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The combined treatment of tumours in which delivery of a chemotherapeutic agent is
followed by high voltage electroporation pulses has been termed electrochemotherapy.
The electrochemotherapy of tumours located relatively close to the heart muscle can lead
to fibrillation of the heart, especially if electroporation pulses are delivered in the
vulnerable period of the heart or in coincidence with heart arrhythmias. We built an
electroporation pulse delivery algorithm that enables safer use of electrochemotherapy.
The algorithm is designed to deliver pulses outside the vulnerable period and to prevent
pulses from being generated in the presence of heart arrhythmias. We evaluated the
algorithm’s performance using records of the Long-Term ST Database, thus simulating
real-world conditions. The results of the evaluation, a sensitivity of 91.751%, a positive
predictivity of 100.000% and a delivery error rate of 8.268% for electroporation pulse
delivery (medians), suggest that the algorithm is accurate and appropriate for application

in electrochemotherapy of tumours regardless of tumour location.

1. Introduction

The combined treatment in which delivery of a chemother-
apeutic drug is followed by application of high voltage
electric pulses locally to the tumour has been termed
electrochemotherapy. The effect of local electropermeabi-
lization of the cell membrane—also termed electroporation
(EP)—enables entry of drug molecules into the cells and
hence greater effectiveness of the tumour treatment.
Electrochemotherapy has been successfully used for treat-
ment of various cutaneous and subcutaneous tumours in
different animal tumour models and in humans [1—-4]. In
these studies, a typical electrochemotherapy protocol
involved eight EP pulses with amplitude approximately
1000 V, duration 100 us, repetition frequency 1 Hz, and
inter-electrode distance 8 mm. Beside this protocol, other
protocols for delivery of EP pulses are either already being
used or are expected to be developed and used in the future.
For example, the protocol involving eight EP pulses at
repetition frequency of 5 kHz has been suggested and is
currently replacing the 1 Hz protocol due to a lesser
discomfort and pain inflicted in patients [5]. Moreover,
pulses of a much longer duration (on the order of
milliseconds) are used for electrogene therapy [6]. Another
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successful protocol for electrogene transfection relies on a
combination of high voltage EP pulses with very long low
voltage electrophoretic pulses (amplitude 50—100 V, dura-
tion 100 ms) in order to optimize gene transfer [7,8].

In spite of the increasing clinical use of electroche-
motherapy this treatment has some minor side effects
including transient lesions in areas in direct contact with
the electrodes [9] and acute localized pain due to contrac-
tion of muscles in vicinity of the electrodes [2]. This induced
contraction would become a problem if it were provoked in
the heart muscle [10]. There is very little chance and
absolutely no practical evidence that any electroporation
protocol mentioned above could interfere with functioning
of the heart when applied to cutaneous and subcutaneous
tumours. However, a need for palliative treatment of
internal tumours has emerged lately and treatment of
internal tumours located close to the heart muscle would
increase the probability of EP pulses interfering with the
heart. The most dangerous possible interference is induc-
tion of ventricular fibrillation [10—12]. This issue is
becoming increasingly important because new applications
using endoscopic or surgical means to access internal
tumours are being developed [13]. An algorithm for
synchronization of EP pulse delivery with ECG to
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maximize the safety for patients is needed before these
applications can be realized.

Fibrillation of the heart can be induced if the amplitude
of the externally applied electric pulses in a part of the heart
is greater than the threshold level for fibrillation and if
electrical stimulation is delivered during late atrial or
ventricular systole—during the so-called vulnerable period
[10,11,14]. For the ventricles, the vulnerable period is near
the peak of the T wave and for the atria, it is probably in
the S wave [15] (figure 1).

Although fibrillation can occur in normal and healthy
hearts, it is more likely in hearts with structural or functional
abnormalities [16]. Abnormalities of the heart rhythm
(arrhythmias) are indicated by significant deviation of RR
interval from its normal value [17]. During some arrhythmias
the heart becomes significantly more susceptible to external
stimuli due to a decreased threshold level for fibrillation.
Therefore EP pulses coinciding with some arrhythmias could
elicit fibrillation. This potential danger is most significant
after the so-called premature response, the extrasystole [10].

In order to enable safer use of EP pulses during
electrochemotherapy we developed an algorithm for
synchronization of EP pulses with ECG. The algorithm
allows EP pulses to be delivered only outside the vulnerable
period of normal heartbeats (figure 1) and prevents the EP
pulses from being generated in the presence of some
common heart arrhythmias.

