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A Time-Dependent Numerical Model of
Transmembrane Voltage Inducement and

Electroporation of Irregularly Shaped Cells
Gorazd Pucihar, Damijan Miklavčič, and Tadej Kotnik*

Abstract—We describe a finite-element model of a realistic ir-
regularly shaped biological cell in an external electric field that
allows the calculation of time-dependent changes of the induced
transmembrane voltage (∆Ψ) and simulation of cell membrane
electroporation. The model was first tested by comparing its re-
sults to the time-dependent analytical solution for ∆Ψ on a non-
porated spherical cell, and a good agreement was obtained. To
simulate electroporation, the model was extended by introducing
a variable membrane conductivity. In the regions exposed to a suf-
ficiently high ∆Ψ, the membrane conductivity rapidly increased
with time, leading to a modified spatial distribution of ∆Ψ. We
show that steady-state models are insufficient for accurate descrip-
tion of ∆Ψ, as well as determination of electroporated regions of
the membrane, and time-dependent models should be used instead.
Our modeling approach also allows direct comparison of calcula-
tions and experiments. As an example, we show that calculated
regions of electroporation correspond to the regions of molecular
transport observed experimentally on the same cell from which the
model was constructed. Both the time-dependent model of ∆Ψ and
the model of electroporation can be exploited further to study the
behavior of more complicated cell systems, including those with
cell-to-cell interactions.

Index Terms—Electropermeabilization, finite elements, propid-
ium iodide, transmembrane potential.

I. INTRODUCTION

THE DISTRIBUTION of the voltage on the membranes
of excitable or nonexcitable biological cells can be of in-

terest in various theoretical and experimental settings, such as
the activation of voltage-gated membrane channels, cardiac cell
stimulation, or cell membrane electroporation [1]–[7]. In these
settings, the cells are usually exposed to an external electric
field, which induces a voltage across the cell membrane, termed
the induced transmembrane voltage (∆Ψ) [8], [9]. Unlike the
native (resting) membrane voltage, which is constantly present
on the cell membrane, ∆Ψ varies with the position on the cell
membrane, and it is often important to accurately determine its
spatial distribution. In electroporation, a detectable increase in
membrane permeability and electric conductivity occurs in the
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membrane regions exposed to a sufficiently high transmembrane
voltage [10], [11]. Although formation and stabilization of each
single pore is a stochastic process, on the larger scale (cells, tis-
sues) this effect only becomes detectable at ∆Ψ exceeding a cer-
tain value, ∆Ψ > ∆ΨC (sometimes termed “threshold” or “crit-
ical” voltage) allowing to treat cell membrane electroporation as
a deterministic process. Thus, for efficient electroporation and
understanding of the phenomenon, accurate determination of the
distribution of ∆Ψ on the cell membrane is important. Appli-
cations of electroporation include delivery of chemotherapeutic
drugs to cancer cells (electrochemotherapy [12]–[15]), nonviral
delivery of DNA to cells (gene electrotransfection [16]–[18]),
transdermal drug delivery [19], [20], tissue ablation [21], [22],
and sterilization [23].

In practice, ∆Ψ can be determined either experimentally, us-
ing sensitive potentiometric fluorescent dyes [10], [11], [24],
[25], or theoretically, by analytical derivation [26], [27] or nu-
merical modeling [28]–[34]. Analytically, ∆Ψ is derived by
solving the Laplace equation in a suitable coordinate system
and with appropriate boundary conditions [8], [9], [26], [27].
The simplest such solution is the steady-state solution for a
spherical cell, which reads

∆Ψ =
3
2
ER cos θ (1)

where E is the external electric field, R is the cell radius, and θ is
the angle between the direction of the field and the normal from
the center of the cell to the point of interest on the cell surface.
Introducing the time variable and accounting for the electric
conductivities and dielectric permittivities of the domains, one
obtains time-dependent solutions; the first-order solution [35]

∆Ψ(t) = fS ER
(
1 − e(−t/τ )) cos θ (2)

where detailed derivation of the function fS and the time con-
stant τ are given in [27] and [35], and the second-order solu-
tion [27]

∆Ψ(t) = [a + fS1ER(1 − e(−t/τ1 ))

+ fS2ER(1 − e(−t/τ2 ))] cos θ (3)

where a, fS1 , fS2 , τ1, and τ2 are given in [27] and [36]. Solving
the Laplace equation in a different coordinate system also yields
solutions for several other regular cells shapes, such as cylinders,
spheroids, and ellipsoids [37]–[39].

