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Summary

In this paper a novel parameter optimization approach for cell
detection tool and counting cells procedure in phase contrast
images are presented. Manual counting of the attached cells
in phase contrast images is time-consuming and subjective.
For evaluation of electroporation efficiency of attached cells,
we often perform manual counting of the cells which is
needed to determine the percentage of electroporated cells
under different experimental conditions. Here we present an
automated cell counting procedure based on novel artificial
neural network optimization of Image-based Tool for Counting
Nuclei algorithm parameters to fit the training image set based
on counts from an expert. Comparing the results of automated
cell counting to user manual counting a 90,31% average
agreement was achieved which is reasonably good especially
taking into account inter-person error which can be up to 10%.
Even more, our procedure can also be used for fluorescent cell
images with similar counting accuracy (>90%) enabling us to
determine electroporation efficiency. In our experiments, the
electroporation efficiency determined by manual cell counting
was virtually the same as the one obtained by the automated
procedure.

Introduction

Electroporation (Weaver & Chizmadzhev, 1996), also termed
electropermeabilization (Rols & Teissie, 1992), is an efficient
method for transient increase of cell membrane permeability,
which is widely used for drug and gene delivery into the living
cells. The method is highly efficient and does not include the
exposure of cells to chemical, viral or any kind of toxic additives
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(Rols, 2006). Membrane permeabilization is obtained by
application of strong external electric field to cells or tissues
(Tsong, 1991; Teissie & Rols, 1993). With careful selection of
electric pulse parameters such as pulse amplitude, duration
and number, we can obtain transient permeabilization,
which does not affect cells viability (Neumann et al., 1989;
Canatella et al., 2001). Electroporation is used in many
biomedical applications; the most interesting at present are
electrochemotherapy of tumours (Gehl & Geertsen, 2006;
Marty et al., 2006; Mir et al., 2006; Sersa et al., 2008), gene
electrotransfer (Neumann et al., 1999; Andre & Mir, 2004;
Golzio et al., 2004; Pavselj & Preat, 2005), cell fusion (Hayashi
et al., 2002; Trontelj et al., 2008; Yu et al., 2008; Gabrijel et al.,
2009) and nonthermal irreversible electroporation (Rubinsky
et al., 2007; Zupanic & Miklavcic, 2010).

For the study of basic mechanisms of electroporation
and its biomedical applications, researchers often perform
experiments on cell cultures in vitro. Even though cell
membrane permeabilization can be determined by different
already established methods such as flow cytometry or
spectrofluorimetry, those methods are only applicable when
cells in suspension are used. In such experiments, all cells in
the population have roughly the same shape and are therefore
affected in the same manner by the electric field. Nevertheless,
in many cases experiments performed on adherent cells
are needed. Adherent cells maintain their shape and intact
internal structure (cytoskeleton) and the results obtained in
those cells are comparable better to real in vivo situation (at
least for a simple homogeneous tissue) than results from
cell suspensions (Kandušer & Miklavčič, 2009). Another
advantage of the experiments performed on attached cells is
the fact that they can be observed under inverted microscope
for longer time and cell responses to electric pulses can be
detected in situ. For any further studies of electroporation-
based treatments, the first condition is determination of the
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percentage of permeabilized cells with different fluorescent
dyes such as propidium iodide or lucifer yellow (Macek-Lebar &
Miklavcic, 2001; Pucihar et al., 2002). This percentage is often
determined by manual counting of cells on phase contrast
images and corresponding number of permeabilized cells is
detected by fluorescence microscopy. Thus, both images,
phase contrast and fluorescence ones, have to be counted
separately, which means that we cannot used established
fluorescent immunehistochemical staining methods (Chen
et al., 2006; Steenstrup et al., 2000;). Manual counting of
cells is time-consuming and subjective. Namely, intra-person
variation and inter-person variation of counted number of
objects in such images are not negligible (Jacobs et al., 2001;
Embleton et al., 2003).

