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ABSTRACT

Pulsed field ablation (PFA) is being adopted as a safer and more efficient alternative to conventional thermal ablation methods
for the treatment of cardiac arrhythmias, particularly atrial fibrillation. In this review, we examine the basic biophysics of PFA,
focusing on electroporation at the membrane, cellular, and tissue levels to provide mechanistic explanations for the observed
clinical outcomes. We analyze both the benefits and limitations of the nonthermal, tissue-selective nature of PFA, examine
adverse events, and emphasize the need for standardized comparisons among different manufacturers’ systems. Drawing
on decades of electroporation research in other biomedical fields, we suggest that deeper scientific understanding is key to
optimizing PFA technology, improving long-term outcomes, and maintaining its strong safety profile. Open questions and
future directions for clinical translation and refinement of the procedure are also discussed, considering both atrial and ventric-
ular ablation.

KEYWORDS Pulsed field ablation; Electroporation; Cardiac ablation; Limitations; Tissue selectivity; Adverse events of PFA

(Heart Rhythm 2025; M:1-12) © 2025 Heart Rhythm Society. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Pulsed field ablation (PFA) is increasingly replacing conven-
tional thermal ablation methods in the treatment of atrial
fibrillation (AF)."? PFA is also being actively explored for
the treatment of ventricular tachycardia (VT).3° Compared
with thermal methods, PFA is safer, more time effective,
and comparably efficient.®’ Although superior (ie, 100%)
acute pulmonary vein isolation (PVI) is usually achieved with
PFA, long-term treatment success in terms of freedom from
AF and reduction of AF burden still needs improvement. It
is currently also not yet possible to distinguish between
long-term failure owing to failure to ablate the target
completely, for example, achieve transmural and circumfer-
ential ablation in PVI,% and failure owing to unknown mecha-
nisms and origins of the arrhythmia. Furthermore, owing to
the mostly nondisclosed waveforms of current PFA systems,
it is difficult to make laboratory comparisons among the
different systems, and clinical comparisons remain scarce.
The safety of PFA with various systems has been demon-
strated in preclinical studies and the first clinical trials. This
experience has been largely confirmed in reports from the
real world.”'° The total number of energy delivery-related

adverse events is consistently less than 1%, without the
occurrence of atrioesophageal fistula, long-term phrenic
nerve palsy, or pulmonary vein stenosis. With the spread
and use of PFA beyond PVI, new adverse events have been
identified: hemolysis, coronary artery spasms, and transient
phrenic nerve paresis. In addition, cerebrovascular events (si-
lent cerebral lesions [SCLs], transient ischemic attacks [TIAs],
and strokes) have been reported but do not have significantly
different rates than in thermal procedures.

PFA was introduced as a nonthermal and tissue-specific/
selective ablation method based on electroporation. Electro-
poration has been used in biomedicine for drug and gene de-
livery, biotechnology, and food processing for decades.”'"*
The wealth of knowledge accumulated in these areas can
help explain many of the observed adverse events, while
also improving our understanding and aiding in the
development of PFA procedures and devices. Meaningful
comparison of different devices and treatment outcomes,
as well as the development of periprocedural markers, will
only be possible through a deeper understanding of PFA
mechanisms. Ultimately, comprehending PFA, including the
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limitations of its “non-thermal” nature and how the selectivity
of cardiac tissue ablation can be utilized, is critical for
maximizing the potential of this new ablation modality.

This review describes the phenomenon of electroporation
at the membrane, cellular, and tissue levels and outlines the
biophysics of atrial and ventricular ablation, as currently un-
derstood. It offers mechanistic explanations for acute vs
long-term success and adverse events, which will hopefully
help maintain the superior safety and efficiency of PFA for
treatment of cardiac arrhythmias.

