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a b s t r a c t

Electroporation is the application of electric pulses of sufficient amplitude to target tissue, which entails
not only permeabilization of cell membranes, but also heat generation and dissipation. Noticeable rises in
temperature have been observed in a number of electroporation applications. These temperature rises are
a potential source of alteration of thermodynamic properties of tissue wherein mass transport is occur-
ring. Transport parameters are temperature-dependent, as they relate to thermodynamic processes.
This paper presents a theoretical study of thermal relations in tissue immediately following electropo-

ration. An analysis of thermal transfer characteristics of tissue based on available data from literature is
performed, and a model of heat transfer in tissue is presented. The tissue is modelled as a porous med-
ium, and the chosen model for analysis, which we call the dual-porosity model, is a two-temperature
model developed for heterogeneous porous materials. The dual-porosity model in its given form is a par-
ticular example of a LaLoThEq (Lack of Local Thermal Eqilibrium) model. This model is used to evaluate
the potential for any significant alteration of cell membrane’s thermal conductivity due to electropora-
tion, and examines whether electroporation thus directly influences heat redistribution in tissue.
The main result is an in-depth theoretical analysis on the potential influence of electroporation on heat

transfer characteristics of tissue via any direct influence of the treatment to the cell membrane. Findings
of the study indicate that, on the contrary to the effects of electroporation on mass transport in tissue, the
treatment would appear to exert a negligible influence on heat redistribution, at least due to its direct
impact on the cell membrane. Other impacts of electroporation that could potentially result in a hetero-
geneous heat (re)distribution in tissue are briefly discussed, albeit not the subject of this study.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

An electric field of sufficient strength can cause an increase of
conductivity and permeability of cell membrane. The effect is
known as electroporation and is attributed to creation of aqueous
pathways in the membrane [40]. Electroporation is essentially the
application of electric pulses of sufficient amplitude to cells or tar-
get tissue, with the purpose of achieving the permeabilised state of
the cell’s lipid bilayer membrane.

Quantifying mass transport and heat transfer (both transmem-
brane and in bulk tissue) in connection with electroporation of bio-
logical tissues is an important research objective. The ability to
fully comprehend transport processes has ramifications in all
applications of electroporation. Understanding mass transport is
particularly important, in example, for improving juice extraction
and facilitating selective extraction/introduction of compounds
from/into plant cells [27,47], introducing new electroporation-
based technologies and medical treatments [14,31], and solving
environmental challenges via use of the so-called ‘‘green” biorefin-
ery [13,21]. Since heat generation (Joule heating) is unavoidably
associated with electroporation, either as an undesired side effect
[11] or an effect that is actively exploited in applications of thermal
tissue ablation and ohmic heating [17,25,32], it is important to
understand heat transfer in electroporation applications as well.

While electroporation continues to be intensively investigated,
there is a persisting lack of models that can be used to model heat
transfer and mass transport in complex structures such as biolog-
ical tissues with relation to electroporation at the macro scale. This
paper presents an attempt at extending an existing theoretical
mathematical description – the ‘‘dual-porosity” model – for study-
ing mass transport in electroporated tissue. The model is adapted
to the problem of heat transfer in order to elucidate whether the
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cell membrane presents a significant barrier to heat transfer in tis-
sue, and to answer the question of whether electroporation alters
this barrier, if at all present, through its effect on the membrane.

A model, called the dual-porosity model, was recently adapted
for the field of electroporation research [6,29,30] employing mass
conservation and transport laws that enables coupling effects of
electroporation to the membrane of individual cells with the
resulting mass transport (and, by extension through analogy,
transmembrane heat transfer and heat transfer in tissue). The
model leans strongly upon firmly established approaches pre-
sented in previous works that are devoted to similar oft-
encountered problems in chemical engineering [15,24]. These
approaches in studying mass transport all benefit from a well-
known mathematical analogy of heat and mass transfer, and con-
sequently, the developed dual-porosity model is a special case of
the classical LaLoThEq (Lack of Local Thermal Equilibrium) model
for porous media [35, 39,43,44], which has long been present in lit-
erature on heat transfer. An analytical solution has been found for
the presented dual-porosity model formulation, however, the
model can (and should, through further development) easily be
extended with additional dependencies to account for hetero-
geneities in tissue and temporal component of electroporation,
and then solved numerically.

Due to the finite resistance of biological tissue, electroporation
unavoidably entails the flow of an electric current through the tis-
sue. This current through, what is electrically an ohmic load,
results in heat generation and dissipation. This means that thermal
effects are necessarily integrally and inseparably associated with
electroporation. Noticeable rises in temperature have been noted
in a number of electroporation applications [1,18,19]. These tem-
perature rises are a potential source of alteration of the thermody-
namic properties of the material where mass transport is
occurring. Parameters such as viscosity, diffusion rate coefficient,
and the rate of chemical reactions and changes are known to be
strongly dependent on temperature, since they are fundamentally
related to thermodynamic processes.

Thermal effects associated with electromagnetic fields are of
high importance in biomedical applications, such as elec-
trochemotherapy and tissue ablation by irreversible electropora-
tion [8,9,16,50], gene transfer [23,41], or radiofrequency ablation
[49]. In medical treatments, much attention is dedicated to ensur-
ing that the damage to healthy tissue, which would ideally be left
unaltered by the treatment, is under control and kept at the lowest
possible extent, and various modelling techniques have been
employed to evaluate Joule heating and subsequent thermal gener-
ation and dissipation. Numerical finite element models are often
employed due to the complexity of the system (tissue hetero-
geneities and anisotropy) and the relatively complex form of the
Pennes bioheat equation [36] that is habitually used to describe
thermal relations in perfused tissues.

Thermal relations in biological material treated with electro-
magnetic fields have been studied extensively across a range of
applications and on multiple scales by using various approaches,
ranging from pure in silico molecular dynamics studies and theo-
retical non-equilibrium thermodynamics models to in vivo studies
on model animal tissues. An early consideration of the effects of
Joule heating associated with electroporation is presented in e.g.
[20]. The authors present an account of model development,
whereby a theoretical model was developed to estimate the power
dissipation in individual cells during electroporation. They con-
cluded that although heating that may be considered as insignifi-
cant at the macroscopic level of a cell suspension or tissue, may
actually be substantial on the level of the cell membrane. This sup-
posed rise in temperature could be responsible for a lowering of
the threshold required for electroporation, as thermal energy is
additionally raising the energy level of the bilayer. This has
recently been re-evaluated and examined in a study presenting
an analytical model for calculating the cell membrane temperature
gradient [12]. The authors of the study show that electric field gen-
erates cell membrane temperature gradients, particularly during
sequential pulsing over a sustained period of time. They conjecture
that thermal gradients may contribute to electroporation through
induced transmembrane voltages.