Realistic cells, however, can deviate considerably from such
regular shapes, and for such geometries an explicit analytical
solution (either steady-state or time-dependent) does not exist.

0018-9294/$25.00 © 2009 IEEE



1492 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 5, MAY 2009

Besides, cells are typically also not isolated (far apart from other
objects), but grow in clusters (in tissues) or in monolayers (at-
tached to the bottom of a dish). Employing analytical solutions
for spherical and spheroidal cells to these realistic cells can yield
inaccurate results, and thus in realistic settings, the experimental
and numerical methods are often the only feasible approaches
for determination of ∆Ψ. Among numerical methods, the estab-
lished approaches are modeling with resistive-capacitive trans-
port lattices [40]–[42], finite differences [30], [33], [43], and
with finite elements [28], [29], [31], [34], but other methods,
such as hybrid finite-element modeling are also applicable [44].

With steady-state ∆Ψ, electroporation can be modeled de-
terministically as occurring in the area of the membrane where
∆Ψ exceeds a certain value ∆ΨC . This approach is simple to
implement, but the error in estimating the extent of membrane
electroporation can be considerable. In this paper, we show that
time-dependent models, which account for the fact that both ∆Ψ
and the conductivity of the electroporated membrane vary with
time, yield much more realistic results. Most often, such models
are solved numerically using the finite-difference method. The
advantage of this approach is that the expressions describing ∆Ψ
and electroporation are easy to implement, but these models are
generally based on either simplified geometry [30], [33], [45],
or concentrated parameters such as RC-lattices [40]–[42]. Some
attempts were made to model arbitrarily shaped cells or clus-
ters of such cells in the steady state as well as in the time
and frequency domains, but these were all confined to a 2-D
space [32], [40], [46], [47]. The finite-element method that we
employ here is more suitable for modeling cells as complex,
more realistic 3-D shapes.

We recently developed and described a method for construct-
ing realistic finite-element models of cells of irregular shapes
from their cross-sectional images [34]. This method is efficient
in calculating the steady-state ∆Ψ, but is not suitable for simu-
lating electroporation, which is a dynamic process, with mem-
brane conductivity in electroporated regions dependent on ∆Ψ
and varying with time. Here, we present further improvement
of this method, which allows for the calculation of the time-
dependent changes of ∆Ψ and simulation of electroporation.
This is, to our knowledge, the first report on time-dependent
modeling of electroporation in realistically shaped cells using
the finite-element method. Another advantage of the method pre-
sented here is the possibility to directly validate the numerical
results by comparing them to the experimental measurements.

II. MATERIALS AND METHODS

A. Construction of a Realistic 3-D Numerical Model of a Cell

3-D model of an irregularly shaped cell was constructed from
a sequence of microscopic fluorescence images representing
cross sections of a Chinese hamster ovary (CHO) cell attached
to the cover glass. A more detailed description of the model
construction can be found in [34]. Briefly, fluorescence images
were obtained by staining the cell with a fluorescent dye di-
8-anepps. The images, acquired with a charge-coupled device
(CCD) camera (VisiCam 1280, Visitron, Germany), mounted
on a fluorescence microscope (AxioVert 200, Zeiss, Germany),

Fig. 1. 3-D model of a CHO cell attached to the cover glass. The cell was
constructed from six parallel horizontal cross sections and placed at the bottom
of a box measuring 79 µm × 79 µm × 38 µm. The gray-shaded faces were the
electrodes, one set to 7.9 V and the other to the ground (electric field 1000 V/cm).

Fig. 2. Mesh of a model of a spherical cell with radius 10 µm. A cross section
through the center of the cell is shown. (a) Membrane with thickness of 0.3 µm
was incorporated in the model, which is still about 70 times thicker than the real
membrane. Number of mesh elements was 57 809 (79 684 DOF). (b) Membrane
was modeled as a boundary condition. Number of mesh elements was 10 000
(15 386 DOF).

were processed to obtain contours of the cell. The contours
were transformed to solid planes, combined into a 3-D object,
and imported to the COMSOL workspace (COMSOL 3.4 Inc.,
Burlington, MA) (Fig. 1).