Electroporation at the membrane and cellular levels

The fundamental mechanism underlying PFA is cell mem-
brane electroporation.’® When a cell is exposed to an
external electric field, for example, by applying electric
pulses (Figure 1A), the cell membrane becomes charged
and a voltage is induced across the membrane (Figure 1B).
From an electric perspective, the cell membrane behaves
like a thin dielectric sheet surrounded by electrolyte (both
intracellular and extracellular solutions), essentially func-
tioning as a capacitor. The induced transmembrane voltage
is proportional to the electric field strength and cell size, de-
pends on cell orientation, and varies with position on the
membrane.’® When this induced transmembrane voltage is
within physiological values (<100 mV), it causes stimulation
of excitable cells; that is, it triggers an action potential and
calcium release and causes muscle contraction (Figure 1C).
However, when the transmembrane voltage reaches supra-
physiological values (typically several hundred millivolts), it
causes structural and chemical changes in the membrane
that increase the membrane’s permeability to ions and
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molecules (Figure 1D). These changes include the formation
of aqueous pores in lipid domains and membrane proteins,
as well as lipid oxidation and the formation of permeable de-
fects in oxidized membrane lesions.'®'” The formation of
these pores and defects results directly from the strong
electric field within the membrane. A transmembrane
voltage of 0.5 V across a 5 nm thick membrane results in an
electric field strength on the order of 10® V/m—sufficient to
break most dielectric materials, including a lipid bilayer/cell
membrane.

The resulting increased membrane permeability increases
the transport of ions and molecules across the membrane in
both directions (into and out of the cell), which disrupts the
ion gradients, increases the intracellular calcium concentra-
tion, and causes adenosine triphosphate and other sub-
stances, such as damage-associated molecular pattern
molecules, to leak out of the cells (Figure 1D).2°2? The
downstream effects are numerous and include disruption of
the cytoskeleton network and decreased mitochondrial
membrane po‘tentia|.23'24 Therefore, electroporation can be
regarded as a form of cell injury. Cells have their own mech-
anisms to repair such injuries and can therefore recover ho-
meostasis and survive electroporation, a process known as
reversible electroporation. However, if cells cannot repair
the damage, they die—a process known as irreversible elec-
troporation. Irreversible electroporation typically occurs at
higher electric field strengths and/or a greater number of
pulses than reversible electroporation, given that it is associ-
ated with higher transmembrane voltages, larger electropo-
rated membrane areas, greater transmembrane transport,
and therefore greater disruption of homeostatic balance.
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Cell response to pulsed electric fields. A: Cell can be exposed to pulses of different shapes and durations. B: When exposed to an electric field, an induced trans-
membrane voltage will be established that will, (C) at lower values, trigger physiological response, ie, action potential and contraction in muscle cell, and (D) at
higher values cause electroporation with (E and F) downstream effects potentially leading to (G) cell death. AP = action potential; ATP = adenosine triphosphate;

DAMP = damage-associated molecular pattern; ROS = reactive oxygen species.
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Cell death can be necrotic at higher electric field strengths
and apoptotic, necroptotic, or pyroptotic at lower electric
field strengths.?” It is not yet clear whether there are any sig-
nificant differences in the clinical implications of the different
cell death pathways listed earlier, especially because some
combination of cell death pathways is likely to occur with
every PFA application. The main differences are likely in their
immunogenicity, given that electroporation-mediated cell
death can trigger an immune response.26 It is important to
note that cell death does not necessarily occur immedi-
ately—cells can successfully reseal their membranes but still
die hours later.”’