Cell detection in phase contrast images for experimental
results evaluation is a key problem. A typical phase contrast
images of adherent cells have the following characteristics:
(1) noise and artefacts, (2) various cell shapes and cell
intensity overlapping due to complexity of cellular topologies,
(3) internal cell structures with a lower intensity, (4) cells
in close contacts, therefore cell boundaries are not seen
clearly and (5) varying density of cell culture resulting from
nonuniform distribution of cells in the culture (Yongming
et al., 1999; Li et al., 2006). All these characteristics lead to a
decreased contrast between cells and background. In addition,
equipment-related factors, which contribute to the quality
of the image, such as uneven illumination and electronic
or optical noise, also play an important role in the effective
segmentation of a digital image (Haralick & Shapiro, 1985). All
problems mentioned earlier are also found in live cell imaging
and can contribute to poor image quality for automated
image processing, leading to image analysis problems that
remain inadequately solved. The segmentation approach
adopted must be robust against possible problems related
to phase contrast image to ensure that reliable information
about cell number is obtained (Haralick & Shapiro,
1985).

Several digital image segmentation techniques were
investigated for cell detection in phase contrast images,
such as contour-based, region-based and mixed contour-
based methods, histogram-based with minimum-error-
threshold and watershed algorithm. For phase contrast
images, however, none of the above-mentioned methods
can be used directly. Effective detection by means of
digital image segmentation techniques requires certain object
characteristics such as clear object borders, distinguished
textures, colours or topologies that have to be present in
all images used for automated cell counting (Haralick &
Shapiro, 1985; Wu et al., 1995; Yongming et al., 1999; Debeir
et al., 2005; Ambriz-Colin et al., 2006; Yang et al., 2006).
Sometimes specific algorithms or method modifications are
needed for counting a particular cell lines, for example white
blood cells (Theera-Umpon & Gader, 2002; Wang & Min,
2006).

There are some commercial software products available
and they provide object-counting and feature detection
[MetaMorph (Molecular Devices, Downingtown, PA, U.S.A.),
Bioquant (Image Analysis Corporation, Nashville, TN, U.S.A.),
Image-Pro (Media Cybernetics, Bethesda, MD, U.S.A.) and
also freeware ImageJ (U.S. National Institutes of Health,
Bethesda, MD, U.S.A.), UTHSCSA ImageTool (University of
Texas Health Science Center, San Antorio, TX, U.S.A.)]. All
these tools, however, often fail to provide reliable results
in term of accurate cell detection and/or require intensive
user interaction to obtain initialization or parameter settings
for accurate results (Byun et al., 2006). Usual approach
within these programs is to apply several global image-
processing techniques (various image filtering and edge
detection algorithms) to create binary images where object
counting is finally performed. For phase contrast image
with very dissimilar objects (e.g. attached cells) global image
processing techniques are not sufficient. In our opinion, local
image-processing methods (e.g. template matching) could be
more suitable in such cases.

Image-processing techniques usually have a large amount
of parameters, which have to be precisely tuned to get reliable
results. In phase contrast images, characteristic of individual
adherent cells differ significantly one from another. Therefore,
results can be heavily skewed by software tuning. Cells on
phase contrast images due to all mentioned issues earlier
usually do not have any characteristic dominating adherent
shape and other optical properties, thus it is difficult to obtain
good parameter set.

However, some optimization strategies exist, which can be
used to search for optimal parameters of given algorithm.
The artificial neural network (ANN) represents a general
computing mechanism able to perform different tasks such
as classification, function approximation, prediction and
optimization. A widely used topology (ANN structure) in
different domains is a multilayer perceptron. It consists of
neurons organized in layers. The inputs are grouped in an
input layer, outputs in an output layer and all the other units
in so called hidden layers that ‘cannot be seen’ neither from the
input nor from the output of the network. All links are made
among units in different layers from the input side towards the
output side of the network. Connections within the same layer
or backward connection from a layer closer to output to layers
further from the output are forbidden. All links within the
network are weighted with weights usually residing between
0 and 1.

ANN can be trained using the backpropagation training
method that uses backpropagation of a network error to
compute the gradient of an error function with respect to
the network weights. The algorithm repeatedly adjusts the
weights to minimize the mean square error between the actual
output vector and the desired network output vector. When
the desired output vector is known, this method belongs
to a family of supervised learning rules (with a ‘teacher’).
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The traditional backpropagation implies a deterministic
optimization algorithm called direct gradient descent, but can
be replaced with other, more advanced methods (Masters,
1995). The weights are changed by an amount proportional to
error gradient. The proportional factor is denoted as a learning
rate and the weight changes are corrected by a momentum
(decay) factor to control the velocity of the point in the weight
space. Using this, the local minima in the error minimization
procedure are more successfully avoided (Rumelhart et al.,
1986). Although there exists a relationship between the gain
of the activation function, learning rate and initial weights
(Thimm et al., 1996), these factors and the net topology are
usually chosen either experimentally or using some existing
thumb rules. Recently, the genetic algorithm received much
attention in determination of the optimal network parameters.