Instead of a direct incorporation of a cell membrane in the
model, the membrane was replaced by a surface to which a
boundary condition was assigned [34]

J(t) =
λm0(Ψi − Ψo)

h
+

ε0εm

h

∂(Ψi − Ψo)
∂t

. (4)

Here, J is the current density, λm0 is the conductivity of
the nonporated membrane, h is the membrane thickness, εm is
the relative permittivity of the membrane, and Ψo and Ψi are
the electric potentials at the outer and inner surface of the mem-
brane, respectively. The first and the second term in (4) represent
the conductive and the capacitive component of the electric cur-
rent through the membrane. The substitution of the membrane
by a boundary condition does not affect the electric potential
distribution outside the membrane, and is thus valid as long as
the events inside the membrane are not of interest. In a model
constructed in this way, the mesh of finite elements is generated
without difficulty, as very small elements corresponding to the
membrane interior are avoided [34]. To illustrate this, Fig. 2
shows a mesh generated on a model of a spherical cell with the
membrane incorporated, and with the membrane replaced by a
boundary condition given by (4).
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B. Model Settings and Calculations of the Induced Voltage

The calculations were performed in COMSOL using the Elec-
tric Currents, Transient Analysis application mode, with more
details given in [34]. The conductivity of the cell interior was
set to 0.3 S/m and that of the cell exterior to 0.14 S/m [27], [48].
The opposite vertical faces of the block were modeled as elec-
trodes, which was done by assigning a fixed electric potential
to each of these faces. One electrode was set to 7.9 V and the
other to the ground to obtain the electric field of 1000 V/cm,
which was also the applied electric field in the experiments (see
Section II-D). The remaining faces of the block were modeled
as insulating. The mesh of finite elements (tetrahedral Lagrange
quadratic finite elements) was generated using adaptive mesh-
ing and consisted of approximately 50 000 finite elements and
88 000 DOF. The electric potential Ψ inside and outside the cell
was then computed by solving the equation

−∇(λ∇Ψ) − ε0εr∇
(

∂

∂t
(∇Ψ)

)
= 0. (5a)

Here, ε0 is dielectric permittivity of the vacuum, εr is relative
dielectric permittivity, and λ is conductivity. The equation was
solved in COMSOL, using the direct Pardiso solver. Finally,
the induced transmembrane voltage (∆Ψ) was calculated as
the difference between electric potentials on both sides of the
membrane

∆Ψ = Ψi(t) − Ψo(t) (5b)

and was plotted as a function of the arc length.

C. Model of Electroporation

Electroporation is described theoretically as formation of
transient hydrophilic pores in the lipid bilayer of the plasma
membrane, which occurs during the exposure of a cell to an
external electric field [49]–[51]. The density of pores increases
with the amplitude of the field, which eventually results in a
detectable increase in membrane conductivity and membrane
permeability [10], [52]–[56]. Since the pores provide new con-
ducting pathways for the transmembrane current density J , elec-
troporation can be modeled by introducing an additional term
JEP to (4)

J(t) =
λm0(Ψi − Ψo)

h
+

ε0εm

h

∂(Ψi − Ψo)
∂t

+ JEP(t). (6)

De Bruin and Krassowska [30] derived the expression for
JEP , which, in its simplest form, can be written as

JEP(t) = iEP(t)N(t) (7)

where iEP is the current through a single pore

iEP(t) = (Ψi − Ψo)λPπr2
P

A

h
(8a)

with A given by (8b), as shown at the bottom of this page, where
vm = (Ψi–Ψo)(F/RT ), F , R, and T the Faraday’s constant,

TABLE I
PARAMETERS OF THE ELECTROPORATION MODEL

the gas constant, and absolute temperature, respectively, and
N the pore density characterized by the following differential
equation [30], [57]:

dN(t)
dt

= αe(∆Ψ(t)/VE P )2
(

1 − N(t)
N0

e−q(∆Ψ(t)/VE P ) 2
)

. (9)

Inserting (7) and (8) into (6), we obtain

J(t) =
(Ψi − Ψo)

h
λm (t) +

ε0εm

h

∂(Ψi − Ψo)
∂t

(10)

where λm (t) = λm0 + N(t)λP πr2
P A is the variable conductiv-

ity of the electroporated membrane. The definitions and typical
values of the constants in (8) and (9) are given in Table I.
The parameter VEP determines (but is not equal to) ∆ΨC at
which electroporation becomes significant, with the explicit
relation between VEP and ∆ΨC given in [30]. In a separate
study, we found that ∆ΨC can vary considerably between at-
tached cells of the same type, ranging approximately from 500 to
1000 mV [58]. In the study presented here, the mean of this range
was used, ∆ΨC = 750 mV (equivalent to VEP = 170 mV).
The value of α was set to 109 m−2 ·s−1 , but varying this pa-
rameter within its physically realistic range (from 0.92 × 109 to
2 × 109 m−2 ·s−1 [30]) does not affect the results significantly.

