy it depends on 
determination of Er. It is evident that the latter should be set above reversible threshold. However as 
the determination of threshold values depends on the accuracy of measurements and experimental 
conditions, we recommend a choice of Er in the middle range between the reversible and 
irreversible thresholds.  
 
In the next example the pulse amplitude and distance between the electrodes were optimised 
simultaneously for the geometry representing the tissue with the tumour and two plate electrodes 
placed on top. In this example E distribution was inhomogeneous, thus the application of optimal 
parameters resulted in irreversible permeabilisation of the regions of the tumour closer to the 
electrodes, while distant regions of the tumour were exposed to E intensities just above the 
reversible threshold. This sufficed for complete tumour permeabilisation, provided Er was above 
true reversible threshold. The choice of a higher reference value Er, as suggested in the previous 
example, would require a higher pulse amplitude, which could consequently yield a larger volume 
of irreversibly permeabilised healthy tissue situated just below the electrodes where the highest E 
intensities are present. Therefore when inhomogeneous E distribution is present the reference value 
for optimisation should be determined just above the true reversible threshold. 
 
Further, we examined the feasibility of model based optimisation on a model with complex 
geometry. The model, generated from CT images, represented a human brain with a tumour. For the 
purpose of electrochemotherapy an array of needle electrodes was inserted in the model. The 
parameter subject to optimisation was pulse amplitude. The distance between electrode pairs was 
not optimised due to problems encountered with mesh generation. The first optimisation of EP 
parameters had no feasible solution. Namely, due to technical limitations of the pulse generator, the 
E distribution in the tumour could not exceed Er. Thus in further optimisations we omitted the 
requirement that E intensity at selected points should exceed Er as it can not be achieved with this 
particular pulse generator. Application of optimal pulse parameters obtained in such a way did not 
expose the entire volume of the tumour to E intensities above reversible threshold, as during 
optimisation the constraints on voltage or current were reached. Considering the fact that some parts 
of the tumour were permeabilised while others were not, the treatment should be repeated 
considering a new position for the electrodes which would permeabilise the areas of the tumour 
which remained non-permeabilised by the first needle insertion. Despite the fact that with the 
particular needle array holder and pulse generator we can not permeabilise the entire volume of the 
tumour with a single needle array insertion, we can determine the pulse amplitude to be delivered to 
each electrode pair separately in order to permeabilise the tumour to a great extent. This can 
consequently decrease the number of needle array insertions and reduce associated tissue damage. 
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Also, if the needle electrode holder enables switching between electrode pairs, the current constraint 
would probably not prevent permeabilisation of the total volume of tissue by optimised pulse 
amplitudes.  
 
The purpose of the presented feasibility study was to examine the advantages and disadvantages of 
model based optimisation, which are listed in continuation, as well as to identify possible 
limitations of the approach. 
 
The most important contribution of model based optimisation of EP parameters is the determination 
of optimal parameters in a non-invasive way before the treatment. The optimal parameters are also 
best suited to the treatment of the particular tissue with respect to its geometry and electrical 
properties.  
 
Further, the optimisation enables the determination of optimal pulse amplitude to each electrode 
pair separately, as well as it could be used for determination of optimal potentials to be applied to 
3D electrodes. 
 
Another advantage of the approach is the information about the efficacy of permeabilisation i.e. 
information about whether the entire volume of the tumour was permeabilised. The latter is derived 
from the E distribution computed by the model. This information is extremely valuable when for 
example a tumour of irregular shape is treated with needle electrodes, which produce an 
inhomogeneous E. In such a case the use of a model providing the spatial distribution of E is of 
great importance. 
 
The spatial distribution of E also provides information about the possible damage to healthy tissue 
when exposed to a particular electrical treatment. Based on this a decision can be made whether to 
permeabilise a larger area of tissue by applying higher pulse amplitudes or to reposition the 
electrodes and carry out the treatment under lower pulse amplitudes. The requirement that E 
intensity should not be exceeded in healthy tissue can also be taken into account within the 
optimisation procedure as a nonlinear constraint. 
 
For model based optimisation a permeabilisation model is required. Thus the availability of an 
accurate model could be the major limitation to this approach. The accuracy of the presented time 
discrete permeabilisation model depends predominantly on the quality of the 3D geometry and 
determination of σ(E) dependency. The former can be generated from CT or MRI images if 
available. The latter should be defined by means of experiments for each type of tissue separately. 
 
Another important limitation is optimisation of the distance between electrodes when tissue 
geometry is complex. Each change in model geometry, for example a change in the distance 
between electrodes, requires new mesh generation. When optimising the distance between 
electrodes several mesh generations are thus required. However in complex geometries the 
automatic mesh generation can fail if initial mesh parameters are not manually tuned. To overcome 
this problem in complex geometries, electrode position and mesh generation should be prepared in 
advance. Then the discrete values of distances between the electrodes can be optimised together 
with pulse amplitude by employing a tree search algorithm, for example. In the case of simple 
geometries we did not encounter any problems when optimising the distance between electrodes. 
 
In general, the definition of the optimisation problem in electrochemotherapy should take into 
consideration the technical limitations of the generator (maximum voltage, current), constraints on 
electrode dimensions, and the requirement that E intensity should be higher than the reversible 
threshold in the entire tumour. However in some cases a feasible solution to such a problem does 
not exist. In such cases the definition of constraints should be redesigned by taking into account 
only the technical limitations of the generator and electrode dimensions, while the rest of the 
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requirements for desired E intensity could be met by repositioning the electrodes and repetition of 
the treatment. 
 
Balancing the above considerations we can conclude that model based optimisation can be 
successfully used as a means of determining EP parameters for effective electrochemotherapy, 
provided an accurate model of permeabilisation is available. However in some cases the 
effectiveness may be limited due to the dimensions of subject tissue, limitations of the pulse 
generator, and electrode dimensions.  
 
The applicability of this approach should be further verified with experimental data. The volume of 
permeabilised tissue after permeabilisation with optimal pulse amplitude could, for example, be 
validated by electric impedance tomography which should provide information about conductivity 
in tissue after permeabilisation. 
 
Finally it has to be emphasised that the use of model based optimisation could be advantageous for 
electrogenetransfer, where optimal pulse amplitude should be determined very precisely in order to 
have E intensities distributed between reversible and irreversible thresholds. 
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77  CCOONNCCLLUUSSIIOONN  
 
 
 
In clinical applications of electropermeabilisation, exposure of the desired volume of tissue to E 
intensities which correspond to a particular therapeutic approach is crucial for therapeutic 
effectiveness. For example, in electrochemotherapy the entire volume of the tumour must be 
exposed to E intensities above reversible threshold. In this way entrance of chemotherapeutic drugs 
into each tumour cell is enabled. Similarly, in electrogenetransfer the whole targeted volume of 
tissue must be exposed to E intensities above reversible threshold to permeabilise the cell 
membrane but E intensities must be lower than irreversible E threshold. As soon as a cell membrane 
is permeabilised, E distribution in tissue can be decreased, however it should remain high enough to 
maintain electrophoretic transport of DNA across the permeabilised cell membrane. Electric field 
distribution is thus the governing factor determining the effectiveness of a particular therapeutic 
approach. As E distribution in tissue can be controlled by the applied pulse amplitude and distance 
between the electrodes, the determination of the two is referred to as the optimization problem in 
electropermeabilisation. Up to now, optimization of the pulse amplitude and electrode position was 
based on the results of experimental tests. An alternative method for determining EP parameters 
could be model based optimization. In such a case the model should describe E distribution in tissue 
due to permeabilisation.  
 
Consequently, in this work, a time discrete model of tissue permeabilisation was developed which 
describes E distribution in tissue at discrete time steps during pulse application. According to the 
given σ(E) dependency and E distribution, the tissue specific conductivity is altered, and 
subsequently used for computation of E distribution in the following time discrete step. Electric 
field distribution of a given geometry with given tissue electrical properties can be computed either 
analytically or numerically depending on the complexity of the geometry and electrode design. 
 