A recent study in molecular dynamics simulations [34] shed
more light on the heat conduction characteristics of the cell mem-
brane itself, by studying heat conduction characteristics of a DPPC
lipid bilayer. Thermal conductivity of the lipid bilayer that was
evaluated in this molecular dynamics simulation was found to be
anisotropic, and lower than that of bulk water. This is thought to
be mainly due to the lipid composition at the centre of the bilayer,
where acyl chains of lipid molecules face each other due to a loss of
the covalent-bond and low number density, and thermal conduc-
tivity is the lowest. Even lower than thermal conductivity across
the bilayer was found to be the thermal conductivity along the
bilayer, meaning the bilayer exhibits a strong anisotropic beha-
viour in terms of heat conduction.

Another field of electroporation applications that has received
considerable attention in studying and modelling thermal effects
with and without relation to mass transport is skin electroporation,
where electric fields are used for breaching the impermeable stra-
tum corneum for topical drug or gene delivery. The reader is
referred to Ref. [5] in particular for a thermal study, or [38] for a
more comprehensive review. Modelling thermal relations in skin
electroporation is a challenging task, mainly due to highly variable
properties between various layers of skin [4,37]. A recent study
[42] presents the development of a complex analytical bioheat
model for studying temperature increases in electroporation of a
subcutaneous tumour, accounting for the multi-layer heteroge-
neous structure of the skin.

Very different considerations and approaches as compared to
the field of biomedical applications can be found in the food pro-
cessing and other industrial applications of electroporation. In
these application areas, it is not a rarity to find treatment protocols
delivering high energies to target biological material, and high cur-
rents that are present in tissues during long treatment times can
cause a substantial rise in temperature due to ohmic heating
[47]. Ohmic heating using lower voltages for longer periods of time
can, with or without electroporation, also be intentionally used as
mild treatment of rawmaterial to increase the rate of mass transfer
within tissue [25,48]. Modelling with the purpose of studying ther-
mal effects in this field is mainly limited to various models dealing
with the generation and distribution of heat in continuous-flow
treatment chambers [26,22], with the purpose of optimising their
design, thus avoiding hot spots that can otherwise cause electrode
material degradation or treatment chamber deterioration. Theoret-
ical studies relating thermal relations in electroporated plant tissue
in industrial applications focusing on enhancing mass transport are
virtually non-existent, and presently studies mainly comprise phe-
nomenological models relating electrical or thermal damage to tis-
sue with treatment parameters.

The title of this paper title bears no mention of mass transport,
however, we wish to emphasize the inseparable connection
between electroporation, the thermal effects that are associated
with it, and mass transport processes in tissue. The relations
between these (all fundamentally thermodynamic) processes are
complex and interdependent. Recent research has shown [12] that
thermal gradients across the plasma membrane can result in the
differences in electric potential on either side of the membrane,
meaning that there seems to exist a positive feedback connection
whereby thermal gradients resulting from electroporation can
alter electric relations on the membrane, thus affecting electropo-
ration, heat, and mass transfer directly.
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Building upon previous work [28,29,30], this paper gives a com-
plete presentation of the thermal formulation of the dual-porosity
LaLoThEq model, analogous to its mass transport formulations, and
the applicability of such a model is discussed and theoretically
analysed. The model formulation, as given, can be considered suf-
ficiently detailed for studying thermal relations in electroporated
plant tissues, but could also conceivably be extended in a suitable
way (e.g. by the Pennes bioheat equation) to facilitate evaluation of
thermal effects to the post-electroporation mass transport pro-
cesses in case of perfused animal tissues. The given thermal model
could easily be coupled, via the temperature-dependent mass
transport parameters, to the previously developed mass transport
models of diffusion and liquid flow during pressing, which is a
planned future undertaking. The work presented herein related
to thermal relations is entirely theoretical in nature, based on
existing literature and extension of the work done previously with
mass transport modelling. Validation and evaluation of suitability
of these formal mathematical formulations is a work in progress
and considered out of scope of this research paper.
2. The theoretical basis and the dual-porosity model

2.1. The heat distribution model – basic model equations and its
derivation

By analogy of the Fick’s law of diffusion and Darcy’s law for liq-
uid flow, the dual-porosity model of diffusion has been translated
to the problem of filtration-consolidation of biological tissue dur-
ing pressing (compare [29] with [28], or refer to [30]. By a physi-
cally and mathematically equivalent analogy with the Fourier
law (see Fig. 1), and using basic relations from non-equilibrium
thermodynamics, one can postulate that a dual-porosity model
can be written (in its original, non-simplified form) also to describe
thermal relations in biological tissue, and this should, in principle,
be applicable irrespective of whether the tissue is electroporated or
not.

The equations of the thermal (i.e. heat transfer) model for the
case of thermal flux along one principal axis, for the extracellular
and the intracellular space are, respectively
Fig. 1. The three analogous fundamental laws (and the men they are named after, or in th
analogous form of the three laws can be successfully exploited to arrive at the three an
fluid, thermal, or solute flux density (i.e. flow per unit area), k is the coefficient of hy
conductivity coefficient, T is local temperature, c denotes local concentration, p is local
ð1� FÞ @Te

@t
� ð1� FÞ ke

qcp
@2Te

@z2
� hv
qcp

Ti � Teð Þ ¼ 0 ð1Þ

F
@Ti

@t
þ hv
qcp

Ti � Teð Þ ¼ 0 ð2Þ

In Eq. (1) and (2), the factors F and 1 � F are the intracellular
and extracellular fractions of volume, respectively, i.e. they account
for the specific relative volume fraction of each space in a block of
tissue �F for example is the bulk volume fraction of cells. As tissue
normally comprises cells in more than half its volume, we must
account for the conservation of energy in the transmembrane flux
term. In order to do so, the member representing transmembrane
heat exchange in both equations must be equal, as it represents
the same thermal flux. Note that temperatures Te and Ti in all of
the equations presented herein are intrinsic quantities, that is, they
are temperatures that would actually have been measured, had a
probe been inserted to measure the temperature at a given point
or into an infinitesimally small volume anywhere in either the
extra- or intracellular space. If one, however, measures the bulk
temperature in a given finite fraction of volumeDV of tissue, which
occurs in practice, the measured temperature will be, theoretically,
a volume-averaged sum of the two respective space contributions.
It is therefore important to distinguish between the bulk tempera-
tures (volume-averaged) and their intrinsic definitions [33]. Note
that Eq. (2) is missing the diffusive term that would represent
the intracellular heat conduction, i.e. the second derivative of tem-
perature on spatial coordinate. This is due to the particular spatial
configuration of the system; the intracellular space is not continu-
ous, therefore, heat must traverse the membrane in order to be
transferred along the spatial coordinate due to the (supposed)
thermal gradient. If both spaces were continuous, both equations
would feature the diffusive term, and would be mathematically
equivalent.