This model disregards the resting membrane voltage, because
it is small compared to ∆ΨC . This is particularly true for the
CHO cells, for which the resting voltage is about −10 mV [59],
i.e., at least 20 times lower than any transmembrane voltage
reported to lead to detectable electroporation [58], [60], [61].
The model also assumes that both the pore radius and the con-
ductivity inside the pore are constant. Nevertheless, λm in this

A =
evm − 1

evm (w0ew 0 −nvm − nvm )/(w0 − nvm ) − (w0ew 0 +nvm + nvm )/(w0 + nvm )
(8b)
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Fig. 3. Induced transmembrane voltage ∆Ψ calculated on a model of a spherical cell. (a) Calculated distribution of the electric potential around and inside
a cell in the x–y plane crossing the center of the cell. The black curves are the equipotentials, and the arrow marks the path along which the potential was
measured. (b) Corresponding time courses of ∆Ψ. The calculations were performed for a model of a spherical cell with R = 10 µm, d = 5 nm, λo = 0.14 S/m,
λi = 0.3 S/m, λm = 5 × 10−7 S/m, εm = 5, εo = εi = 80, E = 1000 V/cm, with the cell positioned in the center of a box with dimensions of 100 µm ×
100 µm × 100 µm.

model does vary with time, as it is a function of ∆Ψ and N ,
which are both time dependent [see (5b) and (9)]. The exponen-
tial dependence in (9) also implies that the increase of N results
in a rapid increase of λm , thereby lowering ∆Ψ in the porated
area in a self-regulating manner (see Fig. 6). More details on
the derivation of (8) and (9) can be found in [30] and [57].

Equation (9) was solved on the membrane of the cell, using
the Weak form, boundary PDE application mode in COMSOL,
simultaneously with the calculation of the electric potential [see
(5a)]. The time required to obtain a solution was less than 6 min
on a PC with a 2.67 GHz Intel Core 2 Duo CPU and 2 GB RAM.

D. Monitoring the Course of Electroporation

CHO cells were grown on cover glasses in a culture medium
(F-12, Sigma, Saint Louis, MO). When cells attached to the glass
(app. 12 h after plating) the culture medium was replaced by a
pulsation buffer [48], which contained 100 µm of membrane-
impermeable fluorescent dye propidium iodide (PI, Sigma).
Cells were then exposed to a 400 V, 200 µs electroporating
pulse delivered to two parallel needle electrodes with a 4 mm
distance between them (electric field was thus approximately
1000 V/cm). The fluorescence of the dye increased consider-

ably after entering the electroporated cell, which was monitored
with the imaging system, described in Section II-A.

III. RESULTS AND DISCUSSION

A. Calculations of the Induced Transmembrane Voltage

1) Comparison to the Analytical Solution for a Spherical
Cell: The model was first validated by comparing the calcu-
lated and analytically derived induced transmembrane voltage
(∆Ψ) for a spherical cell. Fig. 3(a) shows the spatial distribution
of the electric potential in the model of a spherical cell with a
radius of 10 µm at different times after the onset of the external
electric field (1000 V/cm), while the time course of ∆Ψ, sam-
pled clockwise around the perimeter of the cell, is presented
in Fig. 3(b). The calculations show that after a step change of
the electric field, ∆Ψ gradually forms on the cell membrane,
with a time constant of voltage inducement of approximately
0.6 µs. After a few microseconds, a steady-state value of ∆Ψ is
obtained. The amplitude of ∆Ψ depends on the position on the
cell membrane—the regions of the cell facing the positive and
ground electrode experience the highest absolute values of ∆Ψ,
−1.5 and 1.5 V, respectively.
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Fig. 4. Comparison of the calculated and analytically derived ∆Ψ. (a) Time
course of calculated (symbols) and analytically derived (curve) ∆Ψ [see
(3), cos θ = 0, a = 8 × 10−3 , fS1 = 1.48, fS2 = 1.2 × 10−3 , τ1 = 6.07 ×
10−7 s, τ2 = 3, 67 × 10−9 s]. (b) Absolute error with respect to the analytical
solution. The model settings are given in caption of Fig. 3.