The disruption of ionic gradients also affects cellular excit-
ability (Figure 2).7° An increase in membrane permeability
results in increased membrane electric conductance. This
increase is nonselective, and therefore, electroporation
adds an additional leak current across the membrane that
bypasses currents through ion channels and pumps.®' De-
pending on its magnitude, this leak current can alter the
shape of action potentials or cause sustained membrane de-
polarization and stunning—a temporary inhibition of action
potentials.?® If electroporation is reversible, the cell reseals
its membrane within seconds to minutes after exposure to
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the pulses, allowing a gradual recovery of excitability. The
rapid increase in membrane conductance after PFA and sub-
sequent resealing may explain the immediate disappearance
of intracardiac electrograms (iIEGMs) and their (partial) recov-
ery within minutes.”® Action potentials after this recovery
phase may still be impaired to some extent for a longer
period (after membrane resealing itself is complete), if elec-
troporation has resulted in damage to the ion channels."’
Electroporation can also result in disruption of intercellular
connections (gap junctions),>* which can affect the propaga-
tion of action potentials in excitable tissue.”> Both—the ef-
fects of electroporation on ion channels and gap
junctions—require further research. Electroporation can
also alter transcriptomic and proteomic profiles in both
reversibly electroporated cells and cells undergoing cell
death,3® which may have further effects on cellular function.
The induced transmembrane voltage—the prerequisite for
membrane electroporation—also depends on the duration
of individual electric pulses applied in the waveform. If the
pulse duration exceeds the characteristic membrane
charging time (on the order of 1 ps for cardiomyocytes), the
membrane can fully charge and reach its maximum value.
For shorter pulses, the membrane does not fully charge
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Electroporation at the cellular level in cardiac pulsed field ablation. A: The profile of the induced transmembrane voltage depends on cardiomyocyte orientation in
the electric field. Electroporation correlates with the membrane regions where the induced transmembrane voltage reaches the highest absolute values. B: Equiv-
alent electric circuit representing the cardiomyocyte membrane with its main ion channels and pumps. Electroporation adds a nonselective leak current (Ip) to the
membrane. C: Response of an adult rat cardiomyocyte to high-voltage pulses (indicated by asterisks). When electroporation occurs, the action potentials (APs),
calcium transients (CaT), and sarcomere shortening (Sarc.) become perturbed; however, a cardiomyocyte can recover from such electroporation.
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before the end of the pulse and therefore reaches a lower
transmembrane voltage value. However, this can be
compensated for by increasing the applied electric field
strength, that is, using a higher pulse amplitude. Therefore,
waveforms with shorter pulse durations typically require
higher electric field strengths to achieve electroporation. In
addition, the induced transmembrane voltage depends on
cell orientation in a pulse duration-dependent manner. For
pulses longer than about 10 ps, cells oriented with their
long axis parallel to the electric field are more sensitive,
whereas for submicrosecond duration pulses cells oriented
perpendicular are more sensitive. For pulses with duration
roughly in the range of 1-10 ps (depending also on the
type of cell), the orientation sensitivity becomes less impor-
tant and cells are more similarly electroporated regardless
of their orientation.?’-*®

Electroporation at the tissue level

An electric field of sufficient strength to cause electropora-
tion in the tissue is usually established by delivering electric
pulses through electrodes. In PFA, this is achieved by placing
the ablation electrode adjacent to the target substrate to be
ablated (Figure 3A). During pulse application, the electric
field and current density are highest in the immediate vicinity
of the electrodes on the catheter but decrease rapidly with
increasing distance from the catheter surface (Figure 3B).
The highest current density is expected at sharp “edges,”
either at physically sharp edges of metal electrodes or at
sharp edges that form at the junction of metal electrode
and insulation. A significant increase in temperatures can
be expected there.?”*° Even if this increase is limited to a
small volume, it can lead to thermal coagulation necrosis in
the tissue, and also an increase in temperature in the blood.
Although the latter is short lived, it should not be neglected
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because it may be sufficient to cause protein denaturation
and clot formation. In addition, electrolysis, degassing, and
boiling of water can cause bubbles to form. The localized
overheating of the blood around the catheter is highly
dependent on the waveform and in particular on the amount
of energy delivered in a unit of time. This local overheating
(even at temperatures below boiling) can lead to clotting
and bubble formation, which in turn can result in thromboem-
bolic events such as SCLs, TIA, and stroke.*’

At a greater distance from the catheter in the tissue, there
is a volume in which the cells die with some delay. For PFA,
this is the desired outcome and the end goal of the treat-
ment—to destroy myocardium that is propagating the ar-
rhythmogenic  signals and therefore prevent their
conduction. In older literature, this is typically referred to as
irreversible electroporation—now PFA (Figure 3B). The mini-
mum electric field at which this occurs is typically named le-
thal electric field threshold (LET).*?

Surrounding the volume of cell death is a region where
stunning, that is, reversible electroporation takes place
(Figure 3B and as described in the section earlier). This still re-
quires some degree of electroporation to produce the mem-
brane damage that leads to the nonselective leak currents
that inhibit normal cell repolarization. Stimulation of excit-
able cells can occur at even lower electric field strengths,
so the volume at which this can occur is even greater.3?4344
Recently, a preclinical study showed that it is also possible to
use a single monophasic 10 ps pulse to achieve cardioversion
and termination of AF and atrial flutter.*”

Electroporation causes various changes in the tissue.
During the pulse application, the conductivity of the tissue
is temporarily increased by a factor of up to 3 compared
with the initial conductivity.***” This is because electropo-
ration forms additional conduction pathways through the
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Electroporation at the tissue level in cardiac pulsed field ablation. A: Example of placing a monopolar focal ablation catheter in the left atrium. B: Electric field in
tissue surrounding the catheter—blood, myocardium, and pericardium and surrounding tissue. The electric field is illustrated with nested volumes of different ef-
fects. C: Electric field in perpendicular orientation relative to the long axis of cardiomyocytes. D: Electric field parallel with the long axis of the cardiomyocytes.