Dividing Eq. (1) by 1 � F and Eq. (2) by F, one obtains

@Te

@t
� ke
qcp

@2Te

@z2
� hv f v
qcpF

ðTi � TeÞ ¼ 0 ð3Þ
eir honour) in simplified differential form for gradient in one spatial dimension. The
alogous forms of the dual-porosity model. In the featured equations, q is either the
draulic conductivity, D is the solute diffusion coefficient, k is the material’s heat
liquid pressure, while z is the spatial coordinate.
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@Ti

@t
þ hv
qcpF

ðTi � TeÞ ¼ 0 ð4Þ

In Eq. (3), the new parameter – the volumetric fraction ratio
fv – is a multiplicative factor accounting for the volumetric space
distribution imbalance and equalling F/(1 � F). Other quantities
are as follows: Te and Ti are the extracellular and the intracellular
temperature in K, respectively; ke is the extracellular tissue ther-
mal conductivity in Wm�1 K�1; z (in m) is the spatial and t (in s)
the temporal coordinate; cp is the tissue heat capacity in J kg�1 K�1;
q the tissue density in kg m�3; and hv the volumetric heat transfer
coefficient in Wm�3 K�1. Coefficient hv reflects the thermal con-
ductivity of the plasma membrane and the particular heat
exchange geometry, and a spatio-temporal dependence of the
parameter as a function of electroporation can at this point be
postulated to maintain complete generality. Whether such a
dependence exists or not remains to be theoretically and experi-
mentally evaluated, which is the main aim of this study. Section 2.3
is largely devoted to this question. Note that the fraction fv/F in Eq.
(3) that equals (1 � F)�1 has intentionally not been resolved for
purposes of simplifying the following algebra. Instead, we define
a volume fraction-normalized volumetric heat transfer coefficient
h0
v, which equals h0

v = hv/F.
Reviewing previous work on the dual-porosity model of mass

transport [30], a comparison would reveal that models are mathe-
matically analogous, with concentration or liquid pressure gradi-
ents now replaced by thermal gradients. There is an important
difference however, stemming from the values of the transport
parameters. In the thermal problem, the thermal conductivities,
if comparing those of cytoplasm, plasma membrane, and extracel-
lular liquid, are found not to differ from each other by orders of
magnitude (see [12,34]). With mass or liquid transfer on the other
hand, the permeability of the cell membrane was modelled as
orders of magnitude lower than that of either the intra- or the
extracellular space. In the latter case, the finite diffusion velocity
in the intracellular space, not captured by the model, could be
safely neglected. In the thermal model on the other hand, thermal
resistances are within the same order of magnitude, to which some
additional careful consideration has to be given (see Section 2.3).

The system of Eq. (3) and (4) can be readily solved by using ana-
lytical methods given appropriate initial and boundary conditions
(see Section 2.2). If studying the distribution of temperature within
tissue after electroporation or ohmic heating, one can suppose that
the tissue sample has been heated to a given temperature T0 both
Fig. 2. The thermal problem geometry – plane of symmetry and boundary conditions. Th
used for this illustration for purposes of maintaining consistence with mass transport s
state, the sample and setup geometry has to favour thermal transfer along only one (pr
in the extra- and the intracellular space (i.e. T0 = Te0 = Ti0), and that
during subsequent treatment, if no additional heat is generated, all
surfaces of the sample are exposed to the ambient temperature
Tamb, where Tamb < T0 (cooling). In mathematical notation, and tak-
ing the symmetry on either side of the plane at z = 0 perpendicular
to the principal axis of thermal flux into account (analogous to the
diffusion problem – see [29]), one can write

Tejz¼h=2 ¼ Tamb ð5Þ
@Te

@z

����
z¼0

¼ 0 ð6Þ
Tejt¼0 ¼ Tijt¼0 ¼ T0 ð7Þ

where the plane of symmetry (z = 0) is located exactly in the middle
of the tissue sample of height h at a distance of h/2 from either of
the sample’s largest surfaces, at which the bulk of heat exchange
is taking place (see Fig. 2). Note that since Eq. (1) (or Eq. (3) for that
matter) is missing any spatial derivatives, it is in fact an ordinary
differential equation for Ti and requires no boundary conditions.
The actual intracellular temperature at the boundaries is therefore
determined entirely by the values of the extracellular temperature
at these boundaries.

The set of Eqs. (3)–(7) represents a complete mathematical
description of thermal dissipation out of the sample block of tissue.
The contribution of electroporation to the thermal conductivity of
the membrane, if substantial, can be accounted for by varying the
transmembrane volumetric heat transfer coefficient hv, and in case
of additional thermal generation (time of observation during the
electroporation application), an additional additive member
accounting for heat generation can be appended to both Eqs. (3)
and (4). The system of equations could conceivably even be
extended to take the form of the Pennes bioheat equation in case
of studying perfused animal tissues. Anisotropy can be modelled
via a spatial dependence of ke, and a similar approach can be used
for the heat capacity and/or density, if required. The resulting aug-
mented model can then easily be solved via numerical integration;
however, the main problem (as with the other two analogous mod-
els, i.e. the dual-porosity diffusion and liquid expression models)
remains the (un)reliable parameter estimation for realistic systems
and the high number of degrees of freedom that the large number
of parameters introduces to the model.
e particular cylindrical geometry of the tissue sample is not significant, but has been
tudies. For the presented schematic to be an adequate representation of the actual
incipal) axis.
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2.2. The thermal dual-porosity model – analytical solution

The system of Eqs. (3) and (4) with boundary and initial condi-
tions Eqs. (5)–(7) is essentially an integro-differential system
admitting various methods for obtaining an analytical solution.

Using the method of separation of variables – which the reader
is most likely familiar with and therefore the details of the proce-
dure are omitted from the following text – it is possible to obtain
an analytical solution for the intra- and extracellular temperature
profiles in space and time.

One can begin by first rewriting partial differential equations of
the system into a suitable form, thus

@Te

@t
¼ ke
qcp

@2Te

@z2
þ f vh

0
v

qcp
ðTi � TeÞ ð8Þ

@Ti

@t
¼ � h0

v
qcp

ðTi � TeÞ ð9Þ

To simplify the arithmetic in the following presentation of the
solution, new constants a and b can be introduced, where a = ke/
qcp and b = h0

v/qcp, and thus

@Te

@t
¼ a

@2Te

@z2
þ f vbðTi � TeÞ ð10Þ

@Ti

@t
¼ �bðTi � TeÞ ð11Þ

The purpose of introducing h0
v should now be obvious from Eqs.

