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Irreversible electroporation as a novel 
method for soft tissue ablation: review and 
challenges in clinical practice

Ireverzibilna elektroporacija kot metoda ablacije mehkih tkiv: 
pregled in izzivi pri uporabi v kliničnem okolju

Helena Cindrič, Bor Kos, Damijan Miklavčič

Abstract
Irreversible electroporation has been evaluated as a novel method for ablation of various soft 
tissues for the last fifteen years. This method presents an alternative to the established thermal 
ablation methods due to its predominantly non-thermal mechanism of cell kill. It is currently 
mostly used for treating patients in whom the application of thermal ablation is contraindicat-
ed due to risk of thermal damage to sensitive nearby structures, or when the presence of heat 
sinks reduces ablation efficacy. The main medical application of irreversible electroporation 
has until recently been ablation of deep seated tumours, e.g. in the liver, prostate and kidney, 
however, in the last few years its potential for the treatment of various arrhythmias has sparked 
great interest. Since irreversible electroporation is still a relatively new method, there is a lack of 
standardized treatment protocols and planning procedures for use in clinical setting. Numerical 
modelling has proven to be an indispensable tool in investigating and designing electropora-
tion-based treatments and preparing patient-specific treatment plans. In this paper the most 
recent developments in clinical use of irreversible electroporation ablation are summarized and 
its major advantages as well as challenges and possible drawbacks in introducing this novel ab-
lation method into clinical routine are highlighted.

Izvleček
Koncept ireverzibilne elektroporacije kot samostojne ablacijske metode so prvič predstavili 
pred petnajstimi leti. Ireverzibilna elektroporacija je alternativna metoda uveljavljenim ter-
mičnim ablacijskim metodam, saj mehanizem uničevanja celic ni odvisen od dviga temperature. 
Zaradi netermičnega načina delovanja se zaenkrat uporablja predvsem v primerih, pri katerih 
uporaba termične ablacije ni mogoča zaradi nevarnosti, da se poškodujejo bližnje občutljive 
anatomske strukture ali se učinkovitost ablacije zmanjša zaradi odvajanja toplote (t. i. heat sink 
učinek). Trenutno se ireverzibilna elektroporacija v medicini uporablja predvsem za odstranje-
vanje globlje ležečih tumorjev, na primer v jetrih, prostati in ledvicah. V zadnjih letih je veliko 
zanimanja vzbudila tudi uporaba metode v srcu, in sicer za zdravljenje različnih motenj srčnega 
ritma. Ker je ablacija z ireverzibilno elektroporacijo sorazmerno nova tehnologija, še vedno ni 
standardnih protokolov zdravljenja in postopkov za načrtovanje zdravljenja. Numerične metode 
so nepogrešljivo orodje pri preučevanju pojava elektroporacije in pri pripravi bolnikom prilago-
jenih načrtov zdravljenja. Prispevek pregledno prikazuje dosedanjo uporabo ireverzibilne elek-
troporacije v kliničnem okolju, povzema prednosti in osvetljuje glavne probleme pri uvajanju te 
obetavne ablacijske metode v klinično prakso.
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1 Introduction

1.1 On electroporation

Electroporation (also called electroper-
meabilization) is a phenomenon by which 
we temporarily change the structure of the 
cell membrane with short high-voltage 
electric pulses. Under the influence of an 
electric field membrane lipids are redis-
tributed, so-called hydrophilic pores ap-
pear and chemical reactions on lipids and 
transport proteins occur, which increases 
permeability and allows passage to various 
substances which otherwise couldn't pass 
the membrane or do so only with difficulty 
(1-4). With the appropriate choice of pa-
rameters of electric pulses, i.e. the num-
ber and duration of pulses, the dynamics 
of pulse delivery and the amplitude of the 
applied voltage, electroporation can be re-
versible or irreversible. In reversible elec-
troporation, the cell membrane returns to 
its original state relatively quickly, so the 
long-term ability of the cell to divide and 
function is not impaired by the procedure. 
With irreversible electroporation, howev-
er, the cell loses functionality and dies (a 
process similar to apoptosis) due to expo-
sure to the field (4-7). 