Finally, Fig. 4 shows the comparison of the calculated and
analytically derived ∆Ψ [see (3), at cos θ = 0] demonstrating a
good agreement between both solutions. The absolute error with
respect to the analytical solution remains within the range of −4
and −1 mV throughout the calculated time interval [Fig. 4(b)].
This shows that the model is sufficiently accurate for all prac-
tical applications of electroporation, where ∆Ψ is in the range
of hundreds of millivolts. For accurate modeling of exposures
to pulses with durations or rise times in the nanoseconds range,
the dielectric relaxation effects would have to be accounted for,
which would amount to replacing the constant dielectric permit-
tivities by suitable functions of frequency (or time derivative)
of the electric field.

2) Transmembrane Voltage Induced on an Irregularly
Shaped Cell: For irregularly shaped cells, analytical solutions
cannot be derived, and numerical methods present one of the
remaining possibilities for determination of ∆Ψ. In our ap-
proach, the realistic model of an irregularly shaped cell was
constructed from six parallel cross sections of a CHO cell. The
distribution of the electric potential around and inside the cell
is shown in Fig. 5(a) and the induced transmembrane voltage
(∆Ψ) in Fig. 5(b). Compared to the results for a spherical cell,
the steady-state value of ∆Ψ is lower here, mostly due to the

fact that the cell in Fig. 5, grown on a cover glass, was quite flat
and thus represented “less of an obstacle” to the external field.
As a consequence of the irregular shape of the cell the spatial
distribution of ∆Ψ deviated from the cosine shape. For cells
with more complex shape, such as fibroblasts or neuronal cells,
the deviation of ∆Ψ from a cosine shape would be significantly
more pronounced.

In a more simplified approach, an irregular cell such as the
one shown in Figs. 1 and 5 would be modeled as a geometrical
body of a regular shape, such as a hemisphere or a spherical
cap. However, when a detailed knowledge of ∆Ψ is important
as, e.g., in electroporation (see next section), this would lead to
considerable inaccuracies, and a more realistic modeling of the
cell shape improves the accuracy substantially.

B. Modeling of Electroporation

Calculations presented in Figs. 3 and 5 show that the maximal
∆Ψ in both cells exceeded 1 V, implying that they should both
be electroporated. With steady-state models, the size of the elec-
troporated surface of the cell membrane would be characterized
as the region, where ∆Ψ > ∆ΨC (as explained in Section II-C,
we set ∆ΨC at 750 mV). However, as will be demonstrated
later, this approach only gives a rough estimate of the real
size of the electroporated surface. A more realistic approach
is to consider electroporation as a dynamic process, with mem-
brane conductivity depending on ∆Ψ and varying with time
[see (10)].

The model of electroporation was first tested on a spherical
cell. After a delay of approximately 600 ns, membrane conduc-
tivity λm in the regions of the cell facing the electrodes rapidly
increased, reflecting electroporation of this part of the membrane
[Fig. 6(a)]. The area of the electroporated regions continued to
increase until the steady-state value was reached approximately
5 µs after the start of the pulse. Electroporation was symmet-
rical on both sides of the cell, and was localized to the regions
of the membrane exposed to values of ∆Ψ exceeding ∆ΨC .
The spatial distribution of ∆Ψ in the electroporated regions was
distorted with respect to the shape calculated on the nonporated
membrane (cf. Figs. 3(b) and 6(b)—solid curve), which can be
explained with the increased membrane conductivity in these
regions. The temporal and spatial distribution of ∆Ψ calcu-
lated on a spherical cell during electroporation (Fig. 6(b)—solid
curves) were qualitatively similar to ∆Ψ previously measured
by Hibino and coworkers on sea urchin eggs using a potentio-
metric fluorescent dye and a fast imaging system [10], [11].
If the electrical and geometrical parameters of the cell model
are set equal to those specified in their study, the time course
of membrane conductivity for the first 5 µs is comparable to
their measurements (e.g., 2.3 S/cm2 compared to 4.8 S/cm2 at
5 µs). However, at later times the simulation predicted a steady
membrane conductivity, while the measurements by Hibino and
coworkers show a continuing slow increase, suggesting that also
at later times, pores can either increase or coalescence into larger
pores.