The aim of this study was to develop technique for effective
automated counting of attached cells in phase contrast images
that could be used later on for live cell imaging. In such
cases, the analysis of large number of images obtained
by automatic image acquisition which are not all of the
same quality is required. We first identified the algorithm in
ITCN (Image-based Tool for Counting Nuclei, Centre for Bio-
Image Informatics, University of California) for appropriate
cells detection tool in phase contrast images (Usaj et al.,
2007). The ITCN algorithm requires set up of three (optimal)
parameters to effectively perform cell counting. Optimal
algorithm’s parameters are set up with minor initial expert
input followed by the optimization approach, which includes
ANN. We introduced a novel solution, where network input
is fed by normalized procedure error and network outputs
are algorithm (ITCN) parameters. With this approach we
shortened counting time (from 8 to 9 h to 18 min) and obtained
90.31% accuracy from our phase contrast image database.
Finally, we tested this procedure on real electroporation
experimental data and obtained good results.

Material and methods

Electroporation experiments

A cell line V-79 Chinese hamster lung fibroblasts (ECACC,
Salisbury, U.K., EU) was used in experiments. Cells were
grown in an Eagle’s minimum essential medium supplemented
with 10% foetal bovine serum (Sigma, St. Louis, MO,
U.S.A.) at 37◦C in a humidified 5% CO2 atmosphere in an
incubator (Kambic, Semic, Slovenia) For experiments cells
were plated previous day in 24 multiwell microplate (TPP,
Trasadingen, Switzerland) in concentration 4 × 104 cells per
well. Immediately before electric pulse application, the growth
medium was replaced with phosphate buffer containing 0.15
mM propidium iodide. Electric pulses were applied with electric
pulse generator Cliniporator (Igea, Carpi, Italy) using wire
electrodes 5 mm apart (Fig. 1).

Electric pulse parameters were: 8 pulses, duration 100 µs
and repetition frequency 1 Hz. The pulse amplitude was

Fig. 1. Experimental set up of platinum electrodes in 24-well microplate
for electroporation of attached cells. The distance between platinum (Pt/Ir
= 90/10) wire electrodes is 5 mm.

increased from 0 V cm−1 for control treatment, and from
200 to 800 V cm−1 in 100 V cm−1 steps. The phase
contrast and fluorescent images of the treated cells were
captured using cooled CCD camera (Visicam 1280, Visitron,
Puchheim, Germany) mounted on a fluorescence microscope
(Zeiss AxioVert 200, objective 20×, Zeiss, Oberkochen,
Germany) using MetaMorph 5.0 software (Molecular Devices
Corporation, PA, U.S.A.), exposure time 100 ms. For each
parameter, five phase contrast and corresponding fluorescent
images were acquired from three independent experiments
giving final number of 120 phase contrast images. For
our procedure evaluation, we use additional phase contrast
images acquired from other four similar experiments at the
same conditions from which we formed original database of
304 images. Then we discarded those with poor focus (96).
We can avoid poor focus with proper microscopy set up and
for that reason we excluded those images from automated
counting procedure. We performed this task manually because
automated exclusion of images with poor focus is not the aim
of our paper. From all remaining phase contrast images (208),
we created test image database as described in the next section.
Evaluated algorithm was then applied to our electroporation
experiments on attached V-79 cells. The acquired images had
the resolution of 640×512 pixels and 256 greyscale (8-BPP).

Creating phase contrast image database

From our initial database (208 images from seven independent
experiments), we discarded those with huge artefacts such
as rubbish or dirties (3), those with giant and/or fused
cells (35) and those with clustered remainders of cells (12).
The remaining 158 (76%) phase contrast images – our test
data (examples of those images we can see in Fig. 2) –
included images with similar cell area, but still with very
different cell shapes and density. Image files were then named
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Fig. 2. Examples of phase contrast images of attached cells with different cell density (126 cells/image – top right to 329 cells/image – bottom left) from
our image database. Images were captured under 20× objective magnification. Scale bar corresponds to 40 µm.

and preprocessed. Automatically counted cell numbers were
compared to manual counting obtained by average results
of three experts – our ground truth. We have determined
inter-person error as average of relative standard deviations.
Second inter-person error is determined also as average of
relative standard deviation on ten manually counted images
by eight people from our laboratory who work regularly with
cells as researchers and are therefore used to count cells under
phase contrast microscopy (in range: Ph.D. students, post docs,
teaching assistants).