Reversible and irreversible electropo-
ration each offer possibilities in numerous 
fields – from medicine to biotechnology 
to food and wood processing (5,8,9). The 
most interest is elicited by its use in med-
icine (10). Reversible electroporation is 
interesting mainly from the point of view 
of the introduction of various molecules 
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into cells, where one of the applications is 
electrochemotherapy, in which reversible 
electroporation of the tumor enables the 
transfer of some chemotherapeutics (bleo-
mycin and cisplatin) into cancer cells, sig-
nificantly increasing their cytotoxicity (11-
14). In contrast to electrochemotherapy, in 
which we wish to preserve the cell mem-
brane, we strive for direct destruction of 
cells with an electric field with irreversible 
electroporation. Irreversible electropora-
tion (IRE) is used mainly for ablation of 
various tumors (5,6,15-19), and lately for 
cardiac ablation for treatment of arrhyth-
mias (20-23). 

1.2 Irreversible electroporation 
in medicine

The concept of irreversible electropo-
ration as a standalone method of tissue 
ablation was first introduced by Davalos 
et al. in 2005 (7). Using a mathematical 
model they showed that irreversible elec-
troporation allows for the destruction of 
target tissue without tissue heating and 
thus without thermal damage, in contrast 
to other established ablation methods. The 
non-thermal mechanism of cell destruc-
tion quickly aroused considerable interest 
in research groups, which was followed by 
a number of in vitro studies and in vivo 
studies on animal models. Later research 
showed that a thermal component is still 
present directly adjacent to electrodes, a 
consequence of high current density and 
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increased electrical conductivity of tissues 
due to electroporation (24-26). Despite 
this, thermal damage causes only a small 
fraction of cell deaths when the procedure 
is used properly, as the primary mech-
anism of this new method is still mostly 
non-thermal (26). 

The first clinical studies on IRE ab-
lation were published in 2010 – in the 
prostate (27) and the kidneys (29), which 
focused above all on the safety of the pro-
cedure. Numerous clinical trials followed 
in the following years, focused on ablating 
deep-seated tumor in various organs – the 
prostate (27,29-33), kidneys (28,34,35), 
liver (36-42), pancreas (43-46) and lungs 
(the latter so far unsuccessfully) (47,48). 
In recent years, in addition to its use in 
oncology, the use of IRE in the heart has 
been investigated, namely for the isolation 
of pulmonary veins in the treatment of 
atrial fibrillation (AF) (20-22,49) and for 
the ablation of Purkinje fibers in the treat-
ment of ventricular fibrillation (23). 

Ablation with irreversible electropo-
ration has many advantages over estab-
lished thermal methods, which enables its 
use in cases when thermal damage to the 
surrounding tissues is not acceptable, e.g. 
in the immediate vicinity of the bile duct, 
or when ablation with thermal ablation 
techniques cannot be reliably performed , 
for example due to the proximity of larger 
blood vessels (10,19,26,36,41,50-52). As 
the method is independent of tempera-
ture, it is not sensitive to the heat sink ef-
fect in proximity to blood vessels, which 
is a common problem with thermal abla-
tion methods. An important property of 
irreversible electroporation is also that it 
destabilizes only the membranes of living 
cells, while the remaining structures and 
proteins in the intercellular space remain 
intact, which improves the integrity of 
damaged tissue, reduces scarring and al-
lows for faster tissue regeneration (53). 

Involvement of the immune system also 
plays an important role in the antitumor 
effect of irreversible electroporation. A 
fraction of cells in the immediate vicinity 
of the electrodes die due to thermal dam-
age (necrosis), which stimulates the local 
immune response and thus accelerates the 
removal of cancer cells (54,55). Thermal 
techniques such as radiofrequency and 
microwave ablation and cryoablation are 
still routinely used for soft tissue ablation, 
but interest in irreversible electroporation 
ablation is also growing.

2 Technical aspects of 
ablation with irreversible 
electroporation

With irreversible electroporation we 
strive for complete destruction of cells in 
the target tissue. Ablation effectiveness is 
directly connected to the strength of the 
local electric field in the tissue and the du-
ration of exposure to the field (Figure 1). 