Next, electroporation was modeled on an irregularly shaped
cell. Results presented in Fig. 6(c) and (d) show that the time
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Fig. 5. Induced transmembrane voltage ∆Ψ calculated on a model of an irregularly shaped cell. (a) Calculated distribution of the electric potential around and
inside the cell, shown for the lowermost x–y plane. The black curves are the equipotentials, the arrow marks the path along which the potential was measured. (b)
Corresponding time courses of ∆Ψ. The calculations were performed on a model of an irregularly shaped cell with d = 5 nm, λo = 0.14 S/m, λi = 0.3 S/m,
λm = 5 × 10−7 S/m, εm = 5, εo = εi = 80, and E = 1000 V/cm.

course and spatial distribution of ∆Ψ and membrane conductiv-
ity are different from those observed for a spherical cell, which
is due to different size and shape of both cells. Small ripples in
the spatial distribution of ∆Ψ are characteristic for irregularly
shaped cells and are reflected in an inhomogeneous electropora-
tion of this cell. More specifically, compared to a spherical cell,
the irregularly shaped cell was electroporated asymmetrically—
the side of the cell facing the positive electrode was porated
more intensely and the size of the whole electroporated re-
gion was slightly larger on this side of the cell [Fig. 6(d)]. We
should emphasize that asymmetric electroporation of this cell
was entirely due to its irregular shape. Experimentally, some
asymmetry could also be due to the resting membrane voltage,
but as we explain in Section II-C, this contribution is rather
small and was neglected in our model. Electroporation was
most pronounced in the protrusions of the cell facing the elec-
trodes [marked with arrows in Fig. 6(c)], which is in agreement
with previously reported experimental observations on attached
cells [62].

Another interesting feature is the spatial distribution of ∆Ψ
calculated in the nonporated regions of electroporated cells, i.e.,
in the regions, where ∆Ψ < ∆ΨC . Namely, ∆Ψ in the non-
porated regions of a porated cell is lower than ∆Ψ calculated
in the same regions of a nonporated cell of the same shape
(cf. dotted line—nonporated cell, and solid line—porated cell
in Fig. 7). This is due to the fact that part of the current that
was flowing around the cell before electroporation, now flows
through the electroporated regions of the membrane and thereby
affects the distribution of ∆Ψ on the whole cell, including the
nonporated regions. This also demonstrates why steady-state
models might be inaccurate in describing the extent of elec-
troporation. Namely, in these models, electroporated regions
could be determined only from the steady-state distribution of
∆Ψ. The results shown in Figs. 7 and 8 imply that such an ap-
proach can considerably overestimate the electroporated surface
of the cell (cf. dashed line—time-dependent model, and dotted
line—steady-state model, in Fig. 8). In other words, if ∆ΨC

is determined based on combining experimental observations
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Fig. 6. Simulation of electroporation. (a) 3-D presentation of the changes in membrane conductivity λm on a model of a spherical cell. The arrow marks the
path along which ∆Ψ and λm were sampled. (b) Corresponding ∆Ψ (solid curves) and λm (dashed curves) as a function of arc length. (c) Changes in membrane
conductivity λm shown from the top view of a model of an irregularly shaped cell. (d) Corresponding ∆Ψ (solid curves) and λm (dashed curves) as a function
of arc length. Model settings are the same as in Fig. 5. The dotted curves in panels b and d at time 5 × 10−6 s show ∆Ψ for the nonporated cell.
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Fig. 7. Comparison of the spatial distribution of ∆Ψ on porated (solid curve)
and nonporated cell (dotted curve) at time 5 × 10−6 s for (a) a spherical cell,
and (b) an irregularly shaped cell.

Fig. 8. Magnified side views of an irregularly shaped cell showing electro-
porated regions at time 5 × 10−6 s in more detail. Dashed curve represents
electroporated regions calculated with a time-dependent model, while dotted
curve denotes the regions calculated with a steady-state model. The arrows
show the sites of the cell, where electroporation was most pronounced. The
field is parallel to the x-axis.

with a steady-state model of ∆Ψ, the value of ∆ΨC is gen-
erally overestimated. This is another argument in favor of the
development of realistic time-dependent models of biological
cells exposed to electric fields.