Image preprocessing

In our counting procedure, we integrated two preprocessing
steps: shading correction (to improve image quality) and
histogram equalization (to enhance contrast between cells and
background).

Shading correction. Microscopic images exhibit significant
intensity nonuniformity, often referred to as shading or
intensity inhomogeneity (Russ, 1995; Tomazevic et al., 2002;
Vovk et al., 2007). Among many shading correction methods,
we have chosen retrospective shading correction based on
entropy minimization to improve image quality (Likar et al.,
2000). By contrast to other retrospective methods, the
selected method deals successfully with both multiplicative
and additive shading components and in a great variety of
differently structured images. Briefly, linear image formation

model was created, which consists of an additive and
multiplicative parametric component. Shading correction was
then performed by the inverse of the image formation model,
which shading components were estimated retrospectively by
minimizing the entropy of the acquired images.

Histogram equalization. On images with corrected intensity
inhomogeneity histogram equalization was applied to
enhance contrast between cells and background. This
preprocessing step was integrated in our counting procedure
as a consequence of thorough comparison of counting results
using histogram equalization to the ones not using it. For
contrast enhancement we use MATLAB (MathWorks, Natick,
MA, U.S.A.) function for contrast-limited adaptive histogram
equalization (CLAHE), which enhances the contrast of the
greyscale image. CLAHE operates on small regions in the
image, called tiles, rather than the entire image. We specified
15 tiles per each row and each column. Total number of tiles
was thus 225. Each tile’s contrast was enhanced, so that the
histogram of the output region approximately matches the
histogram specified by the ‘Distribution’ parameter, in our
case Bell-shaped histogram.

Automated cell detection

For automated cell detection, we used algorithm implemented
within the ITCN tool. The algorithm is described in details
elsewhere (Byun et al., 2006). Briefly, the algorithm requires
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Fig. 3. Cells detection procedure realized in Image-based tool for counting nuclei (ITCN) algorithm: an input image is convoluted with Laplacian of
Gaussian (LoG) then the convoluted image is thresholded, and finally a detection of local extremes is performed.

three parameters: (1) cell diameter, (2) minimal cell distance
and (3) filter threshold. Objects (cell nuclei originally, cells
in our study) in the image are detected using a template
matching approach where the object model is convoluted
with an image and in each position the correlation factor is
calculated. Within ITCN Laplacian of Gaussian (LoG) is used
as cell detector with the diameter proportional to mean cell
size. The result of the convolution is a smooth continuous
image where object centres are represented by local extremes.
Afterwards, a threshold is applied to image to remove false local
extremes occurring, for example from empty space surrounded
by cells. Remaining extremes are detected using minimal cell-
to-cell distance. The procedure is depicted in Fig. 3.

The ANN initialization

Among various ANN structures, we selected a multilayer
perceptron. The topology of the created ANN consists of one
processing unit (neuron) in the input layer and is fed by the
normalized relative automated counting error. The output
layer contains three neurons, one for each ITCN parameter.
The number of neurons in the hidden layer was defined
experimentally and set to 10. ANN was trained using the
backpropagation training method. A ‘quickprop’ gradient
search algorithm for ANN training was used mainly due to its
advantages in speed. The proportional factor (learning rate)
was set to 0.1 and the momentum (decay) was set to 0.5.

Smart parameter optimization procedure

We tested several optimization approaches to obtain optimal
parameter. The parameters search space was reasonably

Table 1. Parameter search space boundaries.

Cell diameter (pixels) [25–35]; step 1
Minimal distance (pixels) [15–25]; step 1
Threshold [0.05–0.25]; step 0.01

constrained with respect to cells/images characteristic (cell
diameter and minimal distance/threshold). The search space
was equally discretized (Table 1), which gave a total of 2541
sets of parameters. We tested different sampling procedures;
in the first step we took every value of parameters. In the next
step, we took only every second (third, fourth, fifth) value of
parameters (each time the border parameters values however
were included), which gave reduced sets of parameters’ values.
Finally, we took only border values of parameter and the
middle one (three values of each parameter) which gave 27
combinations (sets) of parameters’ values.