(10) and (11) above. In order to further simplify calculations and
presentation of results, it is convenient to introduce new variables
to observe only temperature differences in relation to the ambient
temperature instead of working with absolute values, thus

Te;d ¼ Te � Tamb ð12Þ

Ti;d ¼ Ti � Tamb ð13Þ
This necessitates some corrections to the boundary conditions,

which now read

Te;djz¼h=2 ¼ Tamb � Tamb ¼ 0 ð14Þ

@Te;d

@z

����
z¼0

¼ 0 ð15Þ

and initial conditions are henceforth equal to the temperature dif-
ferences between the absolute and ambient temperature,

Te;d

��
t¼0 ¼ Tejt¼0 � Tamb ¼ Te0;d ð16Þ

Ti;djt¼0 ¼ Tijt¼0 � Tamb ¼ Ti0;d ð17Þ
In continuation, the introduced d-notation is kept throughout

for clarity and as a reminder; the reader should beware that both
Te and Ti were redefined by Eqs. (12) and (13), and these equations
should be consulted in order to obtain absolute values of temper-
ature from their ‘d’ counterparts. The use of temperature differ-
ences also requires that particular attention be paid in case the
modelled process involves phase transitions whose effects are
not accounted for by the present model.

To solve the system 10–11, the classical method of separation of
variables can be used [7] as previously mentioned. Taking the
orthogonal Fourier series of functions (that one arrives at after sep-
arating the variables and taking boundary conditions into the
account) of the form

Hðz; tÞ ¼ 4
p
X1
n¼0

ð�1Þn
2nþ 1

Cn cosðknzÞe�k2nat ð18Þ
where kn = (2n + 1)p/l, l is the full thickness of the tissue sample, the
final step is to account for the initial condition by varying the
remaining undetermined coefficients Cn for both the intra- and
the extracellular space. After completion of this procedure, one
arrives at the final form of the particular solution of the system
3–4, which is

Te;dðz; tÞ ¼ 4Ti0;d

p
X1
n¼0

ð�1Þn
2nþ 1

� cosðknzÞ Cn;1ecn;1t
cn;1
b

þ 1
� �

þ Cn;2ecn;2t
cn;2
b

þ 1
� �� �

ð19Þ

Ti;dðz; tÞ ¼ 4Ti0;d

p
X1
n¼0

ð�1Þn
2nþ 1

� cosðknzÞ Cn;1ecn;1t þ Cn;2ecn;2t � e�bt
� �þ Ti0;de�bt ð20Þ

where

Cn;1 ¼
Te0;d
Ti0;d

� 1
	 


b� cn;2
cn;1 � cn;2

ð21Þ

Cn;2 ¼
1� Te0;d

Ti0;d

	 

bþ cn;1

cn;1 � cn;2
ð22Þ

and where

cn1;2 ¼ � ðf v þ 1Þbþ k2na
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf v þ 1Þbþ k2na
� �2 � 4k2nab

q
2

ð23Þ

The eigenvalues kn equal kn = (2n + 1)p/l.
This analytical solution is instructive. It indicates that the pro-

cess kinetics is determined entirely by the roots of the characteris-
tic polynomial (given by Eq. (23)). Additionally, were the
transmembrane volumetric heat transfer coefficient hv equal to 0,
i.e. if the cell membrane would have thermally isolative properties,
Eq. (19) would simplify into the better known classical one-
dimensional heat conduction equation

Te;dðz; tÞ ¼ 4T0;d

p
X1
n¼0

ð�1Þn
2nþ 1

e
�ð2nþ1Þ2p2at

l2

	 

cosðknzÞ ð24Þ

In the opposite case of the infinitely conductive cell membrane,
the same conclusion can be drawn, albeit this may not be immedi-
ately obvious from the solution Eqs. (19)–(23). Letting b?1
would consequentially always result in the difference Ti,d � Te,d
equalling zero, i.e. a temperature gradient across the cell mem-
brane would be impossible to establish. In this case, the last addi-
tive member (the source term) in Eqs. (10) and (11) is always zero,
i.e. the two spaces are perpetually in complete local thermal equi-
librium (LoThEq), and there is no lack of local thermal equilibrium
that would justify the use of the dual-porosity model. Given this
observation and the previously established approximate equality
of the intra-, the extracellular, and the membrane thermal conduc-
tivities, one could already suppose that the membrane will not pre-
sent an obstacle to thermal conduction between the cells and in
tissue. For completeness and in order to corroborate this finding
by sounder theoretical analysis, transport parameters such as the
volumetric transmembrane heat transfer coefficient h0

v should be
evaluated first, in order to definitively establish whether the mem-
brane presents a barrier to heat transfer or not.

To illustrate the spatio-temporal distribution of temperature in
a hypothetical situation of tissue cooling after being heated to dif-
ferent temperatures intra- and extracellularly, Fig. 3 gives thermal
profiles in the extracellular space for several different values of the



Fig. 3. The spatio-temporal profiles of the intrinsic temperature in the intra- and extracellular space for three different values of the transmembrane volumetric heat transfer
coefficient hv. The initial temperatures (relative difference from Tamb) were Ti0,d = 25 �C and Te0,d = 20 �C in all cases. The first two thousand members of the Fourier cosine
series (n = 0. . .1999) were taken in Eqs. (19) and (20) to ensure the artefacts originating from the discontinuity at z = l/2 between the initial and the boundary condition are
not visible in the surface plots (stability of the solution).
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transmembrane volumetric heat transfer coefficient h0
v. To facili-

tate an easier comparison by display of simulated results, Fig. 3
presents a plot of Ti,d(z = 0, t) and Te,d(z = 0, t) for different values
of h0

v. The presented curves are intrinsic temperature kinetics (time
profiles) taken from the centre of the tissue sample where temper-
ature is the highest. Parameters that were used to obtain these
simulated model results with the analytical solution are collected
in Table 1 (with references). This illustrative situation may not



Table 1
Parameters used in simulations presented in this section.

Parameter Value Source Parameter Value Source

l (m) 0.005 Previous experiments [30] q (kg m�3) 1000 Water [45]
F (–) 0.80 Arbitrarily chosen cp (J kg�1 K�1) 4200 Water [2,45]
ke (W m�1 K�1) 0.559 Apple juice [2] h0

v (W m�3 K�1) varied n/a
tend (s) 120 Arbitrarily chosen Ti0,d (K) 25 arb. chosen
fv (–) 4 F/(1 � F) Te0,d (K) 20 arb. chosen

156 S. Mahnič-Kalamiza et al. / International Journal of Heat and Mass Transfer 111 (2017) 150–162
be entirely hypothetical. Tissue composition is heterogeneous in
general, and intracellular space may contain more water than
extracellular, where there is perhaps a larger volume fraction of
air (e.g. apple fruit tissue). Under such conditions of heterogeneity,
thermal properties are different between the two spaces as well,
which could conceivably lead to two different rates of heat gener-
ation and accumulation in the two spaces. Moreover, due to differ-
ences in composition, not only thermal but also electrical
properties of the spaces are not equal, providing a further possible
cause of heterogeneous heat generation.