An analytical approach was used to model E distribution in tissue placed between the two 
concentric cylindrical electrodes presented in Chapter 3. The geometry provided similar E 
distribution to that present around two needle electrodes of the type used for treatment of deeply 
seated tissue in clinics. As an analytical solution is not time consuming, the model was incorporated 
into a simulation environment aimed at testing the impact of different functional dependencies σ(E) 
and pulse amplitudes as well as electrode distances on the course of permeabilisation. The impact of 
σ(E) dependency was found to be important, thus an approach for its determination was proposed 
which combines experiments and the model of E distribution. Additionally, the shape of input 
signal was also found to influence the extent of permeabilisation. Namely, the application of a ramp 
signal with the same mean amplitude as that of the rectangular signal resulted in a larger radius of 
permeabilisation.  
 
Also, based on the analytical model, feasibility of real time permeabilisation control by means of a 
closed loop control algorithm was investigated. Despite the fact that real time control was feasible, 
some problems related to in vivo control were anticipated: such as the problem of tuning controller 
parameters and the problem of on-line measurement of the extent of tissue permeabilisation. The 
only possible approach towards a solution to both problems would be model based control, which 
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utilises a model that is capable of real time simulation of the extent of permeabilisation, such as the 
time discrete model presented in Chapter 3. 
 
Further, comparison of the results obtained by analytical and numerical models for the same 
geometry of two concentric cylindrical electrodes showed that both methods can be used 
equivalently, however in the case of the numerical method, the time spent solving the model was 
significantly longer. Thus the latter method can not be used for real time permeabilisation control. 
 
In Chapter 4 a method of modelling needle electrodes in the finite element model, which accelerated 
the solution process was proposed and evaluated using measurements on a phantom tissue. Based 
on the results of a criteria function, 8 faceted needle electrodes were proposed as a substitute for 
cylindrical ones. The results showed that such a simplification could be used without serious impact 
on model results. The model’s relative difference in total current, which was evaluated during 
model validation on measurements, was 9% for gel thickness of 4 mm. This difference was not due 
to the approximation of needles with faceted shape nor could it be explained by geometrical 
inaccuracies (gel thickness, tip modelling, and inter electrode distance) between the model and the 
real system. The bias was due to non-ohmic low voltage behaviour. Incorporation of this effect in 
the model decreased the relative difference between modelled and measured current to 3% for gel 
thickness of 4 mm.  
 
Current measurement was also examined as a means of finite element model validation. Provided 
the model geometry and material properties are known and properly modelled, a finite element 
model producing current results which correspond to measured results could be used for at least 
rough estimation of E distribution in tissue.  
 
In Chapter 5 time a time discrete model of tissue permeabilisation in rabbit liver tissue with inserted 
needle electrodes was validated on experimental data. Electric field distribution in the model was 
described numerically – with a finite element method. Parameter estimation of S-shaped σ(E) 
dependency was performed by means of experimental current results. Estimated electric field 
thresholds were: 460 V/cm for reversible and 700 V/cm for irreversible threshold. The obtained 
thresholds appear to be higher than those published in [Miklavčič et al., 2000]. The reason for the 
difference was that previous values were determined on E distribution of non-permeabilised tissue 
thus the increase in conductivity due to membrane permeabilisation was not taken into account. As 
the new thresholds are higher, the induced TMP consequently calculated is also higher than 
previously published. The obtained value of induced TMP is still well within the range of values 
reported in literature. 
 
The time discrete model was validated on experimental data by comparing total currents with the 
areas of reversibly and irreversibly permeabilised tissue. Model validation showed good agreement 
between the model results and experiments. Validation of the time discrete model on experimental 
data also lead to several hypotheses aimed at explaining the processes that occur during 
permeabilisation.  
 
Based on the modelling results we assumed the presence of at least two different transport 
mechanisms during permeabilisation, i.e. electrophoretic transport of ions, which is reflected in a 
fast change of tissue conductivity and the slow transport of small molecules such as bleomycin by 
diffusion, which takes place predominantly subsequent to pulse application. Both transports are 
presumably initiated at the same threshold value, due to the fact that they depend on cell membrane 
permeabilisation, however their dynamics are different. Electrophoretic ion transport is facilitated 
by a large number of transient permeation structures that reseal after pulse application. Transport of 
molecules by diffusion is enabled however through long lived stable pores which are formed on the 
basis of transient permeation structures. As the transient permeation structures are formed very 
quickly - immediately after the pulse application and due to the fact that ion transport is very fast, 
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the consequent change in tissue conductivity causes further rapid changes in E distribution and 
propagation of permeabilisation. At the end of permeabilisation propagation, the decreased 
distribution of E intensities in permeabilised tissue is found than at the beginning of the pulse 
application. The system behaves as if it had a specific negative feedback, preserving cells from 
irreversible damage [Abidor et al., 1993]. We presume that after propagation of permeabilisation is 
terminated it is only steady E distribution which influences the origination of long lived stable 
pores, enabling transport of small molecules across the cell membrane.  
 
Model based simulation also revealed that fast dynamic changes of E intensity during tissue 
permeabilisation influence the change in tissue conductivity. However, even if these are higher than 
irreversible threshold they do not necessarily cause cell necrosis. Only when steady E intensities are 
present for a certain period of pulse length and if they are higher than irreversible threshold, they 
can cause cell necrosis. 
 
In measured current, a moderate increase was observed after the rise time, which was not predicted 
by the time discrete model. It was assumed that tissue heating might have increased the tissue 
conductivity and consequently the measured current. This implied that σ(E) dependency should also 
incorporate the influence of temperature T.  
 
The validated time discrete permeabilisation model can be used for simulation of the 
permeabilisation process. This is very important in clinics where electrode set-up and electrode 
parameters (amplitude only) should be known before treatment is performed in order to achieve 
effective permeabilisation of a specific tissue volume.  
 
Thus in Chapter 6 the feasibility of model based optimisation of EP parameters for application in 
electrochemotherapy was investigated. The model geometry was generated from CT images of a 
human brain with a tumour. An array of needle electrodes was used for electrical treatment. Model 
based optimisation revealed that such an approach could be used for determination of optimal EP 
parameters. It was also revealed that the efficacy of optimisation depends on the limitations of the 
pulse generator. Namely, in the particular geometry, complete tumour permeabilisation was not 
achieved by a single needle insertion when using the Cliniporator pulse generator.  
 
In summary, based on the above results and considerations, the validated model of tissue 
permeabilisation can be used for the simulation of tissue permeabilisation. It can provide 
information about the extent of permeabilisation at different pulse amplitudes and different 
electrode designs. Simulation of the permeabilisation process by a time discrete model can also 
show which parts of tissue are going to be exposed to pre-required E intensities at particular pulse 
amplitudes and electrode designs as well as indicate possible damage to healthy tissue.  
 
The model can also provide information about the total current for different needle electrode 
geometries, pulse amplitudes and given tissue properties (geometry, conductivity). Based on 
computed current and considering E distribution, the maximal current can be determined and preset 
in the pulse generator in order to protect tissue against damage. Maximal current and required 
voltage for effective tissue electropermeabilisation for a given electrode geometry are also 
important in designing generator power supply and capacity. 
 
It has to be emphasized however that effective use of a time discrete model of tissue 
permeabilisation requires accurate determination of σ(E) dependency, which can be obtained only 
by means of experiments.  
 
A time discrete model of tissue permeabilisation can also contribute to the effectiveness of 
electrochemotherapy and electrogenetransfer as it can be used for optimisation of EP parameters 
that are suitable to the particular treatment. In electrogenetransfer such information is of great 
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importance as E intensities in the tissue under treatment should be in a narrow range between the 
reversible and irreversible threshold. The important contribution of model based optimisation is that 
it provides determination of optimal parameters in a non-invasive way before the treatment.  
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APPENDIX 
 
 
 
The programme code of the simulation environment should be run with Matlab software 
(MathWork, Inc). The simulation environment is started by typing permeabilisation in Matlab 
workspace. Simulation environment consists of following programmes: 
 

 permeabilisation.m, 
 window1.m, 
 window2.m, 
 window3.m, 
 window4.m, 
 stepwise.m, 
 linear.m, 
 exponential.m, 
 sigmoid.m. 

