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Evaluation of some integrals of sums involving
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Integrals of sums involving the Möbius function appear in a variety of problems. In this paper, a
divergent integral related to several important properties of the Riemann zeta function is evaluated
computationally. The order of magnitude of this integral appears to be compatible with the Riemann
hypothesis, and furthermore the value of the multiplicative constant involved seems to be the smallest
possible. In addition, eleven convergent integrals representing Tauberian constants that characterize
the relations between certain summation methods are evaluated computationally to five or more digits
of precision.
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1. Introduction

The Möbius function μ(n) is defined as μ(1) = 1, μ(n) = (−1)k if n is the product of k

different primes, and μ(n) = 0 if n contains a prime factor to a power higher than the first.
It was introduced by August Möbius in 1832 for the purpose of inverting sums of arithmetic
functions [1], and various ‘Möbius inversion formulae’ found important applications, among
others that of Bernhard Riemann in 1859 in his derivation of an exact formula for the prime-
counting function [2]. Sums involving μ(n) such as

Q(x) :=
∑

1≤n≤x

|μ(n)|, M(x) :=
∑

1≤n≤x

μ(n), and g(x) :=
∑

1≤n≤x

μ(n)

n
,

as well as certain integrals involving these functions, are closely related to properties of the
square-free numbers, the primes, and the Riemann zeta function ζ(s). It is easily seen that
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Q(x) counts the square-free numbers, and it is known that

Q(x) = 6

π2
x + EQ(x)

where |EQ(x)| < 0.1333
√

x for x > 1164 [3], and |EQ(x)| < 0.02767
√

x for x >

438 653 [4]. The properties of M(x), which keeps track of the balance between the square-
free numbers with an odd and those with an even number of prime factors, are understood
much less precisely, as it is only known that M(x) = �(x1/2) [5, Theorem 14.26B] and
M(x) = O(x/ log236/75 x) [4]. The Riemann hypothesis (i.e. the conjecture that all the non-
real zeros of ζ(s) lie on the line �(s) = 1/2) corresponds to a much stronger O-bound, namely
M(x) = O(x1/2+ε) [5, Theorem 14.25C]. A related conjecture known as ‘the weak Mertens
hypothesis’ ∫ X

1

M2(x)

x2
dx = O(log X) (1)

would imply that the Riemann hypothesis is true, all the zeros of ζ(s) are simple, and ζ ′(ρ)−1 =
o(ρ) for every non-real zero ρ of ζ(s). Recently, Ng showed [6] that (1) itself would follow
from the Riemann hypothesis and

∑
0<γ<T |ζ ′(ρ)|−2 = O(T ), where γ are the imaginary

parts of the zeros of ζ(s) on the line �(s) = 1/2. Finally, from (1) it would also follow that∑ |ρ ζ ′(ρ)|−2 converges; more precisely, if (1) holds with an asymptotic order constant A,
then the sum of this series is at most A [5, Theorem 14.29B].

The computational evaluation of the integral in (1) is presented in section 3, and seems to
suggest that log X is indeed its order of magnitude, and that the sum of the series

∑ |ρ ζ ′(ρ)|−2

could even be its order constant.
The functions Q(x), M(x), and g(x) also appear in certain convergent integrals representing

Tauberian constants of the relations between certain summation methods. These integrals, first
derived by Jukes [7, 8], will be denoted here as follows

I1 :=
∫ ∞

1

∣∣∣∣Q(x)

x2
− 6

π2x

∣∣∣∣ dx, I2 :=
∫ ∞

1

∣∣∣∣Q(x)

x2
− 6[x]

π2x2

∣∣∣∣ dx, I3 :=
∫ ∞

1

2|M(x)|
x3

dx,

I4 :=
∫ ∞

1

2|M(x) − 1|
x3

dx, I5 :=
∫ ∞

1

|M(x)|
x2

dx, I6 :=
∫ ∞

1

|g(x)|
x

dx,

I7 :=
∫ ∞

1

|1 − xg(x)|
x2

dx, I8 :=
∫ ∞

1

|M(x) − xg(x)|
x2

dx,

I9 :=
∫ ∞

1

|M(x) + 1 − xg(x)|
x2

dx, I10 :=
∫ ∞

1

|M(
√

x) − xg(x)|
x2

dx,

I11 :=
∫ ∞

1

|M(x) + M(
√

x) − xg(x)|
x2

dx.