2. Methods
2.1. The algorithm

For application in electrochemotherapy the algorithm for
QRS detection has to be simple enough for real-time
realization, must enable early detection of QRS
complex (i.e. detection based mainly on analysis of QR
junction) and has to be able to distinguish well between

VULNERABLE PERIOD

THE SAFEST PERIOD FORATRIA VULNERABLE PERIOD
FOR PULSE DELIVERY\ FOR VENTRICLES

Figure 1. The vulnerable period for ventricles and atria.

normal and abnormal heartbeats. Based on the published
algorithms [18] we developed a new algorithm that
adequately fulfils these requirements. It is based on analysis
of a single ECG lead at sampling frequency of 250 Hz and
operates on individual signal samples in time-domain. It
searches for the initial portion of the QRS complex, i.e. the
ascendant QR junction slope and R wave peak, as early as
possible prior to the vulnerable period, thus leaving enough
time within QRS complex for electroporation pulse
delivery.

During the electrochemotherapy protocol the patient is
resting comfortably and thus the conditions for noise-free
ECG signal prior to electroporation are fulfilled. Further-
more, the whole procedure of electrochemotherapy
including the preparation of the patient is short (up to 10
minutes), while the electroporation procedure is even
shorter (measured in seconds). The electrochemotherapy
is performed only on patients without severe heart disease,
so ECG signals without or with only minimal pathological
changes can be expected. According to the electroche-
motherapy protocol, there is currently no need for an
algorithm for processing ECG signals containing distinctive
noise and rapid changes of QRS complex morphology due
to shifts of the mean electrical axis as a consequence of
postural changes. To enable early detection of QRS
complex an ECG lead with distinctive ascendant QR
junction, high R wave amplitude and high dynamics within
QRS complex in comparison to other parts of ECG signal
is required. Typical standard ECG leads fulfilling these
requirements include the chest lead V4 and standard limb
leads I and II. We use the term ‘V,-like’ lead for all leads
suitable for our application. A ‘V4-like’ lead can easily be
obtained in practice because it can be created by moving
the ECG electrode to an arbitrary position, should none of
the standard leads be appropriate.

The algorithm for synchronization of EP pulse delivery
with ECG consists of two major components (the detection
phase and the decision-making phase), which are preceded
by the learning phase (figure 2).

2.1.1. The learning phase. Adequate functioning of the
algorithm is based on three main architecture parameters
estimated during the learning phase from the ECG signal:
the average value of the combination of the first and second
derivative of the ECG signal (Y),); the running average R
wave amplitude (R); and the running average RR interval
(RR). Inter- and intra-record variability of these three
parameters is very common. Therefore the algorithm
determines their initial values during the learning phase.
During this phase, an essentially noise-free ECG signal
without heart arrhythmias or other heart abnormalities is
required for fast adaptation to the given signal character-
istics.

During part I of the learning phase (a 20-s interval) the
value of the parameter Y|, is determined. This interval is
divided into 20 equal subintervals. Within each subinterval,
the maximum value of the slope parameter Y, (the
combination of absolute values of first and second derivative
of ECG signal) is determined using equations from [18]:
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Figure 2. The structure of the algorithm.

Yi(n) = abs[X(n + 1) — X(n — 1], (1)
Y2(n) = abs[X(n+2) -2 -X(n)+ X(n—2)], (2
le(n):13Y1(n)+llY2(n), (3)

where X(n) is the sequence of the ECG signal’s samples.
Normally the maximum values of Yi, should be found on
QRS complexes. The five largest and five smallest Y,
values thus found are omitted and the average value (¥}») is
calculated from the remaining 10 values.

During part II of the learning phase the algorithm detects
consecutive QRS complexes by using the threshold value
Y,, (based on Y;») and estimates the other two parameters
(R and RR) with procedure described in next section. The
threshold value Y, is taken as one seventh of Y;,; this ratio
was set empirically. The initial average R wave amplitude
(R) and RR interval (RR) are calculated based on the
latest 16 R wave amplitudes and the latest 8§ RR intervals
respectively. These averages, which are constantly being
updated, are used in ECG analysis later on for calculation
of several threshold parameters. These threshold para-
meters and their roles are described in the subsection on
decision-making phase.