 
Their programme code is given in continuation. 
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PERMEABILISATION.M 
 
clear all; 
 
window1; 
window2; 
window3; 
window4; 
 
barva=1*[0.3 0.5 0.7]; 
barva1=barva+0.1*[1,1,1]; 
barva2=[0.1 0.3 0.5]; 
 
sirina=395; 
visina=260; 
pozM=[sirina/2+20 visina-60 155 18]; 
pozP=[20 visina-60 155 18]; 
poz_ozP=[pozP(1)+pozP(3)/2 pozP(2)-100 20 18]; 
 
figure(1); 
 
 
% 
% Inner radius R0 
% 
poz_Rmin=pozP-[-0 5 106 0]; 
poz_Rmin_tx=[poz_Rmin(1) poz_Rmin(2)+20 50 18]; 
Rmin_hndl=uicontrol('Style','edit',... 
 'Position',poz_Rmin,... 
 'Back',barva1,... 
 'String','1');  
 
% 
% Outer radius R1 
% 
poz_Rmax=pozP-[-60 5 106 0]; 
poz_Rmax_tx=[poz_Rmax(1) poz_Rmax(2)+20 50 18]; 
Rmax_hndl=uicontrol('Style','edit',... 
 'Position',poz_Rmax,... 
 'Back',barva1,... 
 'String','4');  
 
% 
% irreversible threshold E1 
% 
poz_Emax=pozP-[-300 5 106 0]; 
poz_Emax_tx=[poz_Emax(1) poz_Emax(2)+20 50 18]; 
Emax_hndl=uicontrol('Style','edit',... 
 'Position',poz_Emax,... 
 'Back',barva1,... 
 'String','63.7');  
 
% 
% length l 
% 
poz_l=pozP-[-0 50 106 0]; 
poz_l_tx=[poz_l(1) poz_l(2)+20 50 18]; 
l_hndl=uicontrol('Style','edit',... 
 'Position',poz_l,... 
 'Back',barva1,... 
 'String','4');  
 
% 
%parameter B needed for exponential and s-shaped S(E) dependency 
% 
poz_B=pozP-[-60 50 106 0]; 
poz_B_tx=[poz_B(1) poz_B(2)+20 50 18]; 
B_hndl=uicontrol('Style','edit',... 
 'Position',poz_B,... 
 'Back',barva1,... 
 'String','1000');  
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% 
% non-permeabilised tissue conductivity S0 
% 
poz_S0=pozP-[-120 5 106 0]; 
poz_S0_tx=[poz_S0(1) poz_S0(2)+20 50 18]; 
S0_hndl=uicontrol('Style','edit',... 
 'Position',poz_S0,... 
 'Back',barva1,... 
 'String','1');  
 
% 
% max conductivity of-permeabilised tissue S1 
% 
poz_S1=pozP-[-180 5 106 0]; 
poz_S1_tx=[poz_S1(1) poz_S1(2)+20 50 18]; 
S1_hndl=uicontrol('Style','edit',... 
 'Position',poz_S1,... 
 'Back',barva1,... 
 'String','2.5');  
 
% 
% pulse amplitude 
% 
poz_u=pozP-[-120 50 106 0]; 
poz_u_tx=[poz_u(1) poz_u(2)+20 50 18]; 
u_hndl=uicontrol('Style','edit',... 
 'Position',poz_u,... 
 'Back',barva1,... 
 'String','100');  
 
% 
%reversible threshold E0 
% 
poz_Eprag=pozP-[-240 5 106 0]; 
poz_Eprag_tx=[poz_Eprag(1) poz_Eprag(2)+20 50 18]; 
Eprag_hndl=uicontrol('Style','edit',... 
 'Position',poz_Eprag,... 
 'Back',barva1,... 
 'String','36.2'); 
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WINDOW1.M 
 
barva=1*[0.3 0.5 0.7]; 
barva1=barva+0.1*[1,1,1]; 
barva2=[0.1 0.3 0.5]; 
 
sirina=395; 
visina=260; 
pozM=[sirina/2+20 visina-60 155 18]; 
pozP=[20 visina-60 155 18]; 
poz_ozP=[pozP(1)+pozP(3)/2 pozP(2)-100 20 18]; 
 
set(figure(1),'Position',[50 100 sirina visina],... 
 'Color',barva,... 
 'Name','Parameters',... 
 'NumberTitle','off',... 
 'MenuBar','none',... 
 'Resize','off'); 
 
% 
%Delete graphs 
% 
uicontrol('Style','push',... 
 'Position',[sirina-145 10 125 25],... 
 'String','Delete graphs',... 

'CallBack','figure(2); clf; figure(3); clf; figure(4); clf '); 
 
% 
%Close windows 
% 
uicontrol('Style','push',... 
 'Position',[sirina-375 10 125 25],... 
 'String','Close windows',... 
 'CallBack','close(1); close (2); close (3); close (4)'); 
 
% 
%inner radius R0 
% 
poz_Rmin=pozP-[-0 5 106 0]; 
poz_Rmin_tx=[poz_Rmin(1) poz_Rmin(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_Rmin_tx,... 
 'String','R0',... 
 'CallBack',''); 
 
% 
% outer radius R1 
% 
poz_Rmax=pozP-[-60 5 106 0]; 
poz_Rmax_tx=[poz_Rmax(1) poz_Rmax(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_Rmax_tx,... 
 'String','R1',... 
 'CallBack',''); 
 
% 
%irreveresible threshold E1 
% 
poz_Emax=pozP-[-300 5 106 0]; 
poz_Emax_tx=[poz_Emax(1) poz_Emax(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_Emax_tx,... 
 'String','E1',... 
 'CallBack',''); 
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% 
%length l 
% 
poz_l=pozP-[-0 50 106 0]; 
poz_l_tx=[poz_l(1) poz_l(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_l_tx,... 
 'String','l',... 
 'CallBack',''); 
 
% 
% parameter B needed for exponential and s-shaped S(E) dependency  
% 
poz_B=pozP-[-60 50 106 0]; 
poz_B_tx=[poz_B(1) poz_B(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_B_tx,... 
 'String','B',... 
 'CallBack',''); 
 
% 
%field to display max pulse amplitude – not to exceed E1 anytime and anywhere between the electrodes 
% 
poz_umax=pozP-[-180 50 106 0]; 
poz_umax_tx=[poz_umax(1) poz_umax(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_umax_tx,... 
 'String','umax',... 

'CallBack',''); 
 
% 
% pulse amplitude 
% 
poz_u=pozP-[-120 50 106 0]; 
poz_u_tx=[poz_u(1) poz_u(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_u_tx,... 
 'String','u',... 

'CallBack',''); 
 
% 
%i before 
% 
poz_i0=pozP-[-240 50 106 0]; 
poz_i0_tx=[poz_i0(1) poz_i0(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_i0_tx,... 
 'String','i before',... 

'CallBack',''); 
 
% 
%i after 
% 
poz_i1=pozP-[-300 50 106 0]; 
poz_i1_tx=[poz_i1(1) poz_i1(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_i1_tx,... 
 'String','i after',... 