The strength of the electric field is 
mainly influenced by pulse amplitude, but 
it is also dependent on electrode dimen-
sions (electrode diameter and length), 
the distance between paired electrodes 
and on (electric and thermal) properties 
of biological tissue. Additionally, the lev-
el of tissue electroporation is also influ-
enced by the dynamics of pulse delivery 
(pulse duration and pulse delivery rate). 
Determining the optimal parameters for 
irreversible electroporation is the subject 
of intensive research, as the pulse parame-
ters differ between different target tissues/
organs.

2.1 Ablation of deep-
seated tumors

For ablation of deep-seated tumors long 
monopolar needle electrodes are used to 
deliver high-voltage electrical pulses. The 

Figure 1: A) Reversible electroporation, irreversible electroporation and thermal effects of 
electroporation depend on both the strength of the electric field and the time of exposure 
(depending on the duration and number of applied electric pulses). In tissue, the same effect 
can be achieved with a shorter exposure time and a higher strength of the electric field, or 
with a longer exposure time and a lower strength of the electric field. B) With the selected 
duration of electric pulses (example for 1-millisecond pulses - dashed line on panels A and B), 
the fraction of reversibly and irreversibly electroporated cells increases with the strength of the 
electric field. The figure is summarized from Yarmush ML, et al (8).
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Involvement of the immune system also 
plays an important role in the antitumor 
effect of irreversible electroporation. A 
fraction of cells in the immediate vicinity 
of the electrodes die due to thermal dam-
age (necrosis), which stimulates the local 
immune response and thus accelerates the 
removal of cancer cells (54,55). Thermal 
techniques such as radiofrequency and 
microwave ablation and cryoablation are 
still routinely used for soft tissue ablation, 
but interest in irreversible electroporation 
ablation is also growing.

2 Technical aspects of 
ablation with irreversible 
electroporation

With irreversible electroporation we 
strive for complete destruction of cells in 
the target tissue. Ablation effectiveness is 
directly connected to the strength of the 
local electric field in the tissue and the du-
ration of exposure to the field (Figure 1). 

The strength of the electric field is 
mainly influenced by pulse amplitude, but 
it is also dependent on electrode dimen-
sions (electrode diameter and length), 
the distance between paired electrodes 
and on (electric and thermal) properties 
of biological tissue. Additionally, the lev-
el of tissue electroporation is also influ-
enced by the dynamics of pulse delivery 
(pulse duration and pulse delivery rate). 
Determining the optimal parameters for 
irreversible electroporation is the subject 
of intensive research, as the pulse parame-
ters differ between different target tissues/
organs.

2.1 Ablation of deep-
seated tumors

For ablation of deep-seated tumors long 
monopolar needle electrodes are used to 
deliver high-voltage electrical pulses. The 

Figure 1: A) Reversible electroporation, irreversible electroporation and thermal effects of 
electroporation depend on both the strength of the electric field and the time of exposure 
(depending on the duration and number of applied electric pulses). In tissue, the same effect 
can be achieved with a shorter exposure time and a higher strength of the electric field, or 
with a longer exposure time and a lower strength of the electric field. B) With the selected 
duration of electric pulses (example for 1-millisecond pulses - dashed line on panels A and B), 
the fraction of reversibly and irreversibly electroporated cells increases with the strength of the 
electric field. The figure is summarized from Yarmush ML, et al (8).
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number and placement of electrodes de-
pend on the size of the tumor. The use of 
two to six electrodes is typical, which are 
placed as parallel as possible to each other 
and are arranged around the tumor. If nec-
essary, one or more electrodes may also be 
located inside the tumor. The electrodes 
have an adjustable length, but in practice a 
length of 2 cm is most commonly used as 
longer electrodes result in excessive elec-
tric currents. Electric pulses are applied to 
individual pairs of electrodes so the entire 
target volume, i.e. the tumor volume with 
a safety margin, is successively covered. 
The safety margin width depends on the 
type of tumor and usually extends 5-10 
mm from the tumor borders. In the case 
of larger tumors, the electrodes can also 
be retracted (15-20 mm) during therapy, 
thus covering the target volume in seg-
ments. Parameters of electric pulses and 
delivery protocols differ between studies, 
but a train of 70-100 electric pulses per 

electrode pair is most commonly used, 
and the duration of individual pulses in 
the train is typically 90 µs (50–100 µs) 
(18,37,45). To determine the amplitude, 
the ratio between the voltage and the dis-
tance between paired electrodes is mostly 
used, but it varies from study to study, as 
it also depends on the type of target tissue. 
Published in vivo studies show the use of 
1000–2500 V/cm ratios (18).