Fig. 4 gives is a better presentation of the thermal relations in
the two spaces immediately after the start of the simulated heat
dissipation for five different values of the transmembrane volu-
metric heat transfer coefficient and up to 60 s of the simulated
experiment.

As is shown in Figs. 3 and 4, higher values of the volumetric heat
transfer coefficient h0

v permit heat transfer from the intracellular
space into the extracellular due to the hypothetical initial differ-
ence of 5 �C between the two spaces. This difference in tempera-
tures is purely hypothetical, and its value was chosen arbitrarily
for demonstrative purposes. It could conceivably come about due
to differing rates of heat generation in the extra- and the intracel-
lular space. Regardless of whether its origin is realistic or whether
it is purely hypothetical in nature, the purpose of this initial differ-
ence is to demonstrate the transmembrane heat transfer kinetics
for varied values of h0

v, as shown in Figs. 3 and 4. Fig. 4 shows that
heat transfer can be almost instantaneous (from the point of view
of the simulation length, which is 2 min) for very high values of h0

v,
or it can be delayed if h0

v is not very large. See Section 2.3 for a dis-
cussion on realistic values of this parameter in biological tissues
(apple model study). Note that due to the rather large volume frac-
tion of 0.8 used for these simulated kinetics, the heat transfer from
the intracellular to the extracellular space does not result in a large
Fig. 4. The kinetics at z = 0 (sample centre plane) of the intrinsic temperature in the intr
heat transfer coefficient hv.
reduction of the intracellular temperature, however, it does result
in a proportionally large increase in the extracellular temperature,
where fv is the proportionality factor (conservation of energy!).

The value of ke representing the extracellular thermal conduc-
tivity is that of apple juice, taken as a first approximation, and will
be revisited and revised in Section 2.3. All other parameters were
chosen to simulate a possible experimental situation with tissue,
except of volume fraction F that was slightly reduced (from about
0.92 found in apples to 0.80) in order not to amplify the effect of
parameter fv in Figs. 3 and 4 too extensively. The initial tempera-
tures were chosen arbitrarily for demonstrative purposes and are
not important in terms of kinetics, since the model is linear and
the final result can thus be scaled.

As a final note to this section, consider that in the eventual pres-
ence of a transmembrane thermal gradient, i.e. a difference
between the intracellular and the extracellular temperature (in
case the transmembrane heat exchange would be noticeably hin-
dered – see Section 2.3 for a discussion), the bulk tissue tempera-
ture as measured in a finite volume DV comprising cells and
extracellular space would, in relation to the intrinsic quantities
worked with herein, equal

Tbulk;d
� �

DV ¼ ð1� FÞTe;d þ FTi;d
� �

DV ð25Þ
2.3. A theoretical estimation of the volumetric heat transfer coefficient
h0
v and other parameters; a discussion on the relevance of the dual-

porosity model for the thermal problem in electroporated tissues

The parameter hv, called the volumetric heat transfer coeffi-
cient, relates the temperature difference across the interface (e.g.
a membrane) separating the continuous phase (e.g. extracellular
space) and the discontinuous phase (e.g. intracellular space), with
the resulting local heat generation or dissipation in the respective
a- and extracellular space for five different values of the transmembrane volumetric
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phases or spaces. Given the medium density and specific heat
capacity, this causes a local increase or decrease in temperature,
as described by Eqs. (3) and (4).

To arrive at an estimate for hv in the particular case of biological
tissue comprising cells with biological membranes, the following
two paths leading to the same conclusion can be taken. Note that
the following analysis does not concern itself with h0

v, since the
relation between hv and h0

v is trivial, as it is a matter of a simple lin-
ear dependence on the cell volume fraction F.

First, consider the Fourier law of thermal conduction in its dif-
ferential form with thermal transfer occurring only along one spa-
tial dimension. Writing for the membrane (index m) and in a
spherical coordinate system, it reads

_qm ¼ �km
dT
dr

ð26Þ

Integrating across the membrane where the heat flux density
qm is non-zero and the temperature changes from intracellular Ti,
m to the extracellular Te,m in the immediate proximity to the mem-
brane (denoted by index m), yields

_qm

Z Rþdm

R
dr ¼ �km

Z Te;m

Ti;m

dT ð27Þ

Resolving the integrals results in

_qm ¼ km Ti;m � Te;m
� �

dm
ð28Þ

where dm is the membrane thickness (about 4–5 nm).
The expressed heat flux density is in Wm�2, and the source

term in the dual-porosity model fundamental equations is in
Wm�3. It is necessary thus to express the heat flux per unit vol-
ume, qv, and the expression involves the particular problem
geometry

_qv ¼ av _qm ¼ avhðTi;m � Te;mÞ ¼ hvðTi;m � Te;mÞ ð29Þ
where h is the heat transfer coefficient in Wm�2 K�1, hv the volu-
metric heat transfer coefficient in Wm�3 K, and av the surface-to-
volume ratio reflecting the particular geometry. In case of spherical
cells of radius R, this coefficient equals

av ¼ Ac

Vc
¼ 4pR2

4pR3
3

¼ 3
R

ð30Þ

and therefore

_qv ¼ av _qm ¼ 3km Ti;m � Te;m
� �
dmR

¼ hv Ti;m � Te;m
� � ð31Þ

from where it immediately follows

hv ¼ 3km
dmR

ð32Þ

Second, consider the Fourier law of thermal conduction in the
differential form, but written for the amount of heat transferred
across the membrane per unit time Qm, not for flux qm

_Qm ¼ �km4pr2
dT
dr

ð33Þ

Separating the variables left/right-hand side and integrating as
before, yields, after some rearrangement

_Qm ¼ 4pkm Ti;m � Te;m
� �
1
R � 1

Rþdm

¼ 4pkm Ti;m � Te;m
� �

dm
R Rþdmð Þ

¼ 4pR Rþ dmð Þkm Ti;m � Te;m
� �

dm
ð34Þ
For R� dm, which is valid for biological cells under considera-
tion, one can take the approximation R + dm � R and the Eq. (34)
simplifies to

_Qm ¼ 4pR2km Ti;m � Te;m
� �
dm

ð35Þ

The simplification step R + dm � R also exists in the first
approach that was presented above, however, it is implicit and hid-
den in Eq. (30), or more precisely, already in Eq. (29). For R approx-
imately equal or on the same order of magnitude as dm, a more
complex expression than Eq. (30) must be used. A discussion on
this can be found in previous work, see for example Eq. (A.7) of
Appendix A in [28].