'CallBack',''); 
 
% 
% non-permeabilised conductivity S0 
% 
poz_S0=pozP-[-120 5 0 0]; 
poz_S0_tx=[poz_S0(1) poz_S0(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_S0_tx,... 
 'String','Sigma0',... 
 'CallBack',''); 
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% 
% max conductivity of permeabilised tissue S1 
% 
poz_S1=pozP-[-180 5 0 0]; 
poz_S1_tx=[poz_S1(1) poz_S1(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_S1_tx,... 
 'String','Sigma1',... 
 'CallBack',''); 
 
% 
%reversible threshold E0 
% 
poz_Eprag=pozP-[-240 5 0 0]; 
poz_Eprag_tx=[poz_Eprag(1) poz_Eprag(2)+20 50 18]; 
uicontrol('Style','push',... 
 'Position',poz_Eprag_tx,... 
 'String','E0',... 
 'CallBack',''); 
 
% 
% Begin simulation with stepwise dependency S(E) 
% 
uicontrol('Style','push',... 
   'Position',[sirina-375 100 170 25],... 
 'String','STEP permeabilisation',... 
 'CallBack','stepwise'); 
 
% 
% Begin simulation with linear dependency S(E) 
% 
uicontrol('Style','push',... 
 'Position',[sirina-190 100 170 25],... 
 'String','LIN permeabilisation',... 
 'CallBack','linear'); 
 
% 
% Begin simulation with exponential dependency S(E) 
% 
uicontrol('Style','push',... 
 'Position',[sirina-375 55 170 25],... 
 'String','EXP permeabilisation',... 
 'CallBack','exponential'); 
 
% 
% Begin simulation with S-shaped dependency S(E) 
% 
uicontrol('Style','push',... 
 'Position',[sirina-190 55 170 25],... 
 'String','SIGMA permeabilisation',... 
 'CallBack','sigmoid'); 
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WINDOW 2.M 
 
barva=1*[0.3 0.5 0.7]; 
barva1=barva+0.1*[1,1,1]; 
sirina=395; 
visina=260; 
pozM=[sirina/2+20 visina-60 155 18]; 
pozP=[20 visina-60 155 18]; 
poz_ozP=[pozP(1)+pozP(3)/2 pozP(2)-100 20 18]; 
 
% 
%window displays change in conductivity between the electrodes at time dsicrete steps 
% 
set(figure(2),'Position',[50 385 sirina visina],... 
 'Color',barva,... 
 'Name','Change in conductivity: S=f(r)',... 
 'NumberTitle','off',... 
 'MenuBar','none',... 

'Resize','off'); 
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WINDOW3.M 
 
barva=1*[0.3 0.5 0.7]; 
barva1=barva+0.1*[1,1,1]; 
sirina=395; 
visina=260; 
pozM=[sirina/2+20 visina-60 155 18]; 
pozP=[20 visina-60 155 18]; 
poz_ozP=[pozP(1)+pozP(3)/2 pozP(2)-100 20 18]; 
 
% 
%window displays radius of peremebilised tissue at time discrete steps 
% 
set(figure(3),'Position',[450 100 sirina visina],... 
 'Color',barva,... 
 'Name','R during permebilisation: R=f(sequence)',... 
 'NumberTitle','off',... 
 'MenuBar','none',... 
 'Resize','off'); 
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WINDOW4.M 
 
barva=1*[0.3 0.5 0.7]; 
barva1=barva+0.1*[1,1,1]; 
sirina=395; 
visina=260; 
pozM=[sirina/2+20 visina-60 155 18]; 
pozP=[20 visina-60 155 18]; 
poz_ozP=[pozP(1)+pozP(3)/2 pozP(2)-100 20 18]; 
 
 
% 
%window displays E between the electrodes at time discrete steps 
% 
set(figure(4),'Position',[450 385 sirina visina],... 
 'Color',barva,... 
 'Name','E0 and E during permebilisation: E=f(r)',... 
 'NumberTitle','off',... 
 'MenuBar','none',... 
 'Resize','off'); 
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STEPWISE.M 
Eprag=str2num(get(Eprag_hndl,'string')); 
R0=str2num(get(Rmin_hndl,'string')); 
R1=str2num(get(Rmax_hndl,'string')); 
S0=str2num(get(S0_hndl,'string')); 
S1=str2num(get(S1_hndl,'string')); 
Emax=str2num(get(Emax_hndl,'string')); 
l=str2num(get(l_hndl,'string')); 
f=1; %to plot S(E) 
 
barva=1*[0.3 0.5 0.7]; 
barva1=barva+0.1*[1,1,1]; 
barva2=[0.1 0.3 0.5]; 
I1=[]; 
 
sirina=395; 
visina=260; 
pozM=[sirina/2+20 visina-60 155 18]; 
pozP=[20 visina-60 155 18]; 
poz_ozP=[pozP(1)+pozP(3)/2 pozP(2)-100 20 18]; 
 
A=S1/S0; %conductivity ration 
Rpor=[];  
E30=[];  
E31=[];  
E00=[];  
KON=[];  
KON1=[];  
KON2=[];  
E3=[];  
tok=[];  
tok1=[];  
tok2=[];  
SS0=[];  
SS=[];  
SS1cel=[];  
I1=[];  
RR1=[];  
 
korak=15; %no. of time discrete steps 
plus=0.01; 
deli=50;  
delta=(Emax-Eprag)/deli; 
konst=(S1-S0)/(Emax-Eprag); 
n=konst*Eprag-S0; 
 
umax=Emax*(log(R1/R0)*R0); %max. pulse amplitude 
 
% 
% display max. pulse amplitude 
% 
poz_umax=pozP-[-180 50 106 0]; 
poz_umax_tx=[poz_umax(1) poz_umax(2)+20 50 18]; 
umax_hndl=uicontrol('Style','edit',... 
    'Position',poz_umax,... 
    'Back',barva1,... 
    'String',umax);  
 
% 
% read pulse amplitude 
% 
u=str2num(get(u_hndl,'string')); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% E in non-permebilised tissue 
for r=R0:plus:R1 
    e00=u/(log(R1/R0)*r); 
    E00=[E00 e00];   
    KON=[KON Eprag];   %E0 
    KON1=[KON1 Emax];   %E1 
    KON2=[KON2 u/(log(R1/R0)*R1)];  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%current before 
i0=2*pi*l*S0*u/log(R1/R0); 
    
% display 
poz_i0=pozP-[-240 50 106 0]; 
poz_i0_tx=[poz_i0(1) poz_i0(2)+20 50 18]; 
i0_hndl=uicontrol('Style','edit',... 
 'Position',poz_i0,... 
 'Back',barva2,... 
 'String',i0);          
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
rpor=u/(log(R1/R0)*Eprag);  
rpor=round(rpor*100)/100; 
 
if rpor>R1 
    rpor=R1;  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% E, if raidus of permeabilisation  between inner and outer radius 
if rpor<R1 
    E31=E00;  
    E0skup=E00;   
    Rpor=[R0 rpor];  
    SS1old(1:length(E00))=S0;  
       
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %no. of steps 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    for veliki=1:(korak-1)  
        E0=[]; 
        E1=[];    
         
        %if r during permebilisation exceeds R1 
        if rpor>=R1 
            E1=E00;  
            sigma(1:length(E00))=S1;  
            i1=2*pi*l*S1*u/log(R1/R0); 
            E31=[E31; E1]; 
            SS1cel=[SS1cel; sigma]; 
            I1=[I1 i1];  
            Rpor=[Rpor R1];  
        end 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %if r during permebilisation below R 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
          
        if rpor<R1           
            EE=E0skup;  
            SS1=[]; 
  
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % S(E) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
       
 
            for m=1:length(EE) 
                if EE(m)>=Eprag 
                    ss1=S1; 
                else 
                    ss1=S0; 
                end 
                SS1(m)=ss1; 
            end 
            
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % end S(E) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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            % compare S at k with S at k-1 
            for nn=1:length(SS1) 
                if SS1old(nn)>=SS1(nn) 
                    SS1(nn)=SS1old(nn); 
                end 
            end 
             
            SS1old=SS1; 
            SS1cel=[SS1cel; SS1]; 
         
 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
            % new E and r 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            RR1=[R0]; 
            RR2=[]; 
            SS2=[]; 
            AA=[];        
            rr1=R0;  
 
            for jj=1:length(SS1)-1           
                S00=SS1(jj+1);   
                S01=SS1(jj); 
                A=S01/S00; 
                         
                if S01~=S00 
                    RR1=[RR1 rr1]; 
                    SS2=[SS2 S01];  
                    AA=[AA A];  
                end 
                rr1=rr1+plus; 
            end 
          
            SS2=[SS2 S00]; 
            RR2=[RR1(2:length(RR1)) R1];  
                        