The voltage-to-distance ratio (V/d ratio 
with a unit of measurement V/cm), which 
is used to determine the voltage at the elec-
trodes, is often confused in literature with 
the electric field threshold, required for ir-
reversible electroporation of the target tis-
sue. The electric field in a tissue depends 
on the electrical properties and structure 
of the tissue. Tissue (and therefore elec-
trical conductivity) is essentially nonho-
mogeneous, and in addition, conductivity 
changes dynamically during the proce-
dure due to electroporation and also due 
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to heating (56,57). In fact, the electric field 
near the electrodes is very high (even up 
to 10000 V/cm) due to high current densi-
ty, while with increasing distance from the 
electrodes it decreases drastically and is 
lower than the selected V/d ratio in most 
of the target volume (Figure 2). Therefore, 
high values are used to determine the 
voltage at the electrodes, e.g. 1500 V/cm, 
although the electric field threshold at 
which irreversible electroporation occurs 
in tissue is in fact only around 500-700 V/
cm (depending on the type of tissue and 
the number of pulses supplied).

Electrode position planning and place-
ment is still mostly done manually. The 
interventional radiologist determines the 
positions and trajectories for electrode in-
sertion on the basis of the patient's pre-in-
tervention imaging. Electrode insertion 
is then performed with the help of con-
trast-enhanced ultrasound, for example at 
ablation in the prostate, or with the help 
or interventional CT imaging, for example 
in treatment of liver or pancreatic tumors. 

Figure 2: Example of electric field distribution in homogeneous tissue at different distances between needle electrodes 
(1 cm, 1.5 cm and 2 cm) and at the same voltage-to-distance ratio V/d = 1500 V/cm. For better visibility, the color scale is 
limited to a range of up to 3000 V/cm. The electric field is not homogeneous and is very high in the immediate vicinity of 
the electrodes (even up to 10,000 V/cm), but decreases rapidly with the distance from the electrodes and is between 500 
and 1000 V/cm in the middle between the electrodes. The distribution of the electric field also depends on the placement 
of the electrodes. At the same V/d ratio, the field in the middle between the electrodes is almost homogeneous at a 
distance of 1 cm (A), whereas it becomes increasingly nonhomogeneous with increasing distance (B, C).
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The final  electrode positions are then in-
serted into the NanoKnife device, which 
displays the schematic shape of the abla-
tion zone according to the selected electric 
field parameters (voltage-to-distance ratio 
at the electrodes). The needle electrodes 
are long and thin (diameter 0.8–1.2 mm) 
and often bend when inserted. Therefore, 
it is extremely difficult to achieve a com-
pletely parallel layout. 

The NanoKnife (AngioDynamics, 
Latham, New York, USA) is currently the 
only commercially available device for 
irreversible electroporation and dictates 
most protocols in clinical studies. The 
manufacturer recommends a V/d ratio 
of 1500 V/cm to determine the voltage 
amplitude at the electrode pair. The max-
imum voltage the NanoKnife can deliver is 
3000 V, so we are limited to distances of 
up to 2 cm when placing the electrodes 
if we want to maintain a ratio of 1500 V/
cm. Additionally, we are also limited by 
the maximum electric current the device 
can deliver. If the amplitude of the electric 
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current in the pair of electrodes exceeds 50 
A, the pulse delivery is automatically ter-
minated. The voltage must then be lowered 
accordingly and the procedure repeated. 
High-voltage electric pulses can cause 
cardiac arrhythmia, so pulses are applied 
during the absolute refractory period of 
the ventricles (58,17). The pulse delivery 
is thus always synchronized with the pa-
tient's electrocardiogram, regardless of the 
selected delivery protocol. The NanoKnife 
delivers electric pulses in sequences of ten 
pulses, followed by a break during which 
the device is recharged. Electroporation 
pulses also cause strong muscle contrac-
tions, so complete pharmacological paral-
ysis of the patient and general anesthesia 
are required. Ablation of deep-seated tu-
mors by irreversible electroporation can 
be performed surgically or percutaneous-
ly. The percutaneous procedure is min-
imally invasive and greatly shortens the 
time of hospitalization and recovery of the 
patient, but it is technically much more 
demanding. It is extremely important that 
the needle electrodes are inserted exact-
ly according to the pre-procedure plan. 
Electrode insertion can be performed 
manually under CT guidance or using 
navigation systems currently available for 
percutaneous treatments (59,61). Figure 3 
shows an example of a minimally invasive 
procedure - IRE ablation of colorectal me-
tastases in the liver.