The model of electroporation used in our study is the
asymptotic version of the electroporation model based on the
Smoluchowski equation [49], [63], [64]. The assumption of this
version that all pores have equal and time-independent radii
(∼0.8 nm, corresponding to the local minimum of the pore
energy as a function of pore radius) is certainly only an ap-
proximation, and several approaches for modeling pores with
variable and time-dependent radii have been proposed by differ-
ent authors [33], [51], [65]–[67]. However, these approaches are
partly incompatible between each other, and certain predictions
of these models fail to agree with experimental evidence, e.g.,
the prediction that the largest pores develop at the very border
of the porated area [67]. Moreover, the models based on the
complete Smoluchowski equation [33], [66] consist of a con-
siderably larger and more complex set of equations than the set
of equations (6)–(10) used here. For these reasons, we chose the
simple, asymptotic model of electroporation [30], [57], while
many of the enhancements proposed by other authors could be
incorporated into our modeling and calculation method without
considerable technical difficulty.

C. Experimental Monitoring of Electroporation

The main advantage of the presented method of modeling
is that it allows to evaluate the experimental results by com-
paring them to the quantities that can be calculated, but would
be very difficult to measure directly. For example, electropora-
tion is measured relatively easily by monitoring the transport of
molecules (e.g., propidium iodide) through the cell membrane,
but ∆Ψ, particularly on short timescales, is more easily and re-
liably calculated than measured. Using the modeling approach
described here, the same irregularly shaped cell from which the
model in Figs. 1, 5(a), 6(c), and 8 was constructed was also
used in the electroporation experiment. The cell was exposed
to a single high-voltage electroporation pulse (1000 V/cm, the
same as in calculations) and the transport of molecules through
electroporated cell membrane was monitored. Fig. 9 is a time
sequence of fluorescence images showing the transport of flu-
orescent molecules through electroporated membrane [bright
regions in Fig. 9(a)], into the cytosol [Fig. 9(b)], and with time
into the nucleus [Fig. 9(c)], which becomes the most fluorescent
due to the large number of binding sites for the dye. Compar-
ison of the results in Figs. 6(c), 8, and 9(a) shows that the
transport regions correspond to the calculated regions of in-
creased membrane conductivity. We should note, however, that
the temporal resolution in calculations was much higher than
in the experiments. Namely, changes of membrane conductivity
occur within a microsecond after the onset of the electric pulse,
while the transport, limited by the sensitivity of the imaging
camera, was only detected milliseconds after the pulse. In a
separate study, using a fast and much more sensitive imaging
system [68], we were able to detect molecular transport through
the electroporated membranes already 60 µs after the start of the
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Fig. 9. Monitoring cell electroporation: (a) 100 ms; (b) 1500 ms; and (c) 3 min after pulse delivery. The cell was exposed to a single 200 µs, 400 V (1000 V/cm)
rectangular pulse. To visualize the electroporated regions a fluorescent molecule propidium iodide was added to suspension before the pulse was applied. The bar
in panel a corresponds to 10 µm.

pulse. However, whether an increase in membrane conductivity
and the transport of molecules occur simultaneously remains to
be elucidated.

IV. CONCLUSION

A finite-element model of a time-dependent transmembrane
voltage inducement and electroporation of a spherical and an
irregularly shaped cell was presented. The model predicted a
time-dependent increase in membrane conductivity in the re-
gions with ∆Ψ > ∆ΨC and a subsequent distortion of the spa-
tial distribution of ∆Ψ in these regions, which is in agreement
with reports in the literature. Our data show that in applica-
tions requiring a detailed knowledge of ∆Ψ, such as cell mem-
brane electroporation and studies of voltage-gated membrane
channels, time-dependent modeling with realistic cell shapes
should be used instead of the more elementary steady-state mod-
els and/or simplified shapes. The advantage of our method of
model construction is the possibility to directly compare the
experiments with calculations. As an example, we showed that
regions of increased membrane conductivity, calculated on a
model of an irregularly shaped cell, correspond to the regions of
molecular transport observed experimentally on the same cell.
Both models presented here—the time-dependent model of ∆Ψ
and the model of electroporation—can be exploited further to
study the behavior of more complicated cell assemblies, such
as several irregularly shaped cells in contact or/and cell-to-cell
interactions (gap junctions, etc.), in response to electric field
exposure. The model of electroporation presented here can also
be developed further by accounting for the pore size variation
and time dependence.
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