2.1.2. The detection phase. The algorithm for EP pulse
delivery is based on accurate QRS complex detection,
which is often difficult to achieve, since various sources of
noise contamination and morphological differences in the
ECG waveforms are frequently encountered [19]. The slope
of the QR or RS interval of the QRS complex is a popular
signal feature used to locate the QRS complex in many
QRS detectors [18,20—22]. A real-time derivative algorithm
that provides slope information is straightforward to
implement but a slope alone is insufficient for accurate
QRS complex detection. To achieve a reliable QRS detector
performance, additional parameters often have to be
extracted from the signal such as the R wave amplitude,

the width of the QRS complex, the RR interval, or the QRS
energy [22].

Our QRS detector is an adaptation of the detector
described in [18]. In order to improve the performance of the
algorithm and to assure clear distinction between normal
and abnormal individual heartbeats, we included additional
signal features into consideration: the QR interval, the R
wave amplitude and the RR interval. For implementation of
such a detector the peaks of Q and R waves and the
isoelectric level must be extracted from the ECG signal.

First, in order to locate the ascendant QR slope and R
peak of the QRS complex, the algorithm searches for seven
successive samples (set empirically and valid for a sampling
frequency of 250 Hz) for which Y}, is greater than or equal
to Y, (figure 3). The sign of the first derivative must be
positive in the first five samples of this set of seven, negative
or equal to zero in the sixth sample and negative in the
seventh sample. If all these conditions are fulfilled, it is very
likely the algorithm has located the R wave. All together 11
successive signal samples (marked with a ‘star’ symbol in
figure 3) are used for the procedure of finding Y, in seven
successive samples.

Second, the peak of R wave is sought for. The peak of R
wave corresponds to the sample with maximum amplitude
among the 11 samples used so far (figure 3). Third, the Q peak
is detected. The algorithm calculates the first derivative
backwards from the R peak for 80 ms until it finds four
successive signal samples among which the first (counted
from the left to the right) has either a negative or zero first
derivative and the other three have a positive first derivative
(figure 3). The Q peak thus corresponds to either the first or
the second of these four samples. After this, the QR interval
can be defined. Fourth, the correctness of the R wave location
is further assured by comparing the QR interval to typical
normal QR interval, which is approximately 0.03 s long [10].
If the current QR interval is not within the 0.02—-0.10 srange
(set empirically), the analysis of the current heartbeat is
discontinued and the next normal heartbeat is sought for.
The length of QR interval also helps in distinguishing the
QRS complex from high frequency noise. Fifth, the flattest
part of the PQ segment, termed the isoelectric level, is
determined. The algorithm searches for the isoelectric level
backwards from the Q peak but only up to 108 ms backwards
from the R peak [23]. For each series of five successive
samples within this interval the algorithm calculates the
average amplitude value and the total deviation value. The
average value of the samples that have the minimal total
deviation from the average value is taken as the isoelectric
level. Finally, the R wave amplitude can be calculated as the
difference between the R peak value and the isoelectric level.

2.1.3. The decision-making phase. During the decision-
making phase, the algorithm decides about delivery of the
EP pulses with respect to deviations of R wave amplitude
and heart rate (indicated by the RR interval) of individual
heartbeats from average values of R and RR.

If the value of amplitude of the current QRS complex is
within + 30% of R and if the value of the current RR
interval is within —7% to + 15% of RR, the current QRS
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Figure 3. The conditions for detection of R and Q wave.
For R wave detection the value of Y|, for seven successive
samples has to be larger than the threshold value Y, and at
the same time the value of first derivative (Y) must be
positive for the first five, negative or zero for the sixth, and
negative for the seventh sample. Eleven successive samples
(marked with a ‘star’ symbol) are used for this procedure.
For Q wave detection the first value of Y among four
successive Y values must be negative or zero and the
remaining three Y values positive.

complex is considered non-pathological, i.e. normal.
Therefore, the algorithm would deliver the EP pulse. These
threshold values for EP pulse delivery have to follow slow
morphology changes of the signal, which occur normally in
any ECG signal. Therefore R and RR values are
calculated as the moving average of the 16 and eight most
recent values, respectively, that also fall within the
following threshold values for updating. If the value of
amplitude of the current QRS complex is within + 40% of
R and if the value of the current RR interval is within
+ 25% ofRR, the current averages R and RR are
updated. The expression of all threshold values in terms
of percentages of R and RR that we report here are based
on empirical evaluation of the algorithm’s performance.