2.2 Cardiac ablation

One of the most promising applica-
tions of irreversible electroporation is the 
pulmonary vein isolation for treatment of 
atrial fibrillation (AF). Catheter ablation 
of the atrial myocardium at the junction 
with the pulmonary veins is an established 
method for treatment of AF, with radiof-
requency (RF) ablation and cryoablation 
being most commonly used. The main 

Figure 3: An example of a minimally invasive procedure – IRE 
ablation of colorectal metastases in the liver. A, B) Pre-interventional 
images show a tumor (arrow) near the hepatic and portal veins and 
the bile duct. C) Needle electrodes for electroporation are inserted 
percutaneously under CT guidance. D) The image taken immediately 
after the procedure shows a characteristic hypointense area of ablation 
with a hyperintense edge. E, F) The images show a shrinking of the 
ablation area two weeks after the procedure. G, H) Three months after 
the procedure, the area of ablation on a contrast enhanced CT is barely 
visible, and no metabolic activity is detected with a PET CT in the area 
of the lesion. The figure is summarized from Scheffer HJ, et al (19).
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weaknesses of RF ablation are limited con-
trol over the expansion of heat in tissue 
(and with it increased risk for damage to 
non-target tissue) and discontinuities in 
the ablation zone. The procedure is also 
lengthy and requires an experienced car-
diologist or electrophysiologist as the RF 
electrode needs to be manually moved 
around the circumference of the pulmo-
nary vein. Irreversible electroporation en-
ables good control over the depth of the 
ablation zone and the success of ablation 
is not dependent on heat accumulation in 
tissue. Compared to RF ablation, the IRE 
procedure is much faster, as the pulse de-
livery takes only a few seconds after the 
placement of the circular catheter. With 
both thermal ablation techniques (RF 
and cryoablation) the target tissue for ab-
lation is located outside the pulmonary 
veins to avoid scarring venous walls and 
with it the risk of pulmonary vein steno-
sis. Irreversible electroporation preserves 
the structure of the extracellular space and 
thus reduces tissue scarring. Therefore, it 
also allows ablation directly at the junction 
with the veins without the risk of stenosis 
(62). Catheter cardiac ablation by irre-
versible electroporation is currently in the 
development phase. Numerous preclin-
ical studies and a first clinical study (20) 
have tested different forms of catheters, 
from balloon catheters (62) to different 

forms of catheters with bipolar electrodes 
and biphasic pulses (20). One of the more 
promising catheters is a circular catheter 
with nine electrodes (Figure 4) (22,49). 
Optimal electric pulse parameters are still 
the subject of research, but general con-
clusions suggest that a bipolar electrode 
configuration in the catheter (alternating 
positive and negative electrodes) and ap-
plication of short biphasic pulses provide 
the best control over the size of the abla-
tion zone and reduce the intensity of mus-
cle contractions.