In a computational estimation, the integration is necessarily truncated from
∫ ∞

1 to
∫ N

1 . Gretton
and Jukes computed such truncations of the above integrals for N up to 7.5 × 105 [9, 10], but
they only determined explicit error bounds for their estimates of I1 and I2. In section 4 their
computations are extended significantly (to N ranging from 2.2 × 107 to 1013, depending
on the rate of convergence of the integral under consideration) and explicit error bounds
are provided for all eleven numerical estimates. For five of these estimates the error bounds
are unconditional, and the remaining six are based on a both theoretically and numerically
plausible conjecture concerning the orders of magnitude of M(x) and g(x).
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2. Methods of computation and processing

The computations were performed with a program written and compiled in DelphiTM 6.0
(Borland, Scotts Valley, CA, USA), and run on a PC with a 2.4 GHz Intel� Pentium� 4
processor and 512 MB of RAM. The values of μ(n) were computed using the sieving algorithm
described in [11, 12]. The values of Q(n), M(n), and g(n) were computed according to
their definitions, and the integrals involving Q(x), M(x), and g(x) were evaluated in steps
covering intervals between consecutive integers, where the integrals can be expressed by
elementary functions. As an illustration, for I11, the increment in the interval n ≤ x < n + 1
was computed as∫ n+1

n

|M(x) + M(
√

x) − xg(x)|
x2

dx =
∫ n+1

n

∣∣∣∣M(n) + M(
√

n)

x2
− g(n)

x

∣∣∣∣ dx

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣

(M(n) + M(
√

n))(2n + 1)

n(n + 1)

− g(n)

(
2 + log

(M(n) + M(
√

n))2

n(n + 1) g2(n)

)
∣∣∣∣∣∣∣∣∣

(
n <

M(n) + M(
√

n)

g(n)
< n + 1

)

∣∣∣∣M(n) + M(
√

n)

n(n + 1)
− g(n) log

n + 1

n

∣∣∣∣ (otherwise)

and the other integrals were treated analogously.
The values of n were stored as 64-bit integers (type Int64), the values of μ, M , and Q as

32-bit integers (type Integer), and all non-integer variables as 80-bit reals (type Extended,
19 significant digits). To minimize the loss of significant digits at large n, where

∫ n

1 is much

larger than
∫ n+1
n

, for each evaluated integral one variable was used for the basic value
∫ n1

1 , and
another for the increment

∫ n2

n1
. When the increment exceeded the basic value, their sum became

the basic value and the increment was set to zero, and so repeatedly through the computation.
The sum of the two integrals was also determined when storing the computed values.

The values of the integral (1) were stored at all n ≤ 104 and at all 104 < n < 1013 satisfying
n = �10k/2400� with k ∈ N. This provided a sufficiently dense set of sampled values for further
analysis and plotting of the integral on a logarithmic abscissa.

The truncations of I1, I2, . . . , I11 were stored at all n ≤ 104 and at larger n = m · 10k with
k, m ∈ N and 1 ≤ m ≤ 99. The computation of each integral was halted when the desired
precision of the estimate was reached; this amounted to seven digits after the decimal point
for I1 and I2, to 10 such digits for I3 and I4 (all for unconditional error bounds), and to five
digits after the decimal point for the other seven integrals (for conditional error bounds, see
section 4 for details).

3. The weak Mertens conjecture

Figure 1 shows the plot of the integral (1) on a logarithmic abscissa spanning the range
1 ≤ X ≤ 1013, which seems to suggest that log X could well be the actual order of magnitude
of this integral. For 105 ≤ X ≤ 1013, the best correlation between the sampled data and a
function α + β log X is obtained with α = 1.262 . . ., β = 0.02903 . . . In figure 1 this function
would obscure the curve of the integral (1), so its translate 1.2 + 0.02903 log X is shown
instead (dashed).
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Figure 1. The integral
∫ X

1 (M2(x)/x2)dx (solid) and the function 1.2 + 0.02903 log X (dashed).

Numerical data suggest that the series
∑ |ρ ζ ′(ρ)|−2 converges to the value 0.02903 . . .

(see table 5 in [13]). As mentioned in section 1, the sum of this series is also the smallest
possible value of

lim
X→∞

∫ X

1 (M2(x)/x2)dx

log X

and from the data shown in figure 1 it seems that 0.02903 . . . could be the actual value of this
limit.

4. The Tauberian constants

Explicit upper bounds of the errors caused by truncating the integrals I1, I2, . . . , I11 from
∫ ∞

1

to
∫ N

1 were obtained using a number of inequalities. In 1995 El Marraki [4] proved that:∣∣∣∣Q(x) − 6x

π2

∣∣∣∣ < 0.02767
√

x (x > 438 653) (2)

|M(x)| <
x

4345
(x > 2 160 535) (3)

and from Theorem 3 of the same paper it also follows that

|M(x)| <
0.58782x

log11/9 x
(x > 685). (4)

For brevity, we now denote Ik = ∫ N

1 + Ek(N). Using (2) we get

E1(N) =
∫ ∞

N

∣∣∣∣Q(x)

x2
− 6

π2x

∣∣∣∣ dx <

∫ ∞

N

0.02767

x3/2
dx = 0.05534√

N
(N > 438 653)

and a similar result for E2(N). In the same manner (3) yields

E3(N) = 2
∫ ∞

N

|M(x)|
x3

dx <

∫ ∞

N

dx

2172.5x2
= 1

2172.5N
(N > 2 160 535)
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and a similar result for E4(N). Even for small N , these error bounds are considerably smaller
than the truncated integrals they characterize, and they also decrease rapidly as N increases.