The whole optimization procedure consisted of the following
steps. At the beginning, the training set was generated
using only three images with known cell numbers randomly
selected out of 158 images (less than 2% of all images). The
three parameters, required by ITCN algorithm, were varied
within preselected boundaries and inner points determined
by sampling procedure. For each instance, the image
processing of the selected (training) images were performed
and the number of cells determined. All combinations of
sets of parameters and numbers of counted cells (true and
automated) were randomized and then used to compose a
different data for ANN training and validation. A training
data consisted of 60% of samples, a cross validation data of
15% and a test data of 25%.
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Our novel idea was to train the network with the training
data values and then set the input (normalized relative
automated counting error) to zero and the outputs should
give optimal values of the three ITCN algorithm’s parameters.
If the ANN was chosen well (having good generalization
ability) these values should be optimal for the whole test
images.

The procedure was tested on 10 different training sets of
images (on PC Pentium(R) D CPU 3 GHz, 1 GB of RAM,
Windows XP) and mean relative error as well as mean
standard deviation were determined. For each set, the ANN
was trained for 10 000 cycles (epochs) where in each epoch all
the samples from the training set was exposed to the network
inputs.

Procedure’s performance and accuracy

Exhaustive global optimization. To evaluate our optimization
approach described in previous subsection, we performed a
global parameters optimization that yielded global optimal
parameter set (in our defined parameter space). In this case,
training set was equal to data set that means all 158 images
were included in optimization. The three parameters required
by ITCN algorithm were varied within preselected boundaries
with all samples included. For each instance, the image
processing of all images was performed and the number of cells
determined. The parameter set, which minimized absolute
relative error, was chosen as global optimal parameter set
and its error as global minimal error. The same computer as
in previous section was used. The time needed for completing
global optimization was 3 weeks.

Absolute relative error. The results of counting cell procedure
were presented by the error computed according to the Eq. (1)

E = 1
N

∑

N

|ND − GT|
GT

, (1)

where E is an average absolute relative number-of-cells error,
N is the number of images in the set, ND and GT is the number
of cells detected by our automated procedure and by manual
counting, respectively.

Evaluation of procedure on our data obtained from electroporation
experiments

We finally applied our counting procedure to three
electroporation experiments. From each experiment we got 40
phase contrast and same number of corresponding fluorescent
images. The training sets consisting of three phase contrast or
fluorescence images (7.5% of all images) per each individual
experiment. For automated cell counting procedure, we
empirically set parameter borders as shown in Table 2. With
optimal parameters obtained by our optimization approach,
we performed cell counting on phase contrast and fluorescent
images. Automated counting of fluorescent cells was not the

Table 2. Parameter search space boundaries for electroporation
experiments.

Phase contrast images Fluorescent images

Cell diameter (pixels) [25–35]; step 5 [10–30]; step 5
Minimal distance (pixels) [15–25]; step 5 [10–20]; step 5
Threshold [0.1–0.2]; step 0.05 [0.1–0.2]; step 0.05

aim of this paper and we agree that other solutions exist for
this purpose. However, we perform automated counting of
fluorescent cells with our procedure just to show its flexibility
and robustness to different image types. For counting cells on
fluorescence images, we have to assure that ITCN is properly
configured which means that we have to use inverted LoG (not
original as in case of phase contrast images). Preprocessing
steps for fluorescence images were similar as for phase contrast
with additional background subtraction. Fluorescent images
were manually counted only by one expert.

Results

Smart parameter optimization

Our procedure for automated cell counting was tested
on 10 different training sets, with different number of
parameter sets. As presented in Table 3, the average error
and average standard deviation did not significantly differ
between numbers of parameter set used for ANN optimization.
Because of that, the option with only 27 parameter sets
was finally selected as sampling procedure for the proposed
optimization approach. This procedure has demonstrated
the best performance which includes counting accuracy of
90.31% and low computing time which was less than 18 min;
6 min for parameter optimization (average 5.98 min ± 0.95
min) and 4.3 s (±0.4 s) for processing each image.

Good ANN response is also shown in Fig. 4, where values of
three parameters for each training set and different sampling
procedure as well as values of global optimal parameters
are presented. It can be seen that parameter’s values are
independent of sampling procedure and they are close to global
optimum.

Table 3. Mean error and standard deviation for different number of
parameter sets.