2.3 Procedure planning

Technological advancement, especially 
with image-guided processes, now enables 
the use of minimally invasive procedures, 
which greatly shorten the duration of 
hospitalization and improve the patient’s 
quality of life during recovery. With mini-
mally invasive procedures, especially with 
deep-seated tumors, we are limited regard-
ing electrode placement, as mechanical 
damage to critical anatomical structures 
must be avoided. The first step in treat-
ment planning is to determine the inser-
tion trajectory of the electrodes, following 
the manufacturer's instructions that the 
electrodes should be as parallel as possi-
ble to each other, as this is the only way to 
control the distribution and homogeneity 

Figure 4: A) A circular catheter with numbered electrodes for pulmonary vein ablation; B) A 
schematic representation of three biphasic pulses for pulmonary vein ablation with a circular 
catheter. The figure is summarized from Stewart MT, et al (22).
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of the electric field in the tissue. In the sec-
ond step, we must determine the optimal 
number and placement of electrodes and 
the optimal parameters of electric pulses 
by providing a sufficiently high electric 
field in the entire target volume of the 
tissue, without damaging nearby critical 
anatomical structures. Additionally, we 
are limited by the capabilities of clinically 
accessible pulse generators – with limited 
current and voltage.

Although the NanoKnife device allows 
for a schematic representation of the ex-
pected ablation zone according to the 
selected electrode placement and pulse 
parameters, it assumes that the tumor 
is perfectly round and does not take in-
to account the local redistribution of the 
electric field due to biological tissue vari-
ability. In addition, the NanoKnife trans-
lates the three-dimensional placement of 
the electrodes into two dimensions, so the 
ablation zone is represented only in the 
plane perpendicular to the electrodes. The 
voltage at the electrodes is calculated au-
tomatically according to the desired volt-
age-to-distance ratio. The suitability of the 
calculated parameters is checked by mea-
suring the current at the beginning of the 
procedure. Each pair of electrodes is first 
supplied with 10-20 test pulses. If the mea-
sured current is in the range of 20-30 A, 
the parameters are deemed suitable, so the 
delivery of the remaining pulses can fol-
low. If the current value is higher or lower, 
the voltage or electrode placement must 
be adjusted accordingly.

The planning of IRE ablation based 
solely on electric current is not reliable, 
so in recent years software tools and ap-
plications for the preparation of compre-
hensive pre-intervention plans have been 
under active development. The prepa-
ration of a treatment plan is based on a 
numerical simulation of the procedure 
(37,63-65). The principle of modelling 

ablation with irreversible electroporation 
is presented on a simplified theoretical 
model of liver tumor (Figure 5 / A). The 
model consists of two tissues, namely the 
liver parenchyma and a spherical tumor 
with a diameter of 16 mm. Four needle 
electrodes are arranged around the tumor 
in a square configuration, and the maxi-
mum distance between the electrodes is 20 
mm. The electrodes together form six ac-
tive ablation pairs. The parameters of the 
electric pulses in the model are selected 
in accordance with the recommendations 
of the manufacturer of the NanoKnife de-
vice, namely 100 pulses per electrode pair 
for 90 μs and the ratio between the voltage 
and the distance between the electrodes 
of 1500 V/cm (Figure 5 / B). The dynamic 
of the pulse delivery is as follows: electric 
pulses are delivered with a frequency of 1 
Hz in a train of 10 pulses, and there is a 
3-second pause between individual trains, 
which is the time needed to charge the 
pulse generator. With a simplified mod-
el, we can quickly check the suitability of 
selected pulse parameters and electrode 
placement. For each active electrode pair, 
the spatial distribution of the electric field 
is calculated separately, and the contribu-
tions of individual pairs are finally com-
bined to give the final distribution of the 
electric field or, in other words, the tissue 
coverage (Figure 5 / C). The threshold for 
irreversible electroporation of the tumor 
was 600 V/cm for the selected model pa-
rameters (37). By analyzing the contribu-
tion of individual pairs of electrodes to 
the total coverage of the target volume, we 
can optimize the ablation parameters. In 
Figures 5 / D-I we see that with the first 
four pairs we cover 75% of the tumor vol-
ume, and with the fifth pair we already 
achieve 100% coverage. In the model, in 
addition to the distribution of the electric 
field, we also calculate the heating of the 
target tissue due to Joule heating. Figure 
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6 / A shows the calculated temperature 
in the tissue after delivery of 100 pulses 
to the first pair of electrodes. We see that 
the temperature rises sharply already in 
the first pair, which is then followed by 
the delivery of pulses to a another 5 pairs. 
Figure 6 / B shows the highest calculat-
ed tissue temperature for all 6 electrode 
pairs. With rising tissue temperatures the 
electrical conductivity of the tissue also 
increases, and with it the electric current 
(Figure 6 / C). From the final distribution 
of the electric field on Figure 5 / C it is ev-
ident that the entire tumor is covered with 