In the other integrals involving M(x), inequality (3) is too weak for a finite error bound.
Inequality (4), being asymptotically slightly stronger, is just sufficient for this in the case of
I5, yielding

E5(N) =
∫ ∞

N

|M(x)|
x2

dx <

∫ ∞

N

0.58782

x log11/9 x
dx = 2.64519

log2/9 N
(x > 685).

The obtained upper bound of E5(N) decreases so slowly that for any computationally feasible
value of N it is larger than the truncated integral, but (4) nonetheless allows us to demonstrate
that I5 is convergent, and even to obtain an upper bound of its value.

The remaining six integrals involve the function g(x), for which no explicit inequality seems
to have been published in the literature. Writing

g(x) =
[x]∑
k=1

μ(k)

k
=

∞∑
k=1

μ(k)

k
−

∞∑
k=[x]+1

μ(k)

k
= 0 −

∞∑
k=[x]+1

μ(k)

k

=
∞∑

k=[x]+1

M(k − 1) − M(k)

k
= M([x])

[x] + 1
+

∞∑
k=[x]+1

M(k)

(
1

k + 1
− 1

k

)

= M(x)

[x] + 1
−

∫ ∞

[x]+1

M(u)

u2
du

we see that

|g(x)| ≤ |M(x)|
x

+
∣∣∣∣
∫ ∞

[x]+1

M(u)

u2
du

∣∣∣∣ <
|M(x)|

x
+

∫ ∞

[x]+1

|M(u)|
u2

du

≤ |M(x)|
x

+
∫ ∞

x

|M(u)|
u2

du (5)

so that by (4) we get

|g(x)| <
0.58782

log11/9 x
+ 2.64519

log2/9 x
(x > 685)

but due to the second term on the right-hand side this inequality is slightly too weak to provide
a finite upper bound on integrals of the type

∫ ∞
N

(|g(x)|/x)dx.
It was mentioned in section 1 that the Riemann hypothesis corresponds to M(x) =

O(x1/2+ε). Numerical data suggest that this is considerably closer to the actual situation
than the much weaker unconditional inequalities (3) and (4). From the plots of the functions
M(x)/

√
x (figure 2, solid), g(x)

√
x (figure 3, solid), and ±(1/4) log log x (figures 2 and 3,

dashed) in the range 1 ≤ x ≤ 1014 it appears that

|M(x)| <

√
x log log x

4
(x > 295) (6)

and

|g(x)| <
log log x

4
√

x
(x > 222) (7)



474 T. Kotnik

Figure 2. The functions M(x)/
√

x (solid) and ±0.25 log log x (dashed).

where the O-form of (7) also follows from (5) and (6). The inequalities (6) and (7) are
asymptotically more conservative than typical conjectural estimates that have been pro-
posed during the last decades, which are of the form O(x1/2(log log x)1/2) [14, 15] or even
O(x1/2(log log log x)K) for some K > 0 [6, 13].

Under the conditions (6) and (7), upper bounds of the truncation errors are easily obtained
for I5, I6, . . . , I11. Denoting these conditional error bounds by Ẽk , we get

Ẽ5(N) =
∫ ∞

N

|M(x)|
x2

dx <
1

4

∫ ∞

N

log log x

x3/2
dx = log log N

2
√

N
− li(1/

√
N)

2
(N > 295)

which decreases much more rapidly than the unconditional error bound E5(N), and similar
expressions are obtained for the other integrals.

Table 1 summarizes the estimated values of the eleven Tauberian constants and their corres-
ponding error bounds (unconditional where available, and conditional otherwise). The digits
in larger typeface are established with certainty – unconditionally for the first four integrals
(underlined) and conditionally for the rest – while the digits in smaller typeface that follow are
provided for possible extension of the computations. The estimates obtained by Gretton and

Figure 3. The functions g(x)
√

x (solid) and ±0.25 log log x (dashed).
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Table 1.

Estimate of Ik Upper error bound

k [9, 10] This paper N Ek(N) Ẽk(N)

1 0.46. . . 0.461604109 . . . 7.3e11 6.48e–8
2 0.69. . . 0.694501707 . . . 7.3e11 6.48e–8
3 0.892. . . 0.892150690542 . . . 2.2e7 2.10e–11 9.26e–12
4 0.392. . . 0.392103269680 . . . 4.8e7 9.60e–12 2.92e–12
5 1.01. . . 1.01426653 . . . 7.3e11 1.26839 1.98e–6
6 1.09. . . 1.09667052 . . . 7.3e11 1.98e–6
7 0.483. . . 0.48343940 . . . 9.0e12 5.77e–7
8 1.00. . . 1.00004795 . . . 3.1e12 1.95e–6
9 0.613. . . 0.61379982 . . . 9.0e12 1.16e–6

10 0.486. . . 0.49619468 . . . 7.3e11 1.98e–6
11 0.994. . . 1.00582237 . . . 7.3e11 3.96e–6

Jukes in [9, 10] are also tabulated for comparison (the computation of I10 and I11 performed
in [9] apparently contained a flaw, which is confirmed quickly even by evaluating the two
truncated integrals verbatim, e.g. in Mathematica®).
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