We incorporate only eight RR intervals in the running
average RR (in comparison with 16 R wave amplitudes
used in the running average R) because the RR interval is
expected to be less steady than the R wave amplitude in
normal heartbeats. Therefore it is possible to account for
relatively rapid but normal changes in the rhythm of the
heart. This feature is of great importance for proper
distinguishing between normal heartbeat intervals and
heart arrhythmias. The threshold values for updating are
set wider apart than the threshold values for the EP pulse
delivery. The reason for this is that we must be extremely
cautious about the EP pulse delivery and thus be convinced
that we are really dealing with a non-pathological heart-
beat. While inclusion of an abnormal heartbeat in
calculation of running averages R and RR is not critical
(e.g. one abnormal value among 15 or seven normal ones,
respectively), delivery of an EP pulse in such conditions
could be dangerous.

The possibility of the onset of various arrhythmias is of
predominant concern when deciding whether to deliver an
EP pulse or not. Therefore, even when our QRS detector
finds a QRS complex, the algorithm would not allow for
the EP pulse delivery if the current RR interval significantly
deviates from RR. The allowed deviation of current RR
interval is —7% to + 15% from RR. The lower threshold
was chosen because extrasystoles can occur as little as 7—
10% prematurely [10] and we absolutely want to avoid EP
pulse delivery in the case of extrasystoles. Initially the
upper threshold was set to + 7% but this resulted in an
unacceptable decrease in the number of delivered pulses.
Since the heartbeats delayed for more than 7% are not
problematic for our application, we found the upper
threshold of + 15% to be appropriate.

2.2. Evaluation of the algorithm

2.2.1. ECG database. We evaluated the performance of our
algorithm using selected records of the Long-Term ST
Database (LTST DB) [24]. The LTST DB contains
approximately 24-hour long ambulatory Holter records
reflecting the real-world clinical environment with all
heartbeats classified by experts. Therefore all usual daily
activities of the patient are reflected in ECG signals, which
also contain abnormal heartbeats of various pathological
backgrounds.

Since many records are not ‘Vy-like’ and since we do not
expect extreme conditions with respect to abnormal heart-
beats, nor severe levels of noise in the input signals during
electrochemotherapy protocol, we selected only 42 records
from the pool of 86 records of the LTST DB. First, we
excluded the records containing QRS complex conduction
changes (s20531, s20541, s20551, s30721) and unreadable
intervals (520291, s20561, s20571, s20601, s20621, s30761,
s30801). The electroporation pulse delivery would not be
started or would be terminated under such conditions in
clinical practice. Then we excluded non-‘V4like® ECG
signals (s20191, s20221, s20251, s20301, s20311, s20341,
s20391, s20431, s20461, s20481, s20581, s20591, s20611,
s20641, s20651, s30661, s30681, s30771, s30781). During
the electrochemotherapy, a requirement for accurate
electroporation pulse delivery is a suitable QRS complex
morphology. Then, with respect to graphic trends of
diagnostic and morphology parameters of the database
[24], we excluded the records containing significant axis
shifts and consequently rapid significant changes in the
QRS complex morphology (s20051, s20201, s20271, s20272,
s20273, s20274, s20331, s20501, s30731, s30732), and
records containing considerable noise intervals (s20041,
s20511, s20521, s20161). The remaining records and ECG
leads used to evaluate the performance of our algorithm are
evident from table 1.

In the process of developing the algorithm we used two
two-hour-long sections from the beginning of two ECG
signals from the LTST DB. The first section from signal
s20011 features mostly normal heartbeats and only an
insignificant number of pathological heartbeats (see table
1). The second section from signal s20101 includes a lot of
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heart arrhythmias (see table 1) and other heart rate-related
changes. Since the sections used for the development of the
algorithm were only two-hour parts of the recorded signals,
we included whole signals in the evaluation of the
algorithm as well.

2.2.2. Performance metrics. For evaluation of QRS complex
detection we calculated the following scores for each
record: Ny, TP, FN and FP (for definitions see table 1).
Based on these scores obtained with a beat-by-beat
comparison of the results of our algorithm with true
human-expert annotations of the heartbeats defined in the
LTST DB, we calculated standard performance measures
of the algorithm: sensitivity (Se), positive predictivity
(+ P) and detection error rate (DER) for QRS detection
(equations (4)—(6), respectively). The performance mea-
sures for an ideal QRS detector would be Se = 100%,
+ P =100% and DER = 0%.