electric fields above the default threshold 
for IRE (600 V/cm). We could further op-
timize the parameters and thus limit tissue 
heating and the risk for unwanted thermal 
damage. When preparing an actual pa-
tient-specific plan for the procedure, we 
use the patient's pre-intervention images, 
on the basis of which we create a simpli-
fied, but anatomically correct, numerical 
model of the target organ / tissue. We then 
determine the intervention plan in the 
model by calculating the electric field dis-
tribution and by optimizing the placement 
and voltage on the electrodes (66). The 

pre-operative treatment plan then has to 
be imported into the intervention imaging 
domain on the day of the procedure, which 
requires the registration of three-dimen-
sional pre-intervention and intervention 
images in the same coordinate system. 
Image registration is an extremely diffi-
cult procedure, especially with soft tissues, 
where deformations are often present. In 
addition to the limited precision of image 
registration, the time complexity is also 
problematic, as the registration process is 
still too time-consuming for routine clin-
ical use (60). The pre-operative plans are 
thus currently used as a support when per-
forming the actual procedure. 

2.4 Thermal aspects of 
irreversible electroporation

Ablation effectiveness with irreversible 
electroporation is not dependent on tem-
perature, so the method is often charac-
terized as a non-thermal ablation metod, 
which can lead to erroneous thinking that 
IRE does not cause any tissue heating. Soft 
tissues are good conductors and their elec-
tric conductivity increases during electro-
poration, which can cause high electric 
currents and consequent Joule heating of 
surrounding tissue. The temperature rise is 
most evident in the immediate proximity 

Figure 5: A) A simplified numerical model of a liver tumor, surrounded by four needle electrodes. B) Chosen parameters 
of electric pulses for the six active electrode pairs in the model. C) Final distribution of the electric field in the tissue. 
The round contour of the tumor can be seen. The colour scale is adjusted to the range from 600 to 1500 V/cm for 
better visibility. D/I) At the selected model parameters, the threshold for irreversible electroporation of the tumor is 
approximately 600 V/cm. The D/I images show the contributions of individual electrode pairs to the total coverage of the 
target tissue with an electric field greater than 600 V/cm. We see that the entire volume of the tumor is already covered 
by the contributions of the first five pairs.
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pre-operative treatment plan then has to 
be imported into the intervention imaging 
domain on the day of the procedure, which 
requires the registration of three-dimen-
sional pre-intervention and intervention 
images in the same coordinate system. 
Image registration is an extremely diffi-
cult procedure, especially with soft tissues, 
where deformations are often present. In 
addition to the limited precision of image 
registration, the time complexity is also 
problematic, as the registration process is 
still too time-consuming for routine clin-
ical use (60). The pre-operative plans are 
thus currently used as a support when per-
forming the actual procedure. 

2.4 Thermal aspects of 
irreversible electroporation

Ablation effectiveness with irreversible 
electroporation is not dependent on tem-
perature, so the method is often charac-
terized as a non-thermal ablation metod, 
which can lead to erroneous thinking that 
IRE does not cause any tissue heating. Soft 
tissues are good conductors and their elec-
tric conductivity increases during electro-
poration, which can cause high electric 
currents and consequent Joule heating of 
surrounding tissue. The temperature rise is 
most evident in the immediate proximity 

Figure 5: A) A simplified numerical model of a liver tumor, surrounded by four needle electrodes. B) Chosen parameters 
of electric pulses for the six active electrode pairs in the model. C) Final distribution of the electric field in the tissue. 
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approximately 600 V/cm. The D/I images show the contributions of individual electrode pairs to the total coverage of the 
target tissue with an electric field greater than 600 V/cm. We see that the entire volume of the tumor is already covered 
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to electrodes, where the temperature can 
exceed 60 °C, which can cause coagulation 
of cell proteins and immediate cell death 
even with brief exposures. Longer dura-
tions of exposure can lead to cell death 
even at 43 °C. The increase in temperature 
is proportional to the number of electric 
pulses and the frequency of pulse delivery. 
In larger tumors, where many electrodes 
are used and whose contributions overlap, 
hundreds of pulses can be cumulatively 
delivered to the tissue locally, which can 
lead to high temperatures throughout the 
target tissue, thus losing the non-ther-
mal nature of IRE. One of the reasons for 
choosing IRE ablation over thermal meth-
ods is its use in anatomical locations and 
organs where thermal damage is not ac-
ceptable. In such cases the tissue tempera-
ture needs to be controlled and consid-
ered during planning for the procedure. 
Heating and cooling of tissues and pulse 
delivery dynamic need to be considered in 
calculations as well.