Created in BioRender. Kos et al.*! https://BioRender.com/oma0r8h.
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cell membranes, which otherwise represent an obstacle to
the flow of current. The increase in conductivity also de-
pends on the duration and shape of the pulse wave-
form.*®4? For the myocardium, this conductivity increase
factor is 2.6 for 100 us pulses and slightly less—1.8 for
the short biphasic pulses used with the circular array cath-
eter.*? This change in conductivity affects the distribution
of the electric field in the tissue and also the shape of the
lesion. The conductivity of the blood is less affected,
mainly because the volume fraction of cells in the blood
is much smaller, but also because the cells have a much
smaller diameter than cardiomyocytes. Consequently, the
threshold value of the electric fields at which electropora-
tion of small blood cells occurs is expected to be much
higher.”® After pulse application, conductivity generally re-
turns to pretreatment values, but measurements taken
shortly after the end of pulse delivery still show an in-
crease from baseline.”” This can be attributed in part to
residual heat from the pulse applications, given that all tis-
sues have a positive temperature coefficient for conductiv-
ity in the range of 1%-2%/°C,”" and in part to the edema
caused by the electroporation itself.>?

Endothelial cells of the capillaries and also of the larger
blood vessels are also affected by electroporation, making
the walls of all blood vessels more permeable (Figure 3C
and 3D).>® The direction of the electric field relative to the
cardiac muscle fibers (Figure 3C and 3D) also affects the
shape of the lesions, partly owing to the different susceptibil-
ity of cells to electroporation as a function of their orienta-
tion,”” but also owing to the anisotropic conductivity of the
myocardium.*?>*

Stimulation induced by electric fields further from the
electrodes (Figure 3B) can elicit various physiological re-
sponses such as neuromuscular capture, pain,”>° stimula-
tion of neurons of ganglionic plexi, and contraction of
smooth muscles. Contraction of the esophagus and its retrac-
tion during PFA have recently been suggested as one of the
contributing mechanisms to functional sparing of the esoph-
agus.”” Given that the esophagus can be stimulated from
PFA applications, it is also reasonable to assume that stimu-
lation of smooth muscles can play a role in the spasm of cor-
onary vessels, particularly because it has been shown that
blood flow can be dramatically reduced already after just a
few pulses being delivered.”®

Although there were some initial claims that PFA is selec-
tive in killing only cardiomyocytes based on in vitro
data,*7°9 the differences in LET of different tissues as
determined in in vivo experiments are much smaller and
the observed selectivity may rather stem from the different
capacity for regeneration that different tissue types have.®"

Determinants of lesion size and shape

Beyond pulse duration and amplitude, biological effects of
electroporation also depend on the number of applied
pulses in pulse trains, pulse shape (monophasic vs biphasic,
rectangular vs exponentially decaying), pulse repetition fre-
quency, etc.9?%* All these pulse parameters must be
considered and carefully selected to achieve the desired
electroporation effect while minimizing side effects, such as
excessive heating, bubble formation, and neuromuscular
capture.”’

While keeping all other pulse parameters constant,
increasing the number of pulse trains reduces the LET in
tissue. Although several different functions for empirically
fitting this dependence have been evaluated,*®° a recent
in vivo study found that the power function offers a good
fit of volume of lesions in swine ventricular myocardium.>?
This function illustrates that there are diminishing returns
with increasing the number of pulse trains. Consequently,
the reduction in LET that can be achieved with an
increased number of trains still cannot overcome the rapid
decrease in electric field strength with distance from the
electrodes, meaning that the practically achievable lesion
size with a given waveform and catheter combination is
limited.

Lesion shape is also affected by the catheter geometry
and the choice of vectoring. Bipolar catheters have electric
fields that are very high near the surface of the electrodes,
but decrease rapidly with the distance from the electrodes.®®
In contrast, unipolar catheters cause the electric field in a
larger volume and also tend to achieve deeper focal le-
sions.””*”® However, a direct comparison of the same cath-
eter and waveform did not show much difference between
bipolar and monopolar comcigura‘fions.69 Furthermore, it is
important to note that LET is a simplification of the complex
biological process of cell death from a relatively simple elec-
tric field distribution and that it sometimes fails to accurately
reflect the size and shape of the lesions.”"”"