Expressing the amount of heat transferred across the mem-
brane Qm per unit volume, a division with the cell volume Vc is
needed to arrive at

_qv ¼
_Qm

Vc
¼ 4pR2km Ti;m � Te;m

� �
4pR3
3 dm

¼ 3km Ti;m � Te;m
� �
dmR

¼ hv Ti;m � Te;m
� �

ð36Þ
which is exactly the same result as in Eq. (31) and hv is again equal
to exactly the same expression as has already been defined by Eq.
(32).

Given a known estimate on the cell size and membrane thick-
ness, the parameter missing in order to obtain hv is only the trans-
membrane thermal conductivity, km. Since the biological cell
membrane is composed of a lipid bilayer, it is expected that its
thermal conductivity will be lower than that of cytoplasm and cer-
tainly lower than that of bulk water. Molecular dynamics simula-
tions can be used to arrive at an estimate for km. In example,
authors of [34] report the thermal resistance of the water-lipid
bilayer-water system of thickness 40 Å to be 9.3 10�9 m2 KW�1.
Since the thermal resistance equals

Rt ¼ x
k

ð37Þ

where x is the thickness of the resistive layer, k can be recovered
from Eq. (37), and for the reported thermal resistance value of 9.3
10�9 m2 KW�1, km is estimated to equal 0.430 Wm�1 K�1. This is
about 71% of the thermal conductivity of bulk water, the latter
indeed being higher, as was supposed.

For the volumetric heat transfer coefficient of a biological cell of
radius 100 lm (e.g. apple fruit cells) and membrane thickness of
5 nm, this km yields an hv according to the following equation,

hv ¼ 3km
dmR

¼ 3 � 0:430
5 � 10�9 � 100 � 10�6 ¼ 2:58 � 1012 W

m3 K
ð38Þ

The value thus obtained is extremely high, however, and this is
to be expected. The entire cell area is available for thermal
exchange, as opposed to the opposite seen in the mass transfer
problems, where only a small fraction on the order of about
10�7–10�4 of the cell membrane area (known as the pore surface
fraction – fp) was available for diffusion or liquid flow. Regardless
of this consideration, the volumetric heat transfer coefficient is still
unrealistically high, since it has been derived for an idealised sys-
tem of cytosol-membrane-extracellular space, where the finite
thermal resistances of the intracellular and extracellular media
do not play any significant role. This was a valid assumption in case
of mass transport across a permeabilised membrane [28,29,30],
since there, the membrane was the single most important compo-
nent of the system greatly hindering the transport of mass
between the two spaces. In the thermal problem, the thermal con-
ductivity of the membrane is within the same order of magnitude
as that of bulk water and thus the cytoplasm, probably also of the
extracellular space (of which thermal conductivity will be evalu-
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ated in continuation). Moreover, the thickness of the plasma mem-
brane is several orders of magnitude (3–4) lower than is the overall
dimension of the cell (the cell radius).

Before the finite thermal conductivity of the cell membrane and
its influence are discarded as unimportant, a more realistic esti-
mate of hv can be obtained and re-evaluated in relation to the
intra- and extracellular thermal conductivities and its influence
simulated using the dual-porosity model. Only then should any
final conclusions be drawn.

Given a finite thermal conductivity/resistance of both the intra-
and the extracellular space, the amount of heat transferred across
the membrane will be much lower than what would be calculated
according to Eq. (35). This equation would hold in the particular
case where the membrane’s thermal resistance would be so high
as to render the finite conductivities on either side of the mem-
brane apparently infinite. This can be further illustrated by noting
an apparent absence of any thermal gradients on either side of the
membrane, which would mean that Ti = Ti,m and Te = Te,m every-
where in tissue, a situation schematically presented in Fig. 5-left,
where the temperature profile at the plasma membrane is drawn
in idealised conditions where km � ki and km � ke. A more realistic
situation (km � ki � ke) is illustrated by Fig. 5-right.

The amount of heat transferred across the membrane per unit
time is, considering that km � ki � ke,

_Qm ¼ Ac Ti � Teð Þ
1
hi
þ dm

km
þ 1

he

	 
 ð39Þ

since thermal resistances are additive. In Eq. (39), 1/hi is the intra-
cellular and 1/he the extracellular thermal resistance. Following a
similar logic as employed during the derivation of the membrane
heat transfer coefficient k, one can estimate that hi equals approxi-
mately ki/R, where R is the radius of an average cell in tissue, and ki
the intracellular thermal conductivity. It is difficult to arrive simi-
larly at a theoretical estimate for he, but as a first approximation,
it can be considered equal to the intracellular, in particular in sys-
tems where ki � ke, which should be a reasonable assumption in
first approximation for biological tissues (this will be re-examined
in continuation). This logic results in

_Qm ¼ Ac Ti � Teð Þ
2 R

ki
þ dm

km

	 
 ffi Acki Ti � Teð Þ
2R

ð40Þ

which is an approximation, since for km � ki the term dm/km is
insignificant in comparison to R/ki. From Eq. (40), it is evident that
the influence of the membrane on the transmembrane transport has
completely vanished from the heat flow estimate, and according to
Fig. 5. A schematic illustration of the thermal situation near the membrane for the idea
thermal conductivities of the spaces on either side of the membrane (right).
the assumptions made, the transmembrane heat transfer rate will
be governed by the intra- and/or extracellular thermal conductivity
(depending on which of these is lower) and the geometric relations
of the system, and not by the membrane.

Dividing _Qm with the volume of a cell gives the new heat flux
per unit volume

_qm ¼
_Qm

Vc
¼ Acki Ti � Teð Þ

2RVc
¼ 3ki Ti � Teð Þ

2R2 ð41Þ

and the new volumetric heat transfer coefficient equals

hv ¼ 3ki
2R2 ¼ 3 � 0:559

2 100 � 10�6
	 
2 ¼ 8:385 � 107 W

m3 K
ð42Þ

which is more realistic, however, still greater than the largest value
used in simulations using the analytical solution (see Figs. 3 and 4).
The conclusion that can be drawn from this, based on the observed
behaviour of the temperatures in Fig. 4 for values of hv greater than
106, is that any cross-membrane thermal gradient that would result
from inhomogeneities in local electric field or current distribution,
would be instantaneously (i.e. on a sub-second timescale) annihi-
lated due to the rapid heat transfer across the membrane, as already
stipulated by Kotnik and Miklavčič [20].

This finding could potentially lead to the conclusion that the
dual-porosity thermal model is unnecessarily complicated with
the addition of the source term. This is, however, arguably not
the case, since the mathematical analysis is instructive, and the
theoretical derivations presented herein can be used to further
advance the state of the art of the mass transport analogues of
the dual-porosity model. Moreover, the model does allow for the
thermal conductivities intra- and extracellularly to differ, and
might still be relevant for studying thermal relations in tissue,
whether electroporated or not, if the thermal conductivities on
either side of the membrane differ significantly. The extremely fast
transmembrane thermal transfer does, however, mean that the
model is of limited use in studying tissue under conditions of ther-
mal non-equilibrium, since intra-to-extracellular thermal gradi-
ents are difficult to establish on the timescale of observation (i.e.
seconds to minutes). In other words, as initial differences in tem-
perature cannot come into existence (and so Ti0 = Te0 for all t), there
is a constant thermal equilibrium between the spaces resulting in
exactly equal thermal kinetics in both spaces, according to
simulation.