In the numerical model, we take into 
account the change in the conductivity of 
the medium both due to electroporation 
and due to heating. Figure 6 / C shows the 
increase in electric current as a result of 
heating for each active pair of electrodes 
separately. Although the V/d ratio is the 
same in all electrode pairs, we can see that 
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in pairs with lower voltage the current in-
creases by approximately 3 A after the ap-
plication of all 100 pulses, while in pairs 
with a higher voltage the current rises by 
5-6 A. The increase in electric current is 
often considered in literature as one of the 
indicators of successful electroporation, 
although there are multiple factors for this 
increase; among others, as we can see in 
Figure 6, there is also an increase in tissue 
temperature, which is by no means negli-
gible during IRE.

3 Challenges in introducing 
irreversible electroporation 
into the clinical practice

Although irreversible electroporation 
has proven to be a promising alternative to 
existing methods of ablation of various soft 
tissues, there are still many problems to be 
solved when introducing it into the clinical 
practice. 

One of the key challenges is the lack 
of an indicator of the technical success of 
IRE ablation during or immediately after 
the procedure. IRE causes immediate tis-
sue edema, so imaging immediately after 
the procedure does not provide reliable in-
formation on the area of ablation. Due to 
tissue regeneration following IRE (and as-
sociated shrinkage) it is difficult to reliably 
demarcate the area of ablation on post-op-
erative imaging, which makes it difficult to 
develop and validate numerical models for 
intervention planning (68,69). 

Studies in the last few years have often 
used an increase in electric current as a 
measure of successful irreversible electro-
poration. Martin and colleagues in a study 
of pancreatic IRE ablation state that with 
successful tissue IRE, the electric current 
increases by at least 12 A (45). If an ade-
quate increase in current is not achieved 
for an individual pair of electrodes after 
the introduction of all pulses, an additional 

70–100 pulses are suggested (45,70,71). 
This way of »controlling« the ablation size 
leads to a large number of pulses and thus 
to significant heating, and it has not been 
proved that additional pulse delivery in-
creases the size of ablation (72). In addi-
tion, the conclusions of the study (45) refer 
to the results of ablation in the pancre-
as; soft tissues have a variety of electrical 
properties, so the direct transfer of con-
clusions to other tissues is not sufficient-
ly warranted without further research. In 
the study (73) O'Brien et al. studied the 
influence of internally cooled electrodes 
on effectiveness and safety of IRE abla-
tion in the liver. Results of the study have 
shown that lower temperatures and lower 
electric currents are achieved with the use 
of cooled electrodes compared to tradi-
tional electrodes without a change in the 
size of the ablation area. Ruarus et al. have 
shown in their study (74) that although 
an increase in current correlates with the 
success of ablation of colorectal metas-
tases, an increase of current for 12 A was 
observed in only 10% of patients. The size 
and increase of the electric current depend 
on tissue composition and also on heating 
– either as a consequence of an increase 
in conductivity or due to impaired tissue 
cooling due to local vascular occlusion 
caused by electroporation. In the numeri-
cal model (Figures 5 and 6), we considered 
the dynamic properties of the tissues and 
calculated the increase in electric current 
during IRE ablation of the tumor in the 
liver. We have shown that despite a low 
increase in electric current we can achieve 
complete coverage of the target tissue with 
a safety margin, as shown by Ruarus et 
al. in their study (74). Increase in current 
during IRE ablation can serve as a poten-
tial indicator, but it does not represent a 
reliable method for predicting treatment 
success (or failure); its misuse can even 
lead to increased risk of damage to nearby 
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