TP

Se(%) = - 100. (4)
TP

DER(%) =" 10, (6)
d

For evaluation of EP pulse delivery we calculated the
following scores for each record: Ny, TP, FN, and FP,
(for definitions see table 1). Based on these scores and in
absence of any standard performance metrics for EP pulse
delivery, we calculated the performance measures analo-
gous to QRS detection metrics: sensitivity (Se,), positive
predictivity ( + Pp) and delivery error rate (DER,,) for EP
pulses. The performance measures for an ideal algorithm
for EP pulse delivery would be Se, = 100%, + P, = 100%
and DER, = 0%.

2.3. Programming

The algorithm itself and all routines for evaluation of
performance were written in ANSI C programming language
and implemented on a PC platform. In the future this will
enable an easy translation of the algorithm into assembly
language and its application in the existing microprocessor-
driven instrument for clinical use of electroporation.

3. Results

The performance of the algorithm summarized in table 1
shows the ability of the algorithm to detect QRS and to
deliver EP pulses correctly. Since data pertaining to
individual records were not normally distributed, we
provide a statistical summary of the results using both the
mean and standard deviation and the median and quartile
values. However, when we say ‘on average’ in the text we
are always referring to median values, which are more
representative of the middle of the sample and population
than the mean values.

On average, the algorithm correctly detected 99.410% of
all QRS complexes. The total number of erroneously
detected QRS complexes was only 31, which is a very small
number compared to the total number of QRS complexes
(over 4 x 10°). The detection error rate for QRS detection
(DER) was 0.591% on average. Average positive predictiv-
ity for QRS detection ( + P) was 100.000%.

On average, the algorithm correctly delivered EP pulses
in 91.751% of normal QRS complexes. The value of
delivery error rate for EP pulses (DER,,) was 8.268% and
the value of positive predictivity for EP pulses ( + Pp)
100.000% on average.

4. Discussion

The algorithm for synchronization of EP with ECG reliably
detected QRS complexes in all 42 ‘V-like’ signals from the
LTST DB (see table 1). The algorithm allowed for EP pulse
delivery for each correctly identified heartbeat if no
abnormalities were detected. The performance of our
algorithm (see §2.2.2) approached the ideal level at a
degree similar to that of some other detectors with
comparably simple algorithms [19,25]. The records with
poorest results of our algorithm (large DER) contain very
unstable R wave amplitudes, very unstable RR intervals
and a transient appearance of high frequency noise with
amplitudes similar to the R wave. At this preliminary stage
of development our algorithm is not well suited to deal with
signals that are largely nonstationary or have very low
signal-to-noise ratio. However, due to its conservative
nature the algorithm deals well with mildly nonstationary
parts of the signal or transient onsets of noise contamina-
tion with low amplitudes, which were occasionally
encountered in most of the signals used in evaluation of
the algorithm. Moreover, many of the false negative
detections (FN) were due to very strict requirements for
no false positive detections (FP).

The algorithm could deliver the EP pulse either before
vulnerable period or after it. Since the vulnerable period
can sometimes be prolonged (e.g. after premature response)
[10], it is obviously more reasonable to deliver the EP pulse
before rather than after the onset of vulnerable period.
Therefore, the most appropriate moment for EP pulse
delivery is immediately after the QRS detection but still
within the QRS complex. The delivery of EP pulses during
vulnerable period of the atria does not present a serious
threat for the patient’s life. The haemodynamic effects of
atrial flutter and fibrillation, which could be potentially
caused by EP pulse delivery during vulnerable period for
atria, are only slight and the patients are frequently
unaware of these arrhythmias [10]. Bearing these facts in
mind we can conclude that the time reserve for safe EP
pulse delivery after the QRS detection and before the onset
of vulnerable period for ventricles is approximately 60 ms
and is long enough for safe EP pulse delivery even if we
want to avoid the vulnerable period of atria as well.