Table 1 Different effects of various ablation energies on tissue and cells

Ablation method Radiofrequency ablation (heating)

Pulsed field ablation

Cryoablation (freeze-thaw) (electroporation)

Volumetric heating and thermal
diffusion
Denaturation of proteins

Energy delivery and
propagation
Cell damage

Highly thrombogenic,
indiscriminate thermal damage

Coagulation

Delayed, from the periphery

(Micro-) vasculature

Extracellular matrix
Healing

Thermal diffusion

Crystal formation—cell membrane
damage; osmotic imbalance

Clogging and damaging of the
microvasculature

Preserved

Delayed, from the periphery

Electric field effect and volumetric
heating

Cell membrane and membrane
protein damage

Transient reduction of blood
perfusion

Preserved

Enabled/facilitated
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The lesion achieved in tissue develops and matures over
the course of several weeks.??’? Given that the mechanisms
of causing cell death in PFA are different from the mecha-
nisms in thermal ablations (Table 1), the lesion development
and maturation are also different and different healing dy-
namics can be expected.®’’? It thus remains to be confirmed
if late gadolinium enhancement (LGE) cardiac magnetic reso-
nance imaging (MRI) can be used in the same way and at the
same times as after thermal ablation. In addition, it remains to
be established whether LGE can be used to assess transmur-

ality of lesions and pulmonary vein reconnections.”*’*

Waveform and catheters

Many of the attributes of lesion size and side effects depend
on the waveform and catheter design. A waveform is defined
by the pulse shape, duration, pauses between the pulses,
and the number of pulses. Monophasic pulses are more effi-
cient in electroporating cells and thus creating lesion, but
they also cause electrochemical reactions at the electrode-
electrolyte interface, including electrolysis of water with asso-
ciated gas generation, and more intensely stimulate nerves
and muscles and are more painful.*® Short biphasic pulses
(which are mostly used in contemporary PFA systems) cause
less neuromuscular capture®>® and electrochemistry’® but
also require higher amplitudes for the same level of electro-
poration.”” A very important “property” of the waveform is
also the duty cycle, which tells how much energy is delivered
in a unit of time. The pulses need to be delivered at a suffi-
ciently low duty cycle, that is, repetition rate, not to cause
excessive heating.’” When pulse delivery is synchronized
with the R wave to avoid VT induction, the train of pulses
needs to be shorter than 200 ms. Therefore, often more
than 1 train of pulses is delivered.

Catheter design and waveform are most probably respon-
sible for microembolic signals’® and silent cerebral events
and lesions.”” In addition, the degree of hemolysis seems
to differ among different catheters and waveforms.®° Howev-
er, it seems consistent across PFA systems that contact of the
catheter with tissue reduces the level of hemolysis, and that
level of hemolysis is correlated with the number of applica-
tions.”’

PFA is less dependent on contact force and not critically
dependent on contact.”®" The blood represents a
conductive medium and will bridge the gap between the
catheter and the cardiac tissue. Nevertheless, the lesion will
be less than optimal as the effective electric field in the
tissue will be lower and the depth of the lesion shallower. It
has been shown that, in addition to suboptimal lesion
depth, hemolysis is larger when electrodes are not in
contact with the tissue.®’®> Large multielectrode catheters
come with 9-20 electrodes, and admittedly, all electrodes
are virtually impossible to be in contact at the same time,
meaning that at least in some places treatment is subopti-
mal.?#’ 5 catheters currently approved for use by the
Food and Drug Administration are presented in Figure 4.
When delivered in a bipolar fashion between neighboring
electrodes, the electric field in tissue will be less spread
than when delivered between different splines or in a unipo-
lar way, so different extents and intensities of all effects
described earlier are expected.

Adverse events and underlying mechanisms
The absence of “traditional” complications, that is, absence
of esophageal damage and most notably atrioesophageal
fistula®*®” and pulmonary vein stenosis,”””" has been shown

in preclinical studies and has also been confirmed in clinical

Circular loop catheter Lattice-tip catheter Pentaspline catheter Variable loop catheter Spherical array catheter
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Bipolar Monopolar Bipolar Bipolar Bipolar
Activation pattern: Activation pattern: Activation pattern: Activation pattern: Activation pattern:
2 half-trains with skipped Simple Between adjacent splines Each electrode to adjacent Up to 64 electrodes can be
electrodes Electrode material: Electrode material: electrodes. Some electrodes engaged simultaneously.
Electrode material: Nitinol Platinum-iridium Can be disengaged. Electrode material:
Gold Irrigation: Irrigation: Electrode material: Heparin coated gold
Irrigation: Irrigated Non-irrigated Platinum-iridium Irrigation:

Non-irrigated

Figure 4

Irrigation:
Irrigated

Non-irrigated

Current lineup of Food and Drug Administration-approved pulsed field ablation catheters. The figure shows the disclosed information about the different catheter
implementations. Each catheter is equipped with numbers, which show how electrodes are activated in sequence. For the circular loop and pentaspline catheter,
the waveform is composed of more parts. Numbers next to the electrodes show which electrodes are active in a certain part of the entire waveform.
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trials and reports. The absence of these side effects is
ascribed to the nonthermal nature of PFA. However, it also
implies the “tissue selectivity” described earlier, which stems
from the ability of most tissues to heal even after cellular
death from PFA, rather than the fact that PFA cannot injure
these tissues in the first place.”’*” This healing capacity oc-
curs because PFA spares the extracellular matrix—the scaf-
fold essential for tissue regeneration.

Interestingly, other “energy-related” and often consid-
ered "PFA-specific” side effects such as coronary vasospasm,
transient phrenic nerve palsy, SCLs, and effects on the car-
diac conduction system have also been noted. None of these
side effects are truly PFA specific in the sense that they would
only be observed with PFA, given that they have all been
described also in radiofrequency ablation (RFA) and cryoa-
blation. In addition, hemolysis and potential arrhythmogenic-
ity have been identified as true “PFA specific” side effects.

Coronary spasm and narrowing of the vascular lumen are a
major concern and have been associated with the proximity
of PFA administration to the coronaries. In the field of
oncology, it is well documented that the delivery of high-
voltage pulses leads to disruption of blood flow at the micro-
circulatory level, reducing tissue perfusion but also increasing
vascular permeability.”*°® Interestingly, electric pulses have
also been studied to achieve hemostasis in noncompressible
wounds,” and although coronary spasm was initially
believed to be only an acute problem caused by PFA-
mediated contraction of vascular smooth muscles that is solv-
able with pretreatment of high doses of nitroglycerin,” it was
recently shown in a clinical study using optical coherence to-
mography that coronary spasm can be followed by neointi-
mal hyperplasia, leading to chronic narrowing of the
lumen.” Like any other cell type, vascular smooth muscle
cells can also be damaged by high-voltage pulses.” In
contrast, damage to smooth muscle has been associated
with intimal hyperplasia.”’

Recently, delayed, remote, and generalized coronary ar-
tery spasm occurring after isolation of pulmonary veins and
posterior left atrial wall with 3 different PFA devices leading
to cardiac arrest have been reported.”®'?" The incidence
of this kind of coronary spasm was 0.02% in a large
observational retrospective study including procedures with
a pentaspline PFA catheter.'% Importantly, this is not neces-
sarily a “PFA specific” side effect because it was observed in
the pre-PFA era. In a large Japanese retrospective registry,
the reported incidence of remote coronary spasm was
0.04% and 0.34%, with RFA and cryoablation, respec-
tively.'%® Authors have suggested that cardiac autonomic
nervous system imbalance might be the causative mecha-
nism, with cases occurring after ablation owing to injury of
the epicardial parasympathetic ganglia.'”?

Regulation of coronary blood flow is dynamic, complex,
and not well understood."* Electric pulses may, in addition
to causing damage to vascular smooth muscles or their
contraction like in proximity-related vasospasm, stimulate
(or stun) sympathetic and parasympathetic innervation and
thus cause autonomic nervous system imbalance.

Furthermore, electroporation was shown to increase vascular
permeability and cause edema,”®°® thus increasing micro-
vascular resistance that is also involved in the regulation of
coronary blood flow. Other mechanisms, such as the vaso-
constrictive effects of free heme and oxyhemoglobin after
intravascular PFA-mediated hemolysis, might also have a
role.”® Further research to understand and possibly discover
preventive measures for this very rare but dangerous adverse
effect is necessary.