Number of Average Average standard Computing
parameter sets error (%) deviation (%) time

2541 9.17 7.18 8 h 42 min
396 9.17 7.18 1 h 42 min
200 8.97 7.30 47 min
96 8.97 7.18 30 min
45 9.93 7.44 22 min
27 9.69 7.34 <18 min
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Fig. 4. The artificial neural network (ANN) optimized values for all three parameters of Image-based Tool for Counting Nuclei (ITCN) algorithm for 10
image training set and sampling procedure: cell size, minimal cell distance and algorithm’s threshold.

Results of automated counting procedure for 10 different
training image set show reasonably good correlation with
manual counting as we see in Table 4 where absolute relative
errors with SD for all 10 training image sets are presented
(number of parameter sets are 27). If we performed automated

counting on images without contrast enhancement using the
same 10 training image set the average absolute relative error
(13.02%) and SD (9.68%) are considerably higher than in the
case where contrast enhancement was used (average absolute
relative error 9.69% and SD 7.34%).
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Table 4. Trend equitation, correlation coefficient and error between
manual counting and automated counting (number of parameter sets
are 27) for 10 training image sets.

Correlation Absolute relative
Training set Trend equation coefficient R2 error (%)

1 y = 0,9017x 0.8687 10.72 ± 9.03
2 y = 0,9017x 0.8687 10.72 ± 9.03
3 y = 1,0262x 0.9117 10.15 ± 7.18
4 y = 0,9842x 0.8983 9.22 ± 6.70
5 y = 0,9694x 0.8974 8.82 ± 6.59
6 y = 0,9842x 0.8983 9.22 ± 6.70
7 y = 0,9546x 0.8999 8.63 ± 6.75
8 y = 0,9842x 0.8983 9.22 ± 6.70
9 y = 1,0345x 0.8957 10.95 ± 8.01
10 y = 0,9842x 0.8983 9.22 ± 6.70
Average y = 0,9736x 0.8935 9.69 ± 7.34

For illustration, the results of automated procedure running
with optimal parameter’s set obtained from one image
training set (number four) are presented in Fig. 5. We can
observe that there is somewhat better performance in images
with fewer cells, while with increasing cells number the
error becomes higher. Overall, trend equitation coefficient
(0.9892) and correlation coefficient (0.8983) as well as error
(9.22 ± 6.70%) still demonstrate good correlation with
manual counting.

Exhaustive global optimization

We searched for global optimum parameter set to obtain global
minimum error of the ITCN algorithm. Global minimum error
is 7.99 ± 6.37% what is acceptable and is within the range
of inter-person error. The reason for this still rather high error
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Fig. 5. Evaluation of the algorithm in all 158 images of our database.
Correlation between manual and automated cell counting. Automated
cell counting was performed using optimized parameters obtained from
artificial neural network (ANN) optimization using data of the image
training set four.

lies probably in large cell shape variations throughout the
whole data set processed using the same parameters set of
ITCN algorithm. We can also see that our procedure’s average
error 9.69 ± 7.34% is in the same order as global minimum
error. Furthermore, it has been achieved within much shorter
computer time (less than 18 min) compared to global optimum
result (3 weeks).

Inter-person error

For an additional evaluation of counting procedure, we
determined an inter-person error among users who performed
manual counting of cells. First inter-person error is an average
of relative standard deviations of three manual counting
of cells in all (158) images and its value (with its SD) is
6.55 ± 3.67%. Second inter-person error is an average of
relative standard deviations based on manual counting of cells
from eight people in Laboratory of Biocybernetics on 10 images
from our test images. Its value with SD is 10.57 ± 3.25%,
which slightly surpasses the first estimation of inter-person
error. Both inter-person error are quite similar to the error of
our counting procedure and clearly demonstrate difficulty to
obtain real number of cells even for expert users.

In Table 5, we present the results of evaluation of our
procedure: inter person errors, automatic versus manual
counting, computer/human counting time.

Evaluation of procedure on our data obtained from electroporation
experiments

Figure 6 depicts final demonstration of our procedure
on the data from electroporation experiments of attached
cells. Electroporation efficiency is represented as a ratio
between number of fluorescent cells and the total number
of cells counted on the phase contrast images. We
observe increase in the number of fluorescence cells
with increasing field amplitude. If we compare manually
determined electroporation efficiency with electroporation
efficiency determined by our automated cell counting we
observe excellent agreement of corresponding curves. This
clearly demonstrates applicability of our automated counting
procedure. The relative error of automated cell counting of
those three experiments was, however, on average 8.53% for
phase contrast images (what is in the range of interpersonal
error 7.40%) and 7.64% for fluorescence images.