In order to evaluate whether the general principles of the dual-
porosity model as presented can still be useful, in particular for
studying heat conduction through bulk tissue, the remainder of
lised situation (left) and a more realistic situation reflecting the influence of finite
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this section is dedicated to a case study of thermal relations in
apple tissue. A major part is concerned with determining the
intra- and extracellular thermal conductivities, as these parame-
ters must necessarily differ for the model to be applicable. A sim-
ulation of an apple tissue sample cooling process then follows
this parameter determination.

In cases where there is a marked difference in the thermal prop-
erties of the two spaces, i.e. in cases where ki – ke, using the dual-
porosity model remains a possibility. Since it has been determined
by the preceding analysis that the membrane is too thin to present
a significant barrier to heat transfer, it is possible to attribute to the
membrane the thermal conductivity of the intracellular space
instead, provided ki – ke. By doing so, one supposes that within
each individual cell the heat distribution is homogeneous, while
heat traverses each cell according to the velocity determined by
ki. This happens to be exactly what is already reflected by Eq.
(42), where the transmembrane volumetric heat transfer coeffi-
cient no longer depends on any other property of the membrane,
but exclusively on the intracellular thermal conductivity.

For apple tissue, tabulated data can be found in literature [2],
giving the bulk tissue thermal conductivity at room temperature
of about 0.418 Wm�1 K�1, and that of apple juice is 0.559 Wm�1 -
K�1 (note that this value was used as a first approximation for ke in
the preceding section). There is no reliable data in literature on
estimates for the extracellular thermal conductivity. However,
using a model of bulk properties of equivalent media such as fol-
low from the modified Maxwell’s equivalent medium theory [10],
one can suppose that the unknown thermal conductivity (the
extracellular) can be obtained from the known bulk thermal con-
ductivity and the supposedly known thermal conductivity of the
intracellular space. This is possible assuming that the latter com-
prises primarily intracellular juice that can be extracted from the
cells and its thermal conductivity was independently measured.
The extracellular thermal conductivity in apples is presumably
much lower than that of the cells, since the juice thermal conduc-
tivity is relatively high as compared to apple tissue bulk conductiv-
ity. Note that at a higher than 0.5 fraction of cell volume (about
0.92 in apples, see e.g. [30]), according to the equivalent medium
model, the extracellular thermal conductivity must be consider-
ably lower to result in a difference of 0.141Wm�1 K�1 (25% rela-
tive to juice) between the bulk and juice thermal conductivities.

The equivalent medium model for a packed bed of spherical
particles constituting the discontinuous phase embedded in a
matrix (i.e. the continuous phase) states [2] that

k ¼ kc
1� ½1� aðkd=kcÞ
b

1þ ða� 1Þb ð43Þ

where k is the bulk thermal conductivity, kc the thermal conductiv-
ity of the continuous and kd that of the discontinuous phase, b
equals Vd/(Vc + Vd) where Vd and Vc are the volume shares of the dis-
continuous and the continuous phase, respectively, and a equals
3kc/(2kc + kd). Cells in tissue (modelled as perfect spheres) form
the discontinuous phase, while the extracellular space is the contin-
uous phase in Eq. (43). Setting k = 0.418 Wm�1 K�1, kd = 0.559 -
Table 2
Parameters used in simulations presented in this section and in some of the theoretical d

Parameter Value Source

l (m) 0.005 Previous experiments
F (–) 0.92 Previous works (see [30])
ki (W m�1 K�1) 0.559 Apple juice [2]
ke (Wm�1 K�1) 0.174 Estimated based on [2]
tend (s) 120 Arbitrarily chosen
fv (–) 11.5 F/(1 � F)
R (lm) 100 Previous works (see [30])
Wm�1 K�1, Vd = 0.92, and Vc = 0.08, the unknown that can be
expressed from Eq. (43) is kc, which is determined by the following
expression (the expression following from Eq. (43) for kc is a quad-
ratic function, of its two roots, only the one yielding a positive kc is
meaningful)

kc ¼�2kþbk�kd�2bkdþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðb�1Þ2kkdþððbþ2Þk�ð2bþ1ÞkdÞ2

q
4ðb�1Þ

ð44Þ

with the solution, in our example, kc = ke = 0.174 Wm�1 K�1, which
is indeed much lower than either the bulk k or kd (i.e. ki). Thus cal-
culated value of ke is still however almost an order of magnitude
greater than thermal conductivity of air, which is (at 20 �C and
1 atm) 0.0257 Wm�1 K�1 [45]. This is expected, since in intact
apple fruit tissue the extracellular space comprises, besides the
extracellular matrix structure, also pockets of air [46], the presence
of which is trivially demonstrated by observing that apple fruit
tends to float rather than sink in water. The extracellular air, how-
ever, is not homogeneously distributed throughout the continuous
phase, and is therefore assumed to not be predominantly determin-
ing its thermal conductivity.

Table 2 below summarizes all the necessary data allowing for
the simulation using the dual-porosity model to be performed
out and presented. The results (spatio-temporal distribution of
temperature) for the two spaces (i.e. intra- and extracellular space)
are given in Fig. 6.

The hypothetical theoretical experiment (simulation), results of
which are given in Fig. 6, represents a simulation whereby an apple
fruit sample of 5 mm thickness and much larger in the other two
dimensions (to assure that the bulk of the thermal flow is only
along one axis) is heated (by the electric current during electropo-
ration or otherwise) to 20 �C above ambient temperature and then
left to rapidly cool (via the electrodes at the boundary surfaces, for
example). As the given figure illustrates (Fig. 6-left column), there
is no detectable difference between the intra- and the extracellular
temperature for such high values of hv as realistically calculated for
apple fruit cells. The theoretical simulated cell would have to be
about 20-times larger (see Fig. 6-right column) in order for a con-
siderable reduction in the transmembrane volumetric thermal con-
ductivity coefficient. This confirms our initial evaluation and the
order-of-magnitude analysis of h0

v, which already indicated that
the high thermal conductivity of the membrane prevents the
appearance of significant transmembrane thermal gradients.