            SP=SS2(1)./SS2;  
            E0skup=[]; 
   
            imen=0; 
            for ena = 1:length(RR1) 
                imen=imen+SP(ena)*log(RR2(ena)/RR1(ena)); 
            end 
               
            for dva=1:length(RR1)  
                E0=[]; 
                RR1(1)=RR1(1)-plus;  
                a=round((RR1(dva)+plus)*100)/100;  
                b=round((RR2(dva))*100)/100;  
            
                for r=a:plus:b 
                    e0=SP(dva)*(u/imen)*(1/r);  
                    E0=[E0 e0]; 
                       
                    %new r 
                    razl=Emax; 
                    if dva==length(RR1)  
                        if (e0-Eprag)<= razl 
                            if (e0-Eprag)>0 
                                razl=e0-Eprag; 
                                rpor=r; 
                            end 
                        end                   
                    end 
                end   
                E0skup=[E0skup E0]; 
            end 
      
            Rpor=[Rpor rpor];        
            E30=E0skup;           
            E31=[E31; E30];  
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            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % end new E and r 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             
        end %  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %end  if r during permebilisation below R 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
    end  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %end of no. of steps 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %i after permeabilisation 
    A=S1/S0; 
    i1=(S1*l*2*pi*u)/((log(rpor/R0)+A*log(R1/rpor))); 
    poz_i1=pozP-[-300 50 106 0]; 
    poz_i1_tx=[poz_i1(1) poz_i1(2)+20 50 18]; 
    i1_hndl=uicontrol('Style','edit',... 
        'Position',poz_i1,... 
        'Back',barva2,... 
        'String',i1);    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    %begin store current 
    for stt=1:length(Rpor) 
        A=S1/S0; 
        rpori=Rpor(1,stt); 
        i1=(S1*l*2*pi*u)/((log(rpori/R0)+A*log(R1/rpori))); 
        I1=[I1 i1]; 
    end 
    %end store current 
  
    %plot radius of permeabilisation 
    figure(3); 
    ip=0:korak; 
    plot(ip,Rpor); 
    hold on; 
    grid 
 
    %plot E 
    for ie=1:korak; 
        figure(4)  
        grid 
        r3rise=R0:plus:R1; 
        plot(r3rise,E31(ie,:),r3rise,E31(1,:),'r',r3rise,KON); 
        hold on; 
        grid; 
    end 
       
    %plot conductivity 
    for ie=1:korak-1; 
        figure(2)  
        if ie == korak-1 
            plot(r3rise,SS1cel(ie,:),'r','linewidth',2); 
        else 
            plot(r3rise,SS1cel(ie,:)); 
        end 
        axis([1 4 0.0002 0.00065]); 
        hold on; 
        grid;  
    end 
end 
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LINEAR.M 
 
Eprag=str2num(get(Eprag_hndl,'string')); 
R0=str2num(get(Rmin_hndl,'string')); 
R1=str2num(get(Rmax_hndl,'string')); 
S0=str2num(get(S0_hndl,'string')); 
S1=str2num(get(S1_hndl,'string')); 
Emax=str2num(get(Emax_hndl,'string')); 
l=str2num(get(l_hndl,'string')); 
B=str2num(get(B_hndl,'string')); 
f=4; %to plot S(E) 
 
barva=1*[0.3 0.5 0.7]; 
barva1=barva+0.1*[1,1,1]; 
barva2=[0.1 0.3 0.5]; 
I1=[]; 
 
sirina=395; 
visina=260; 
pozM=[sirina/2+20 visina-60 155 18]; 
pozP=[20 visina-60 155 18]; 
poz_ozP=[pozP(1)+pozP(3)/2 pozP(2)-100 20 18]; 
 
A=S1/S0; %conductivity ration 
Rpor=[];  
E30=[];  
E31=[];  
E00=[];  
KON=[];  
KON1=[];  
KON2=[];  
E3=[];  
tok=[];  
tok1=[];  
tok2=[];  
SS0=[];  
SS=[];  
SS1cel=[];  
I1=[];  
RR1=[];  
 
korak=15; %no. of time discrete steps 
plus=0.01; 
deli=50;  
delta=(Emax-Eprag)/deli; 
konst=(S1-S0)/(Emax-Eprag); 
n=konst*Eprag-S0; 
 
 
umax=Emax*(log(R1/R0)*R0); %max. pulse amplitude 
 
% 
% display max. pulse amplitude 
% 
poz_umax=pozP-[-180 50 106 0]; 
poz_umax_tx=[poz_umax(1) poz_umax(2)+20 50 18]; 
umax_hndl=uicontrol('Style','edit',... 
    'Position',poz_umax,... 
    'Back',barva1,... 
    'String',umax);  
 
% 
% read pulse amplitude 
% 
u=str2num(get(u_hndl,'string')); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% E in non-permebilised tissue 
for r=R0:plus:R1 
    e00=u/(log(R1/R0)*r); 
    E00=[E00 e00];   
    KON=[KON Eprag];   %E0 
    KON1=[KON1 Emax];   %E1 
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    KON2=[KON2 u/(log(R1/R0)*R1)];  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
rpor=u/(log(R1/R0)*Eprag);  
rpor=round(rpor*100)/100; 
 
if rpor>R1 
    rpor=R1;  
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%current before 
i0=2*pi*l*S0*u/log(R1/R0); 
    
% display 
poz_i0=pozP-[-240 50 106 0]; 
poz_i0_tx=[poz_i0(1) poz_i0(2)+20 50 18]; 
i0_hndl=uicontrol('Style','edit',... 
    'Position',poz_i0,... 
    'Back',barva2,... 
    'String',i0); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if E at R1 above E1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if E00(length(E00))>=Emax 
    E3=E00; 
    Rpor(1:(korak+1))=R1; 
    
    %plot E 
    figure(4); 
    r3rise=R0:plus:R1; 
    plot(r3rise,E3,r3rise,KON); 
    xlabel('radius'); 
    ylabel('E'); 
    axis([1 10 0 45]);  
    grid; 
    hold on; 
     
    %plot r 
    figure(3); 
    ip=0:korak; 
    plot(ip,Rpor); 
    xlabel('k'); 
    ylabel('radius'); 
    grid; 
    hold on; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%end  if E at R1 above E1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if r<R0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if rpor<=R0 
    E3=E00;  
    Rpor(1:(korak+1))=rpor; 
    
    %plot E 
    figure(4); 
    r3rise=R0:plus:R1; 
    plot(r3rise,E3,r3rise,KON); 
    xlabel('radius'); 
    ylabel('E'); 
    axis([1 10 0 45]);  
    grid; 
    hold on;  
     
    %plot radius 
    figure(3); 
    ip=0:korak; 
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    plot(ip,Rpor); 
    xlabel('k'); 
    ylabel('radius'); 
    grid; 
    hold on; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%end  if r<R0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% E, if raidus of permeabilisation  between inner and outer radius 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if E00(length(E00))<=Emax 
    E31=E00;  
    E0skup=E00;   
    Rpor=[R0 rpor];  
    SS1old(1:length(E00))=S0;  
       
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %no. of steps 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    for veliki=1:(korak-1)  
        E0=[]; 
        E1=[];    
         
        %if r during permebilisation exceeds R1 
        if E0skup(length(E00))>=Emax 
            E1=E00;  
            sigma(1:length(E00))=S1;  
            i1=2*pi*l*S1*u/log(R1/R0); 
            E31=[E31; E1]; 
            SS1cel=[SS1cel; sigma]; 
            I1=[I1 i1];  
            Rpor=[Rpor R1];  
        end 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %if r during permebilisation below R 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
          
        if E0skup(length(E00))<=Emax        
            EE=E0skup;  
            SS1=[]; 
  
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % S(E) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
            for m=1:length(EE) 
                if EE(m)>Emax 
                    ss1=S1; 
                elseif EE(m)<=Eprag 
                    ss1=S0; 
                else 
                    for kk=1:deli 
                        if EE(m)<=Eprag+kk*delta 
                            if EE(m)>Eprag+(kk-1)*delta 
                                ss1=konst*(Eprag+(kk-0.5)*delta)-n; 
                            end 
                        end 
                    end 
                end 
                SS1(m)=ss1; 
            end 
            