Our main concern is to avoid, at any cost, delivery of EP
pulses at the moments of potential danger for the patient.
The algorithm fulfilled this requirement excellently as
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indicated by practically ideal + P, values (table 1). We
made our algorithm deliberately more conservative than
would be necessary if the purpose was solely to detect QRS
complexes. It is completely acceptable to miss some normal
heartbeats (increase in FN and FN,) as long as no EP pulse
is delivered when it absolutely should not be (FP, = 0!).
Upon careful examination, we found 16 ECG signals in
which the FP, was not zero. The erroneously delivered
pulses (there were 118 such pulses in comparison to
approximately 3.7 x 10° correctly delivered EP pulses)
coincided with appearance of some extrasystoles of either
supraventricular or ventricular origin. The reason for FP,
is mainly in morphology (e.g. the heartbeats without
distinct P wave) and the time of appearance of particular
arrhythmias that are sometimes indistinguishable from the
normal heartbeats.

In the ECG records from LTST DB all activities of a
tested person during the day are reflected. Moreover, some
of these ECG records contain numerous arrhythmias (see
ECG signals marked with a ‘hash’ symbol in table 1). By
including these records in our evaluation we actually tested
the algorithm in conditions more severe than expected
during clinical application of electroporation. The algo-
rithm still worked well if we consider the number of FP,
that appear on arrhythmias in comparison to total number
of arrhythmias.

Figure 4 is an example of the correct functioning of our
algorithm on ECG signal containing ventricular extrasys-
toles. EP pulses are not delivered in the case of extrasystoles
because they do not satisfy the criteria for a valid QRS
complex. Even if they did, the RR interval for extrasystoles
would not satisfy the condition for normal heart rate.
Moreover, EP pulses are correctly not delivered at normal
QRS complexes following the extrasystoles, again due to
their RR intervals.

E

Figure 4. Delivery of EP pulses on ECG signal containing
heart arrhythmias (ventricular extrasystoles). The arrows
indicate the moments when EP pulses would be delivered.
Absence of pulses at three extrasystoles (E) and at three
normal QRS complexes following the three extrasystoles
demonstrates the ability of the algorithm to prevent the EP
pulses from being delivered in case of abnormalities in ECG
shape or heart rate. The example belongs to the interval
starting at 1:24:17 from the record s20101 of the LTST DB.

The presented algorithm is designed for robust operation
in case of ventricular extrasystoles. However, the condition
of no ventricular extrasystoles during the learning phase is
desirable but not necessary. We tested how the algorithm
would work if this condition was not fulfilled (data not
shown). We selected four one-minute-long sections from the
signal s30752 of the LTST DB which all included ventricular
ectopy (phenomenon of seven or more singular ventricular
extrasystoles per minute or any run of more than two
ventricular extrasystoles). Careful examination of the
performance of the developed algorithm on these four
sections showed that presence of ventricular extrasystoles
either within part I or part IT of the learning phase does not
affect the performance of the algorithm during the detection
and decision-making phase, as long as their number is not
very large (for example 10 or more extrasystoles in
combination with 10 or fewer normal heartbeats).

5. Conclusion

The algorithm for online synchronization of electroporation
(EP) pulse delivery with ECG presents a significant
improvement over the existing practice of EP delivery with
respect to the safety of the patient. This issue is becoming
increasingly important because new applications of electro-
chemotherapy using endoscopic or surgical means to access
internal tumours are being developed. Moreover, EP pulses
of much longer durations used in some new applications of
electroporation (such as electrogene therapy) would more
likely coincide with the vulnerable period of the heart muscle
if the pulse delivery were not synchronized with the heart
activity. Therefore we developed an algorithm that allows
EP pulses to be delivered only outside the vulnerable period
of the heartbeat and prevents the pulses from being delivered
in case of the appearance of some heart arrhythmias such as
ventricular extrasystoles. The developed algorithm proved
to be an effective tool for QRS detection and EP pulse
delivery even in cases of numerous heart arrhythmias, which
was confirmed by evaluation of the algorithm on ECG
signals of the LTST DB database. The performance of the
algorithm is significantly degraded only in presence of
disturbances due to body movements that are similar to
QRS complex, and in case of extrasystoles, which appear
indistinguishable from normal heartbeats.

Implementation of the algorithm in instruments for
clinical electroporation would essentially expand the applic-
ability of electrochemotherapy due to a higher level of safety
for the patient, as well as the suitability of this method for
future applications in anatomical locations presently not yet
accessible by existing electroporation devices and electrodes.
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