All of the preceding theoretical analysis and simulations using
realistic model tissue seem to indicate that there are no noticeable
influences of the plasma membrane to the heat transfer in tissue
directly as a result of the membrane’s intrinsic thermal permeabil-
ity. The membrane is simply too thin and the cells too small for the
membrane to present a significant thermal insulation boundary
between the intra- and the extracellular space. Therefore, electro-
poration and its effects to the membrane can be safely assumed to
have no direct consequences to heat (re)distribution in tissue, at
least not on the timescale of seconds or minutes following electro-
erivations.

Parameter Value Source

q (kg m�3) 1000 Water [45]
cp (J kg�1 K�1) 4200 Water [2,45]
km (Wm�1 K�1) 0.430 [34]
h0
v (Wm�3 K�1) 8.385 � 107 n/a

Ti0,d (K) 20 arb. chosen
Te0,d (K) 20 arb. chosen
dm (nm) 5 [30]



Fig. 6. The results of the dual-porosity model simulation study using the parameters as given in Table 2. Left column: The volumetric heat transfer coefficient was equal to
value given in Table 2 (realistic). Right column: The volumetric heat transfer coefficient was reduced by a factor of 100, corresponding to cells 10-times as large as an average
apple fruit cell (intentionally exaggerated and unrealistic for demonstration purposes).
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poration. However, there still might be undetected effects at the
nanometre scale in terms of space and on the micro- to millisec-
onds timescale during pulse application, a situation which the pre-
sent study does not explore, as it is limited to the study of thermal
phenomena after the application of pulses. Given the emerging use
of nano- or even picosecond pulses in electroporation [3], a similar
theoretical study into thermodynamics at the membrane would
present a welcome elucidation of the problem at the very short
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timescale. Such a study however requires a different approach to
the one presented herein, and if considered, will be presented sep-
arately from the present work.

On the other hand, looking at possible indirect consequences of
cell membrane electroporation to heat transport in tissue, one
cannot neglect the impact of electroporation to redistribution of
intercellular juice and consequent changes in local tissue electrical
as well as thermal conductivity. If the cell membrane is
permeabilised, and liquid vacates the cells (perhaps spontaneously
due to release of turgor pressure), this will affect the extracellular
electrical and thermal conductivity. This effect will be most pro-
nounced in tissues where the intra- and extracellular conductivi-
ties of intact tissue differ the most. For purposes of illustration,
consider the extracellular space to comprise pockets of air. These
air pockets are poor electrical as well as poor thermal conductors.
If, at the onset of electroporation, the air can be replaced with (sup-
planted by) intracellular juice, this will alter the extracellular space
composition and its thermal as well as electrical properties. The
degree to which this phenomenon occurs and affects the overall
bulk tissue thermal and/or electrical conductivity, will supposedly
depend on the degree of electroporation of the cell membranes. For
highly permeabilised cells in tissue, the supposition ke � ki may be
a valid assumption, however, if the tissue is intact or subjected
only to very gentle electrical treatment, one should expect to
observe ke < ki. In this case, the heat transfer through tissue can
be modelled using the thermal dual porosity model whose solution
is presented in Section 2.2, however, sufficient accuracy for all
practical purposes can probably also be achieved by assuming
the tissue being homogeneous with regard to heat exchange.
3. Conclusions

This paper presents work performed within the scope of a
broader study dedicated to the problem of characterising mass
and heat transfer phenomena and their relation in biological tis-
sues, predominantly those of plant origin. The first section is ded-
icated to the analogy between the dual-porosity models of mass
transport and its equivalent thermal formulation, and gives a
detailed analysis of the model from its formulation to development
of the analytical solution, as well as providing theoretical grounds
for estimating all of the required model parameters. This is fol-
lowed by an example simulation study using apple fruit tissue as
model material. First, a way of estimating all of the required
parameters based on those available in the literature is presented,
followed by a simulation of cooling of an apple fruit sample. This is
done for both a realistic membrane thermal conductivity, as well
as an unrealistically altered one, illustrating how different the
actual fruit (or plant tissue, in general) structure would have to
be in order for the membrane to have a significant effect on cooling
kinetics.

The conclusion that can be drawn from the analysis of thermal
relations in tissue with the use of the dual-porosity thermal model
is that, from the heat transfer point of view, tissue (electroporated
tissue in particular) is too homogeneous (if electroporated homo-
geneously, of course) to necessitate the study of its thermal prop-
erties with a more complex model of dual porosity. For all common
intents and purposes in industrial applications, the thermal prop-
erties of the extracellular and the intracellular space can be consid-
ered approximately equal. In this case, bulk properties of tissue can
be used in a simple local thermal equilibrium model to study heat
relations in tissue with adequate accuracy (first-order kinetics).

The same however cannot be said or claimed for very short
timescales and events on the nano-scale that were not considered.
The dual-porosity model might present an interesting starting
point for modelling thermal relations on the level of cells and on
very short timescales, something that has been shown as impor-
tant not in the seconds after electroporation, but rather during
the pulse application.

Possible future directions in model development point towards
combining the heat transfer model with a model of mass transport
in tissue, since mass transport parameters are known to exhibit
strong temperature dependence. The model could also conceivably
be extended by accounting for tissue heterogeneity and anisotropy,
however, before delving into such levels of detail, the findings of
this theoretical analysis must first be corroborated by experimen-
tally obtained data.
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[50] A. Zupanič, D. Miklavčič, Tissue heating during tumor ablation with
irreversible electroporation, Elektrotehniški Vestnik 78 (2011) 42–47.

http://refhub.elsevier.com/S0017-9310(16)33654-7/h0110
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0110
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0110
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0110
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0110
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0110
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0110
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0110
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0110
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0115
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0115
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0115
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0120
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0120
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0125
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0125
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0130
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0130
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0130
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0135
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0135
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0135
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0140
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0140
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0140
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0145
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0145
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0145
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0150
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0150
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0150
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0150
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0155
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0155
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0155
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0160
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0160
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0165
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0165
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0165
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0165
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0165
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0165
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0170
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0170
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0170
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0175
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0175
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0180
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0180
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0180
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0185
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0185
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0185
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0190
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0190
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0195
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0195
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0200
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0200
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0205
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0205
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0210
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0210
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0215
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0215
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0220
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0220
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0225
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0225
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0225
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0230
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0230
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0235
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0235
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0235
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0235
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0235
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0240
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0240
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0240
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0245
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0245
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0245
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0250
http://refhub.elsevier.com/S0017-9310(16)33654-7/h0250

	A comprehensive theoretical study of thermal relations in plant tissue�following electroporation
	1 Introduction
	2 The theoretical basis and the dual-porosity model
	2.1 The heat distribution model – basic model equations and its derivation
	2.2 The thermal dual-porosity model – analytical solution
	2.3 A theoretical estimation of the volumetric heat transfer coefficient h[$]_{v}^{\prime}[$] and other parameters; a discussion on the relevance of the dual-porosity model for the thermal problem in electroporated tissues

	3 Conclusions
	Acknowledgements
	References