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % end S(E) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
               
 
            % compare S at k with S at k-1 
            for nn=1:length(SS1) 
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                if SS1old(nn)>=SS1(nn) 
                    SS1(nn)=SS1old(nn); 
                end 
            end 
             
            SS1old=SS1; 
            SS1cel=[SS1cel; SS1]; 
         
 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
            % new E and r 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            RR1=[R0]; 
            RR2=[]; 
            SS2=[]; 
            AA=[];        
            rr1=R0;  
 
            for jj=1:length(SS1)-1           
                S00=SS1(jj+1);   
                S01=SS1(jj); 
                A=S01/S00; 
                         
                if S01~=S00 
                    RR1=[RR1 rr1]; 
                    SS2=[SS2 S01];  
                    AA=[AA A];  
                end 
                rr1=rr1+plus; 
            end 
          
            SS2=[SS2 S00]; 
            RR2=[RR1(2:length(RR1)) R1];  
                        
            SP=SS2(1)./SS2;  
            E0skup=[]; 
   
            imen=0; 
            for ena = 1:length(RR1) 
                imen=imen+SP(ena)*log(RR2(ena)/RR1(ena)); 
            end 
               
            for dva=1:length(RR1)  
                E0=[]; 
                RR1(1)=RR1(1)-plus;  
                a=round((RR1(dva)+plus)*100)/100;  
                b=round((RR2(dva))*100)/100;  
            
                for r=a:plus:b 
                    e0=SP(dva)*(u/imen)*(1/r);  
                    E0=[E0 e0]; 
                       
                    %new r 
                    razl=Emax; 
                    if dva==length(RR1)  
                        if (e0-Eprag)<= razl 
                            if (e0-Eprag)>0 
                                razl=e0-Eprag; 
                                rpor=r; 
                            end 
                        end                   
                    end 
                end   
                E0skup=[E0skup E0]; 
            end 
      
            Rpor=[Rpor rpor];        
            E30=E0skup;           
            E31=[E31; E30];  
               
 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % end new E and r 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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        end %  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %end  if r during permebilisation below R 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
    end  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %end of no. of steps 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
  
    %plot radius of permeabilisation 
    figure(3); 
    ip=0:korak; 
    plot(ip,Rpor); 
    hold on; 
    grid 
 
    %plot E 
    for ie=1:korak; 
        figure(4)  
        grid 
        r3rise=R0:plus:R1; 
        plot(r3rise,E31(ie,:),r3rise,E31(1,:),'r',r3rise,KON); 
        hold on; 
        grid; 
    end 
       
    %plot conductivity 
    for ie=1:korak-1; 
        figure(2)  
        if ie == korak-1 
            plot(r3rise,SS1cel(ie,:),'r','linewidth',2); 
        else 
            plot(r3rise,SS1cel(ie,:)); 
        end 
        axis([1 4 0.0002 0.00065]); 
        hold on; 
        grid;  
    end 
end 
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EXPONENTIAL.M 
 
Eprag=str2num(get(Eprag_hndl,'string')); 
R0=str2num(get(Rmin_hndl,'string')); 
R1=str2num(get(Rmax_hndl,'string')); 
S0=str2num(get(S0_hndl,'string')); 
S1=str2num(get(S1_hndl,'string')); 
Emax=str2num(get(Emax_hndl,'string')); 
l=str2num(get(l_hndl,'string')); 
B=str2num(get(B_hndl,'string')); 
f=4; %to plot S(E) 
 
barva=1*[0.3 0.5 0.7]; 
barva1=barva+0.1*[1,1,1]; 
barva2=[0.1 0.3 0.5]; 
I1=[]; 
 
sirina=395; 
visina=260; 
pozM=[sirina/2+20 visina-60 155 18]; 
pozP=[20 visina-60 155 18]; 
poz_ozP=[pozP(1)+pozP(3)/2 pozP(2)-100 20 18]; 
 
A=S1/S0; %conductivity ration 
Rpor=[];  
E30=[];  
E31=[];  
E00=[];  
KON=[];  
KON1=[];  
KON2=[];  
E3=[];  
tok=[];  
tok1=[];  
tok2=[];  
SS0=[];  
SS=[];  
SS1cel=[];  
I1=[];  
RR1=[];  
 
korak=15; %no. of time discrete steps 
plus=0.01; 
deli=50;  
delta=(Emax-Eprag)/deli; 
konst=(S1-S0)/(Emax-Eprag); 
k2=(S0-S1)/(exp((Eprag-Emax)/B)-1);    
 
 
umax=Emax*(log(R1/R0)*R0); %max. pulse amplitude 
 
% 
% display max. pulse amplitude 
% 
poz_umax=pozP-[-180 50 106 0]; 
poz_umax_tx=[poz_umax(1) poz_umax(2)+20 50 18]; 
umax_hndl=uicontrol('Style','edit',... 
    'Position',poz_umax,... 
    'Back',barva1,... 
    'String',umax);  
 
% 
% read pulse amplitude 
% 
u=str2num(get(u_hndl,'string')); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% E in non-permebilised tissue 
for r=R0:plus:R1 
    e00=u/(log(R1/R0)*r); 
    E00=[E00 e00];   
    KON=[KON Eprag];   %E0 
    KON1=[KON1 Emax];   %E1 
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    KON2=[KON2 u/(log(R1/R0)*R1)];  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
rpor=u/(log(R1/R0)*Eprag);  
rpor=round(rpor*100)/100; 
 
if rpor>R1 
    rpor=R1;  
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%current before 
i0=2*pi*l*S0*u/log(R1/R0); 
    
% display 
poz_i0=pozP-[-240 50 106 0]; 
poz_i0_tx=[poz_i0(1) poz_i0(2)+20 50 18]; 
i0_hndl=uicontrol('Style','edit',... 
    'Position',poz_i0,... 
    'Back',barva2,... 
    'String',i0); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if E at R1 above E1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if E00(length(E00))>=Emax 
    E3=E00; 
    Rpor(1:(korak+1))=R1; 
    
    %plot E 
    figure(4); 
    r3rise=R0:plus:R1; 
    plot(r3rise,E3,r3rise,KON); 
    xlabel('radius'); 
    ylabel('E'); 
    axis([1 10 0 45]);  
    grid; 
    hold on; 
     
    %plot r 
    figure(3); 
    ip=0:korak; 
    plot(ip,Rpor); 
    xlabel('k'); 
    ylabel('radius'); 
    grid; 
    hold on; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%end  if E at R1 above E1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if r<R0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if rpor<=R0 
    E3=E00;  
    Rpor(1:(korak+1))=rpor; 
    
    %plot E 
    figure(4); 
    r3rise=R0:plus:R1; 
    plot(r3rise,E3,r3rise,KON); 
    xlabel('radius'); 
    ylabel('E'); 
    axis([1 10 0 45]);  
    grid; 
    hold on;  
     
    %plot radius 
    figure(3); 
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    ip=0:korak; 
    plot(ip,Rpor); 
    xlabel('k'); 
    ylabel('radius'); 
    grid; 
    hold on; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%end  if r<R0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% E, if raidus of permeabilisation  between inner and outer radius 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if E00(length(E00))<=Emax 
    E31=E00;  
    E0skup=E00;   
    Rpor=[R0 rpor];  
    SS1old(1:length(E00))=S0;  
       
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %no. of steps 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    for veliki=1:(korak-1)  
        E0=[]; 
        E1=[];    
         
        %if r during permebilisation exceeds R1 
        if E0skup(length(E00))>=Emax 
            E1=E00;  
            sigma(1:length(E00))=S1;  
            i1=2*pi*l*S1*u/log(R1/R0); 
            E31=[E31; E1]; 
            SS1cel=[SS1cel; sigma]; 
            I1=[I1 i1];  
            Rpor=[Rpor R1];  
        end 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %if r during permebilisation below R 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
          
        if E0skup(length(E00))<=Emax        
            EE=E0skup;  
            SS1=[]; 
  