Discussion

In this paper, we present a technique for effective automated
counting of attached and nonuniformly distributed cells
in phase contrast images. This novel technique is robust
enough against changes in cell shape and other optical
characteristics and could thus be also used for live cell
imaging and analysis of large number of images obtained
by automatic image acquisition. We identified the ITCN
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Table 5. Presentations of all results.

Average Procedure’s First Human Second Global Computer time
procedure computer inter-person effective inter-person minimum for global
error time error counting time error error minimum error

9.69 ± 7.34% <18 min 6.55 ± 3.67% ≈10 h 10.57 ± 3.25% 7.99 ± 6.37% ≈3 weeks
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Fig. 6. Comparison of electroporation efficiency determined by manual
cell counting to this determined by automated cell counting procedure.
Data points represent mean and standard deviation of three independent
experiments.

algorithm as appropriate cells detection tool. To effectively
perform cell counting, the ITCN algorithm requires set up
of the three parameters, which are obtained by ANN. We
introduced a novel solution, where network input is fed by
the normalized procedure error and the network outputs are
the ITCN algorithm parameters. Furthermore, the automated
procedure for counting of attached cells in phase contrast
and also fluorescent images based on this smart optimization
of ITCN algorithm’s parameters was tested in evaluation of
electroporation experiments.

ITCN algorithm used for counting cells (Byun et al.,
2006) is a promising tool for automated determination of
electroporation efficiency of attached cells. The main part of
the procedure is parameter optimization based on random
selection of the training set (less than 2% of images), which
makes the procedure robust to variations in images quality
and/or object characteristics without the need for new
programming and/or modification of source code. This is
an advantage to many other solutions, which often fail if
new image types are analysed. The training set approach
has also been used in another study (Hawkins et al., 2006),
where optimal model for counting of spots in ELISpot assay
was developed. If we perform optimization without ANN,
that is exhaustive approach with all 2541 parameter sets
included seeking for optimal parameter set on the same 10
training sets, the error we get is on average larger (11.20 ±
8.01%). However the reduction in computing time is even
more pronounced: the exhaustive approach takes at least 8–

9 h because all (2541) parameters sets have to be processed
(Usaj et al., 2007) while proposed approach takes significantly
lower computer time (less than 18 min). With smart
optimization approach. we overcome difficulties of manual
setting optimal values for estimation of cell diameter and
minimum cell distance of attached cells.

Another advantage of our counting procedure is its
simple initialization. There are commercial software products
(MetaMorph, Bioquant, Image-Pro) as well freeware [CellC
(Tampere University of Technolog, Tampere, Finland),
ImageJ] that provide object-counting and feature detection.
We compared three tools (MetaMorph, Image-Pro, CellC)
for cell counting using our image database containing 158
images. The results obtained with these tools yielded 16–65%
absolute relative error whereas the absolute relative error of
our counting procedure was below 9%.

What is perhaps even more important, these tools require
intensive user interaction to obtain initialization or parameter
settings for accurate results (Byun et al., 2006). By contrast,
initialization of our procedure is simple to perform. We only
have to select parameter boundaries and count cells on
(three) randomly selected training images. Moreover, because
algorithm’s parameters can be modified for each task and
because they are directly related to object characteristics,
the proposed procedure can be used in a variety of sample
preparations or imaging methods, indicating its widespread
applicability. This is demonstrated also in our study with
successful evaluation of electroporation experiments that also
includes counting of cells in fluorescence images.

The proposed procedure is very useful and could be
effective in all areas where object counting is an everyday
routine. However, there are some disadvantages at current
development stage, which have to be mentioned.

Namely, when optimal parameter set is obtained it is used
for all image data not taking into account variability between
images. From Fig. 5, we can see that optimal parameters
obtained in such a way are actually optimal for images with
maximum cell density 150 cells per image while images
with more cells need slightly different optimal parameters set.
Higher cell density results in change of parameter minimal cell
distance due to closer packing of the cells in the more confluent
cell culture.