Experience with thermal ablation procedures has shown
that phrenic nerve injury (PNI) is possible when structures
close to its course are ablated, that is, the anterior part of
the right superior pulmonary vein or the ostium of the supe-
rior vena cava. PNl is mainly related to cryoablation, and most
cases are transient or show delayed recovery, with the inci-
dence of persistent PNI estimated at 0.2%-0.3%."%>'% Pre-
clinical data suggest that PFA can cause temporary effects
on phrenic nerve function, such as stunning, which likely re-
sults from depolarization of the nerve axonal membranes
owing to the nonselective leak current associated with elec-
troporation (Figure 2B)."%7 Importantly, the effects seem to
be transient, with nerve function recovering within the pro-
cedure and no histologic changes indicating structural tissue
damage.108-110

The results of most clinical studies and registries are
consistent with preclinical data, showing only transient PNI
and no long-term palsy.”"""""? Recently, an analysis of PNI
after a PFA procedure using the pentaspline catheter re-
vealed a potentially high incidence of PNI that persisted for
at least 3 months postprocedurally (1/5 of the 64 who under-
went PFA, totaling approximately 1.5%).”%'%% The sensitivity
for PNI detection was probably higher in this study than in
most previous studies, given that PNI assessment based on
functional fluoroscopy was used. In contrast, the short
follow-up (3 months versus longer periods in most studies)
with insufficient time for phrenic nerve regeneration could
be the reason for this discrepancy.

The cerebral embolic complications of catheter ablation
range from cerebrovascular infarctions and TIAs to SCLs.
The incidence of cerebrovascular infarction and TIA when us-
ing PFA ranges from 0.3% to 1.2%, depending on the type of
device used."""""® It seems that embolic complications are
not energy specific. A recent meta-analysis has shown that
the incidence of SCL was not significantly different between
the pentaspline PFA catheter (14.4%) and several other cath-
eter designs using different thermal ablation methods.""’
The high incidence of SCL (8.9%—12% in the first large PFA
studies)’"'"*""® is worrying, given that it can lead to cognitive
decline.”’” Recent reports of a high incidence of SCL (85.7%)
with the use of a specific device'?° (albeit using a 3T scanner)
suggest that catheter and waveform design may play a crit-
ical role and can be improved to reduce embolic events in
the future, particularly those related to overheating during
PFA delivery.®?4°

It is currently assumed that hemolysis is a direct
consequence of the electroporation of erythrocytes and
often occurs after PFA for the treatment of AF."?" Two smaller
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prospective studies observed severe hemolysis leading to
acute kidney injury (AKI) in 2.8% and 2.9%."?? However, the
incidence of AKI owing to severe hemolysis was low in a large
retrospective observational study (0.03%) and related to a
very high number of PFA applications with a pentaspline
catheter (143 per procedure).g'102 The extent of hemolysis
varies among systems and is best correlated with the size of
the electrodes, electric field intensity used,'?® the number
of applications, and the catheter design.80'124 In addition, it
depends on the volume of the blood that can be exposed
to intense electric fields. This volume is smaller with
balloon-type catheters owing to the occlusion of the blood
flow'?> and greater with catheters with large surface area or
number of electrodes; in the case of bad contact of the cath-
eter with the myocardium, it becomes even higher.
Improving electrode contact and limiting the number of ap-
plications were suggested to minimize hemolysis,®'-'?" and
hydration after ablation was suggested to prevent AKI,'?
although that does not always guarantee avoidance of kidney
injury.'?’

There is some evidence that electroporation affects the
cardiac conductive system (CCS) in a different manner than
the working myocardium. An ex vivo study on perfused
canine hearts demonstrated different susceptibility of various
parts of the CCS to electroporation.128 In their experiments,
authors have shown higher resistance of the left bundle
branch and the His area to electroporation, which might be
attributed to the fibrous sheaths covering the bundle of His
and the proximal part of the left bundle, thus shielding those
structures from the electric field."®” A similar finding with his-
tologic evidence of His bundle viability with evident sur-
rounding myocardial damage after electroporation was
revealed in a preclinical study on dogs."*” Indeed, there
are some reports of recovery of the proximal CCS function af-
ter intentional or unintentional electroporation and acute
conduction block.”"""*? Histologic analyses from animal
studies show that the distal parts of the CCS, the Purkinje fi-
bers, may also be less sensitive to electroporation; however,
the proposed mechanisms are less clear.'**”'#> The evidence
regarding the effect of electroporation on the CCS is still
emerging, and although sparing has been observed, it is
not yet fully understood, if this is consistent across different
experimental and clinical scenarios. Therefore, careful
consideration is warranted when delivering PFA in
proximity to the CCS.