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % S(E) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
            for m=1:length(EE) 
                if EE(m)>Emax 
                    ss1=S1; 
                elseif EE(m)<=Eprag 
                    ss1=S0; 
                else 
                    for kk=1:deli 
                        if EE(m)<=Eprag+kk*delta 
                            if EE(m)>Eprag+(kk-1)*delta 
                                ss1=k2*(exp(((Eprag+(kk-0.5)*delta)-Emax)/B)-1)+S1;  
                            end 
                        end 
                    end 
                end 
                SS1(m)=ss1; 
            end 
            
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % end S(E) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
               
 
            % compare S at k with S at k-1 
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            for nn=1:length(SS1) 
                if SS1old(nn)>=SS1(nn) 
                    SS1(nn)=SS1old(nn); 
                end 
            end 
             
            SS1old=SS1; 
            SS1cel=[SS1cel; SS1]; 
         
 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
            % new E and r 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            RR1=[R0]; 
            RR2=[]; 
            SS2=[]; 
            AA=[];        
            rr1=R0;  
 
            for jj=1:length(SS1)-1           
                S00=SS1(jj+1);   
                S01=SS1(jj); 
                A=S01/S00; 
                         
                if S01~=S00 
                    RR1=[RR1 rr1]; 
                    SS2=[SS2 S01];  
                    AA=[AA A];  
                end 
                rr1=rr1+plus; 
            end 
          
            SS2=[SS2 S00]; 
            RR2=[RR1(2:length(RR1)) R1];  
                        
            SP=SS2(1)./SS2;  
            E0skup=[]; 
   
            imen=0; 
            for ena = 1:length(RR1) 
                imen=imen+SP(ena)*log(RR2(ena)/RR1(ena)); 
            end 
               
            for dva=1:length(RR1)  
                E0=[]; 
                RR1(1)=RR1(1)-plus;  
                a=round((RR1(dva)+plus)*100)/100;  
                b=round((RR2(dva))*100)/100;  
            
                for r=a:plus:b 
                    e0=SP(dva)*(u/imen)*(1/r);  
                    E0=[E0 e0]; 
                       
                    %new r 
                    razl=Emax; 
                    if dva==length(RR1)  
                        if (e0-Eprag)<= razl 
                            if (e0-Eprag)>0 
                                razl=e0-Eprag; 
                                rpor=r; 
                            end 
                        end                   
                    end 
                end   
                E0skup=[E0skup E0]; 
            end 
      
            Rpor=[Rpor rpor];        
            E30=E0skup;           
            E31=[E31; E30];  
               
 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % end new E and r 
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            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             
        end %  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %end  if r during permebilisation below R 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
    end  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %end of no. of steps 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
  
    %plot radius of permeabilisation 
    figure(3); 
    ip=0:korak; 
    plot(ip,Rpor); 
    hold on; 
    grid 
 
    %plot E 
    for ie=1:korak; 
        figure(4)  
        grid 
        r3rise=R0:plus:R1; 
        plot(r3rise,E31(ie,:),r3rise,E31(1,:),'r',r3rise,KON); 
        hold on; 
        grid; 
    end 
       
    %plot conductivity 
    for ie=1:korak-1; 
        figure(2)  
        if ie == korak-1 
            plot(r3rise,SS1cel(ie,:),'r','linewidth',2); 
        else 
            plot(r3rise,SS1cel(ie,:)); 
        end 
        axis([1 4 0.0002 0.00065]); 
        hold on; 
        grid;  
    end 
end 
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SIGMOID.M 
Eprag=str2num(get(Eprag_hndl,'string')); 
R0=str2num(get(Rmin_hndl,'string')); 
R1=str2num(get(Rmax_hndl,'string')); 
S0=str2num(get(S0_hndl,'string')); 
S1=str2num(get(S1_hndl,'string')); 
Emax=str2num(get(Emax_hndl,'string')); 
l=str2num(get(l_hndl,'string')); 
B=str2num(get(B_hndl,'string')); 
f=5; %to plot S(E) 
 
barva=1*[0.3 0.5 0.7]; 
barva1=barva+0.1*[1,1,1]; 
barva2=[0.1 0.3 0.5]; 
I1=[]; 
 
sirina=395; 
visina=260; 
pozM=[sirina/2+20 visina-60 155 18]; 
pozP=[20 visina-60 155 18]; 
poz_ozP=[pozP(1)+pozP(3)/2 pozP(2)-100 20 18]; 
 
A=S1/S0; %conductivity ration 
Rpor=[];  
E30=[];  
E31=[];  
E00=[];  
KON=[];  
KON1=[];  
KON2=[];  
E3=[];  
tok=[];  
tok1=[];  
tok2=[];  
SS0=[];  
SS=[];  
SS1cel=[];  
I1=[];  
RR1=[];  
 
korak=15; %no. of time discrete steps 
plus=0.01; 
deli=50;  
delta=(Emax-Eprag)/deli; 
konst=(S1-S0)/(Emax-Eprag); 
aa=(Eprag+Emax)/2;  
 
 
umax=Emax*(log(R1/R0)*R0); %max. pulse amplitude 
 
% 
% display max. pulse amplitude 
% 
poz_umax=pozP-[-180 50 106 0]; 
poz_umax_tx=[poz_umax(1) poz_umax(2)+20 50 18]; 
umax_hndl=uicontrol('Style','edit',... 
    'Position',poz_umax,... 
    'Back',barva1,... 
    'String',umax);  
 
% 
% read pulse amplitude 
% 
u=str2num(get(u_hndl,'string')); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% E in non-permebilised tissue 
for r=R0:plus:R1 
    e00=u/(log(R1/R0)*r); 
    E00=[E00 e00];   
    KON=[KON Eprag];   %E0 
    KON1=[KON1 Emax];   %E1 
    KON2=[KON2 u/(log(R1/R0)*R1)];  
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end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
rpor=u/(log(R1/R0)*Eprag);  
rpor=round(rpor*100)/100; 
 
if rpor>R1 
    rpor=R1;  
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%current before 
i0=2*pi*l*S0*u/log(R1/R0); 
    
% display 
poz_i0=pozP-[-240 50 106 0]; 
poz_i0_tx=[poz_i0(1) poz_i0(2)+20 50 18]; 
i0_hndl=uicontrol('Style','edit',... 
    'Position',poz_i0,... 
    'Back',barva2,... 
    'String',i0); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if E at R1 above E1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if E00(length(E00))>=Emax 
    E3=E00; 
    Rpor(1:(korak+1))=R1; 
    
    %plot E 
    figure(4); 
    r3rise=R0:plus:R1; 
    plot(r3rise,E3,r3rise,KON); 
    xlabel('radius'); 
    ylabel('E'); 
    axis([1 10 0 45]);  
    grid; 
    hold on; 
     
    %plot r 
    figure(3); 
    ip=0:korak; 
    plot(ip,Rpor); 
    xlabel('k'); 
    ylabel('radius'); 
    grid; 
    hold on; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%end  if E at R1 above E1 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% if r<R0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if rpor<=R0 
    E3=E00;  
    Rpor(1:(korak+1))=rpor; 
    
    %plot E 
    figure(4); 
    r3rise=R0:plus:R1; 
    plot(r3rise,E3,r3rise,KON); 
    xlabel('radius'); 
    ylabel('E'); 
    axis([1 10 0 45]);  
    grid; 
    hold on;  
     
    %plot radius 
    figure(3); 
    ip=0:korak; 
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    plot(ip,Rpor); 
    xlabel('k'); 
    ylabel('radius'); 
    grid; 
    hold on; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%end  if r<R0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% E, if raidus of permeabilisation  between inner and outer radius 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if E00(length(E00))<=Emax 
    E31=E00;  
    E0skup=E00;   
    Rpor=[R0 rpor];  
    SS1old(1:length(E00))=S0;  
       
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %no. of steps 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    for veliki=1:(korak-1)  
        E0=[]; 
        E1=[];    
         