Another drawback of described procedure lies in template-
matching approach with one template for all objects in images.
Parameter ‘cell size’ here is the critical one. In our case, the
problems are in one hand fused cells, which means that several
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individual cells have fused into one giant cell (because of
this reason extremely large, i.e. giant cells have been already
excluded from test images). These giant cells are in principle
over-counted. By contrast, there was also an undercounting
problems found in confluent cell culture, due to high density
of cells in images. It need to be stressed, however, that in
confluent cell culture it is difficult to obtain exact number of
cells even by manual counting performed by experienced user.
In confluent cell culture, cells have consecutively the smallest
size/area. Fused cells and confluent cell culture are found in
images with high number of cells, therefore the counting error
increases with number of cells, as we can observe in Fig. 5.

Our goal is to further improved method that will not only
distinguish between images with small and high number
of cells, but each image will be processed with its own
optimal parameter set and template that will take care of
both problems mentioned earlier. We are planning to engage
more sophisticated heuristic optimization approach, such as
genetic algorithm and ant-colony optimization to ignore local
optimum trap, but consequently they will take more computer
time. The challenge lies, however, also in the increasing
processing speed towards the real-time.

When we want to asses and justify the accuracy of our
automated procedure, we have to stress that there is no
standard method of cell counting in phase contrast images to
which automated methods could be compared. In the absence
of such a standard evaluation, an expert opinion (with all of
its associated subjectivity) represents the standard to which
automated methods are evaluated (Hawkins et al., 2006).
The accuracy of automated counting method refers to how
faithfully the method replicates the count from the expert.
Image processing techniques usually have large amount of
parameters, which have to be precisely tuned to get reliable
results. Therefore direct comparison of global image analysis
software is difficult because results from image analysis
can be heavily skewed by how software is tuned. Besides,
commercial software package are numerous and expensive.
The algorithms in commercial software are also proprietary
and protected so we cannot know how actually they work.
For that reason they cannot be directly compared apart
from the entire software package. The best evaluation of any
new algorithm is, therefore, comparison with so-called gold
standard such as manual counting, visual inspection and
Coulter particle counters (Carpenter et al., 2006).

We thus created our own image database with defined
inter-person error and global minimum error to objectively
assess our counting procedure. The average relative error
between average cell numbers of three manual counting and
our procedure (9.69%) is comparable to variation of manual
counting as inter-person error is up to 10%. The advantage
of automatic counting is the fact that it substantially reduces
human counting time. Experimentally, we estimated average
time for manual counting to be four minutes per image which
gives approximately 10 h for 158 images. With the described

method, manual counting time is reduced to 12 min. The
error of automated counting can be significantly decreased
(to 4%) if one training set per each experiment is chosen
and if the illumination, the focus, the cell density (not too
dense) and cell morphology (not too large) are taking care of
during acquisition of images. In addition, taking into account
global optimum error (7.99%) and procedure’s systematic
error (9.69%) and time needed to achieve global optimum (3
weeks), the performances of our optimization approach as well
of described counting procedure are acceptable. Finally, we
should mention that the procedure was quickly initialized and
successfully used also for fluorescence image counting. This
makes possible automated determination of electroporation
efficiency as can be seen in Fig. 6, where good agreement
with manual counting was obtained. Our image database is
available as a supplemental material that other researchers in
this field could compare their counting tools with.

Conclusions

Automated measurement from microscopy images is an
important tool in biotechnology and biomedicine. The
procedure we describe here for automated cell counting in
phase contrast images is especially useful on large numbers of
images. The presented procedure at its current development
produces reasonably good and acceptable results. Average
procedure’s systematic error is 9.69%, which is comparable
to manual counting inter-person error. With our smart
parameter optimization approach, the need of human
intervention (counting time and ITCN algorithm initialization)
is reduced considerably nevertheless comparable results
are achieved. The procedure can be successfully used also
for fluorescence image counting and thus for automated
determination of electroporation efficiency.
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Appendix

Short ITCN protocol for microscope user:
1. From images acquired during each experiment select the

training set (recommended at least three images); try to
acquire as much quality images as possible, at least avoid
poor focus, dirties, cell remainders and fused cells.

2. Perform manual cell counting on images in training set.
3. Set the minimum and maximum value of ITCN tools

parameters (cell size, minimal cell distance, threshold).
4. Run optimization with appropriate input data (real cell

numbers from training image set and parameters borders).
5. Perform automated cell counting of the rest of the images

using ITCN tools with obtained optimal parameters.
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