Periprocedural and postprocedural markers

All currently approved and most existing systems have been
developed (or adapted) for PVl and thus for ablation of a thin
atrial wall of 2-5 mm. This seems to be easily achievable,
given that all systems work quite well with careful and consci-
entious use, that is, careful positioning and repositioning of
the catheter. The real-world data look different—early PFA
results show reconnections at redo procedures, and even
acute PVI and linear lines are not always easy to achieve.®
Even LGE cardiac MRI 3 months after index procedure shows

gaps in 20% of patients’> and incomparably worse images
than after RFA and cryoablation.”* This indicates the need
to develop and validate new and more precise periproce-
dural markers to achieve consistently good results. Lesion
formation shows interesting dynamics on LGE MRI and gross
pathology,”**?* suggesting that PFA lesion development
has a different time course than thermal modalities, as visual-
ized by medical imaging. Especially prominent is the rela-
tively large reduction in size of hyperintense regions
between 1 and 7 days after treatment.

Although the disappearance of iEGM signals was very
impressive in early preclinical studies, it was quickly realized
that the electrograms can gradually return after treat-
ment.>3"3¢ However, there seems to be some correlation
with the rate of recovery and lesion size on MRl and gross pa-
thology.”” The possibility of using less intense (sublethal) PFA
deliveries to cause a transient disappearance of iEGMs
through the basic electroporation mechanisms described
earlier offers the possibility to use these sublethal applica-
tions to identify isthmus for arrhythmia reentry. This has
been recently reported137; however, it was not always
possible to eliminate the identified isthmus with PFA, and in-
vestigators resorted to complete ablations using radiofre-
quency. This clearly shows the need to determine and
identify the difference between stunning by reversible elec-
troporation and achieving cell death by irreversible electro-
poration.

PFA in the ventricles seems like a logical next step. How-
ever, current systems, which were developed for ablation in
the atria where tissue is rather thin, have been demonstrated
to achieve a maximum 6-8 mm lesion depth on average in
preclinical studies, which is not sufficient for achieving trans-
mural/deep lesions in the left ventricles.®”'*® PFA in ventri-
cles will also most probably require high-voltage pulses to
be synchronized with the R wave in spite of the lack of arrhyth-
mogenicity demonstrated with biphasic short pulses in pre-
clinical studies.”*?"*° Importantly, stunning beyond the
ablation dimensions can potentially cause safety concemns.
Given that recovery can sometimes require up to 30 minutes,
this can potentially result in acute worsening of the ventricular
function. However, the same effect can also lead to transient
elimination of arrhythmia inducibility, without achieving a
permanent effect. This means that VT noninducibility after
PFA treatment is not necessarily a reliable marker for long-
term outcomes.

Combination with other ablation technologies/energies

Some PFA systems were initially developed as pure RFA sys-
tems and only later, during the design phase, modified to
include PFA ablation. These systems now feature the possi-
bility to combine RFA and PFA ablation. This also enables
combination therapies to be evaluated including a combina-
tion of RFA and PFA'" and PFA and cryoablation.'** The
rationale for why different combinations would work better
than each energy alone is most often superficial and incom-
plete, and evidence is also scarce. In other areas of
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electroporation use, it has been shown that mild heating
combined with electroporation increases electroporation ef-
ficiency in bacterial inactivation,'”® increases lesion
size'**"*> and gene transfection efficiency.’*® Mild radiofre-
quency heating has also shown an increase in electroporation
efficiency in vitro."*”""*® The combined treatments will likely
result in prolonged treatment times and potentially bring
back adverse events of thermal ablation energies, thus losing
the exact benefits of PFA.

Conclusion

Despite the rapid clinical adoption and promising safety pro-
file of PFA, important questions remain about the dynamics
and complex myocardial response after pulse treatment. In
particular, the interplay between reversible and irreversible
electroporation pathways and their contribution to lesion
durability and tissue recovery is not yet fully understood. A
deeper mechanistic insight into these processes is essential
to optimize lesion formation and minimize unintended ef-
fects and adverse events. In addition, proximity sensing
and better integration of PFA with advanced navigation
and imaging systems will likely represent the next significant
advance, enabling improved procedural control, real-time
feedback, and personalization of ablation strategies. As
experience with the current generation of PFA devices
grows, so does the understanding of their capabilities and
limitations. It is anticipated that the next development cycle
of PFA systems will build on this growing body of knowledge
by incorporating insights on the mechanisms described to
further improve safety, efficacy, and long-term outcomes in
the treatment of atrial and ventricular arrhythmias.
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