        %if r during permebilisation exceeds R1 
        if E0skup(length(E00))>=Emax 
            E1=E00;  
            sigma(1:length(E00))=S1;  
            i1=2*pi*l*S1*u/log(R1/R0); 
            E31=[E31; E1]; 
            SS1cel=[SS1cel; sigma]; 
            I1=[I1 i1];  
            Rpor=[Rpor R1];  
        end 
         
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %if r during permebilisation below R 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
          
        if E0skup(length(E00))<=Emax        
            EE=E0skup;  
            SS1=[]; 
  
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % S(E) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
       
            for m=1:length(EE) 
                if EE(m)>Emax 
                    ss1=S1; 
                elseif EE(m)<=Eprag 
                    ss1=S0; 
                else 
                    for kk=1:deli 
                        if EE(m)<=Eprag+kk*delta 
                            if EE(m)>Eprag+(kk-1)*delta 
                                ss1=((S1-S0)/(1+exp(-((Eprag+(kk-0.5)*delta)-aa)/B)))+S0;  
                            end 
                        end 
                    end 
                end 
                SS1(m)=ss1; 
            end 
            
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % end S(E) 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
               
 
            % compare S at k with S at k-1 
            for nn=1:length(SS1) 
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                if SS1old(nn)>=SS1(nn) 
                    SS1(nn)=SS1old(nn); 
                end 
            end 
             
            SS1old=SS1; 
            SS1cel=[SS1cel; SS1]; 
         
 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
            % new E and r 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            RR1=[R0]; 
            RR2=[]; 
            SS2=[]; 
            AA=[];        
            rr1=R0;  
 
            for jj=1:length(SS1)-1           
                S00=SS1(jj+1);   
                S01=SS1(jj); 
                A=S01/S00; 
                         
                if S01~=S00 
                    RR1=[RR1 rr1]; 
                    SS2=[SS2 S01];  
                    AA=[AA A];  
                end 
                rr1=rr1+plus; 
            end 
          
            SS2=[SS2 S00]; 
            RR2=[RR1(2:length(RR1)) R1];  
                        
            SP=SS2(1)./SS2;  
            E0skup=[]; 
   
            imen=0; 
            for ena = 1:length(RR1) 
                imen=imen+SP(ena)*log(RR2(ena)/RR1(ena)); 
            end 
               
            for dva=1:length(RR1)  
                E0=[]; 
                RR1(1)=RR1(1)-plus;  
                a=round((RR1(dva)+plus)*100)/100;  
                b=round((RR2(dva))*100)/100;  
            
                for r=a:plus:b 
                    e0=SP(dva)*(u/imen)*(1/r);  
                    E0=[E0 e0]; 
                       
                    %new r 
                    razl=Emax; 
                    if dva==length(RR1)  
                        if (e0-Eprag)<= razl 
                            if (e0-Eprag)>0 
                                razl=e0-Eprag; 
                                rpor=r; 
                            end 
                        end                   
                    end 
                end   
                E0skup=[E0skup E0]; 
            end 
      
            Rpor=[Rpor rpor];        
            E30=E0skup;           
            E31=[E31; E30];  
               
 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % end new E and r 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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        end %  
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %end  if r during permebilisation below R 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
         
    end  
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %end of no. of steps 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
  
    %plot radius of permeabilisation 
    figure(3); 
    ip=0:korak; 
    plot(ip,Rpor); 
    hold on; 
    grid 
 
    %plot E 
    for ie=1:korak; 
        figure(4)  
        grid 
        r3rise=R0:plus:R1; 
        plot(r3rise,E31(ie,:),r3rise,E31(1,:),'r',r3rise,KON); 
        hold on; 
        grid; 
    end 
       
    %plot conductivity 
    for ie=1:korak-1; 
        figure(2)  
        if ie == korak-1 
            plot(r3rise,SS1cel(ie,:),'r','linewidth',2); 
        else 
            plot(r3rise,SS1cel(ie,:)); 
        end 
        axis([1 4 0.0002 0.00065]); 
        hold on; 
        grid;  
    end 
end 
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OORRIIGGIINNAALL  CCOONNTTRRIIBBUUTTIIOONNSS  TTOO  TTHHEE  RREESSEEAARRCCHH  AARREEAA  
 
 
 
Based on the presented results in this work the author demands the recognition of her original 
scientific contributions to the research area which are summarized in continuation. 
 

DEVELOPMENT OF THE TIME DISCRETE MODEL OF TISSUE 
ELECTROPERMEABILISATION 
 
A time discrete model of tissue permeabilisation was developed. The model describes the dynamics 
of electropermeabilisation at time discrete intervals. It describes changes in tissue specific 
conductivity during permeabilisation, which had not yet been provided by any other model of tissue 
permeabilisation. 
 
The most important model outputs are electric field distribution, specific conductivity and total 
current computed at time discrete intervals during permeabilisation.  
 
Model verification was performed by a parametric study. The analysis showed that the model 
behaves in accordance with experimental observations. 
  
Model validation was performed on experimental in vivo measurements of current and areas of 
reversibly and irreversibly permeabilised tissue. The model validation showed very good agreement 
between the model and measurements.  
 
Electric field distribution in time discrete steps within the model can be described either analytically 
or numerically, depending on the complexity of the geometry. 
 
 

MODEL BASED ANALYSIS OF THE COURSE OF PERMEABILISATION AFFECTED 
BY DIFFERENT FUNCTIONAL DEPENDENCIES σ(E) 
 
The time discrete model was extended to describe the arbitrary dependency between specific 
conductivity and electric field intensity σ(E). For time discrete models with a numerical description 
of electric field distribution, special purpose functions were designed to be used with Femlab 
software. For the time discrete model with an analytical description of electric field distribution 
between two concentric electrodes, the analytical solution was extended to describe arbitrary 
dependency σ(E). 
  
Model based analysis of the impact of different dependencies σ(E) on the course of 
permeabilisation were carried out by performing a parametric study considering the model with an 
analytical description of E distribution. The analysis has shown the importance of having accurate 
information about σ(E) dependency for each type of tissue.  
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ESTIMATION OF ELECTRIC FIELD THRESHOLD VALUES BASED ON MEASURED 
CURRENT AND CR51-EDTA UPTAKE 
 
A method for determination of the functional dependency σ(E) was proposed. The method is based 
on current measurements and permeabilisation model. Measurements of Cr51-EDTA uptake can also 
be used to increase the accuracy of σ(E) determination. 
 
 

DEVELOPMENT OF THE SIMULATION ENVIRONMENT FOR MONITORING 
ELECTROPERMEABILISATION BASED ON THE ANALYTICAL MODEL OF THE 
ELECTRIC FIELD DISTRIBUTION BETWEEN TWO CONCENTRIC ELECTRODES 
 
A simulation environment was developed based on a time discrete model of tissue permeabilisation 
between two concentric cylindrical electrodes. The simulation environment provides the means for 
monitoring the radius of permeabilisation, electric field intensity and specific conductivity at time 
discrete steps during permeabilisation at user supplied parameters. As the electric field distribution 
between two concentric cylindrical electrodes is similar to the distribution around needle electrodes 
this simulation environment could be used for approximate but fast determination of the extent of 
permeabilisation before treatment in clinics. 
 
 

DETERMINATION OF THE OPTIMAL NEEDLE ELECTRODE GEOMETRY FOR 
MODELLING WITH A FINITE ELEMENT METHOD 
 
An optimal needle electrode geometry for modelling with a finite element method from the 
perspective of frequent model computation was proposed. 
 
 

OPTIMISATION OF ELECTROPERMEABILISATION PULSE PARAMETERS BASED 
ON A TIME DISCRETE MODEL OF ELECTROPERMEABILISATION 
 
Optimisation of electropermeabilisation parameters was undertaken by a nonlinear constrained 
optimisation method, which considered limitations of power supply and other requirements related 
to application in electrochemotherapy. The parameters subject to optimisation were pulse amplitude 
and the distance between electrodes. The results showed that model based optimisation is an 
adequate approach for determination of optimal electropermeabilisation parameters. 
 
The optimisation procedure, which is based on a validated time discrete model of tissue 
permeabilisation, could thus be used in clinics for determination of optimal pulse parameters in a 
non-invasive way before treatment. 
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